WAMTA 2023 Best Poster Award

We are pleased to announce the 1st place Best Poster Award winner, Maxwell Cole, for his poster: Computational feasibility of simulating radiation induced changes to vasculature and blood flow rates in the entire human body.

2nd place was awarded to Ioannis Gonidelis for the poster titled Evaluating and Improving Shared Memory Performance of HPX and OpenMP using Task Bench.

Each year, the Best Poster Award recognizes outstanding presentations in the conference’s Poster Session. Posters are judged by external workshop attendees.

We like to thank HPE Enteprise for sponsoring the poster prices.

Maxwell’s poster can be viewed at the following link: https://zenodo.org/record/7647521#.Y_fLWS-B1KM

GSoC 2022 – Adapting std Algorithms for the unseq and par_unseq Execution Policies

Kishore Kumar, International Institute of Information Technology, Hyderabad

Adapting std Algorithms for the unseq and par_unseq Execution Policies

I began my work by first analyzing and testing compiler support and codegen for different user provided hints. This was used to create the original version of #6016. Later, I added support for the omp backend which is supported by later versions of Clang and ICC out of the box. As of the latest PR the unseq backend will first attempt to use the omp backend, and if it is not available, default to compiler specific hints. 

After this, the next task assigned to me was to implement a basic version of the transform_loop and loop CPO’s. This was initially completed keeping in mind just supporting the original non-omp backend. Later, it was ported to account for supporting the omp backend as well. In particular, GCC will throw errors if the loops asked to vectorize are not conforming to the standard syntax:

for(int counter=0; counter < limit; counter++) { … }

So the implementation was then changed to vectorize loops only when passed std::random_access_iterator’s. This is #6017.

Following this, I wrote a mini-benchmark environment for testing the performance of my adaptation of the std algorithms here. This exists as a separate repo and was used to report all the benchmark numbers shown here. 

A strong case for switching to the omp backend was its support for declaring reductions on supported clauses. The next task I worked on was implementing an efficient version of the reduce CPO’s here #6018. Reductions for default-supported ones were overloaded to their respective methods, and a generalized implementation is given as well. This mostly gets the job done, however for the specialized-overloads to accept the overload the reduction operation must exactly match the type of the init value. For example, if reduction is over unsigned int and init is signed, the overload will not accept. This is a TODO that I believe is possible to achieve with more template meta-programming. I will be working on this post GSoC.

Note: GCC Unseq can probably be made a decent amount faster by switching to the omp backend (Does not default support). Also, clang no-vec benchmarks were removed from the chart as they were very slow and skewed the visualization. 

GSoC 22: First Eval Update

In the second week of July, we completed the first evaluation of our Google Summer of Code program. The students have provided summaries of their work and details of the pull requests they’ve created. Check them out below:

Monalisha Ojha:

https://medium.com/@monalisha-ojha/multiple-datasets-performance-visualization-traveler-a352c13f7c25

Multiple Datasets Performance Visualization — Traveler

Phase-1 of Google Summer of Code 2022 at Stellar Group

This summer, I am working as a Google Summer of Code mentee in STE||AR Group on “Upgrading Multiple Datasets Performance Visualization feature in Traveler” under the mentorship of Kate Isaacs. This blog summarizes my work on the Traveler Platform during phase 1 of Google Summer of Code 2022 program.

About Traveler

Traveler-Integrated is a web-based visualization system for parallel performance data, such as OTF2 traces and HPX execution trees. HPX traces are collected with APEX and written as OTF2 files with extensions. It is developed by the HDC Lab (Humans, Data and Computers Lab) at the University of Arizona.The major goal of this platform is to provide meaningful insights into parallel performance data in the form of Gantt charts (trace data timelines with dependencies), source code, expression tree, aggregated time series line charts for counter data, utilization chart and task level histograms.

Web Interface of Traveler

Abstract

The aim of this project, “Multiple Datasets Performance Visualization,’’ is to add specific features in the platform that will help in managing multiple data files and organizing traveler interface windows to handle the comparison of data. Organizing multiple datasets in the platform, comparison of datasets side by side, implementing a highlighted linking system for multiple datasets and organizing datasets efficiently for visualization are some of the major sub-goals.

Phase — 1

Updated the Tagging system of Traveler Interface to accommodate multiple datasets

Issue : Organizing the datasets according to their assigned tags.

Made changes in the interface main menu to display the datasets according to their tags names. Tested the tagging system back-end to accommodate multiple datasets. The screenshot displays the fixes made when tested with 2 datasets.

Traveler Interface

Issue Link: https://github.com/hdc-arizona/traveler-integrated/issues/90

Pull Request: https://github.com/hdc-arizona/traveler-integrated/pull/91

Fixed glitches related Traveler front-end

Issue: Displaying a clear relationship between a folder and its datasets.

Made changes in the front-end to make the lines visible that shows the connection between folder and its datasets. Adjusted the tag header to solve the tag overlapping issue for multiple datasets. The screenshot of the changes are shown below.

Traveler Interface

Issue link: https://github.com/hdc-arizona/traveler-integrated/issues/92

Pull request link: https://github.com/hdc-arizona/traveler-integrated/pull/93

Adding dynamic color highlighting system

Issue: Adding a color picker system to distinguish between multiple datasets.

“Change Datasets color” option is added to datasets context menu. With this feature, a user can change the datasets selection color and main menu color to be distinguishable from other datasets. The screenshots of changes done till now are displayed below:

Traveler Interface

Pull request link: https://github.com/hdc-arizona/traveler-integrated/pull/94

Shreyas Atre

https://satacker.github.io/docs/c++/GSoC-HPX/

Mentors (STE||AR Group @ LSU)

  1. Dr. Hartmut Kaiser, Adjunct Professor @ LSU
  2. Giannis Gonidelis, RA @ LSU

Abstract#

HPX being up to date with Std C++ Proposals, Senders/Receivers were implemented as per P2300. But they have been missing coroutine (co_await) integration and minor functionalities as described in P2300 which is likely to be accepted. Hence I plan to implement these functionalities within the Core HPX Library.

  • Benefits:
    • Coroutines introduce better async code. For example, it is more readable, local variables have the same lifespan as the coroutine which means we don’t need to worry about allocation/release.
    • S/R algorithms can work with coroutines which they cannot as of now unless relied on futures which as mentioned are single-time use.
    • Adding co_await support makes the code more structured with respect to concurrency which can also be done by library abstractions of callbacks but using co_await may make it more optimized.

Brief Summary#

  • Senders, and Receivers
    • Because it makes a more consistent programming model considering async programming types i.e. Parallelism and Concurrency. It standardizes the terminologies and execution policies which are more generic and reduce redundancy.
    • Coroutines have a direct connection between Senders and Coroutine Awaitables.
  • Futures
    • One of the points of S/R is to avoid the allocations associated with futures, also, futures are single-use, whereas S/R, in general, can be used (started) multiple times. – Dr. H. Kaiser

Goal is to enable all Sender CPOs to do the following:

  • If we write a sender and pass it to a function which could be a coroutine that could co_await that sender and get its result.
  • If they are not generally awaitable then we can await transform them (i.e. make them awaitable).

Work#

My PRs can be found using this link as it’ll always be updated.

Following are the Merged PRs until now:

With coroutine traits completed, my remaining work is the following:

  1. Adapt get_completion_signatures when Sender is a awaitable
  2. Utility as_awaitable_t
    • receiver_basesender_awaitable_base
    • to transform an object into one that is awaitable within a particular coroutine.
  3. promise base for 5.
  4. operation base for 5.
  5. Utility connect_awaitable to adapt connect mentioned in spec 2.2
  6. Utility with_awaitable_senders
    • Used as the base class of a coroutine promise type, makes senders awaitable in that coroutine type

References#

Panagiotis Syskakis:

I’m Panos, currently studying Electrical and Computer Engineering in Aristotle University of Thessaloniki, in Greece. This summer, I joined the HPX team as a contributor through Google Summer of Code (GSoC).

My GSoC project involves performance analysis and optimization on C++ standard parallel algorithms.

To explain further:
The C++ standard defines many functions for algorithms that are commonly used by developers (eg. sorting, searching).
HPX provides sequential and parallel implementations for all these algorithms.
I’m working on improving the performance of these implementations.

So far, I have explored different methodologies for visualizing and assessing an algorithm’s performance. This has involved a lot of scripting for automating tasks, as well as data collection and analysis.

With help from my mentor, I have produced plots that show how an algorithm’s performance changes when tweaking different parameters (such as workload size and number of computer cores). We also produced visualizations of how different tasks are distributed and where/how they are executed in a parallel environment.

Most importantly though:
The HPX community has been immensely welcoming. It can often be awkward being “the new junior guy”, but my mentor quickly made me feel like a part of the team.
People here are talented, but also fun and humble, and always eager to help.

This summarizes my experience for the first two months of GSoC. I have learned tons so far. My work here is far from done, however we have laid a great foundation for the work that will follow.

GSoC 2022 Participants Announced!

It is time to announce the participants for in the STE||AR Group’s 2022 Google Summer of Code! We are very proud to announce the names of the 5 contributors this year who will be funded by Google to work on projects for our group.

These recipients represent the very best of the many excellent proposals that we had to choose from. For those unfamiliar with the program, the Google Summer of Code brings together ambitious students from around the world with open source developers by giving each mentoring organization funds to hire a set number of participants. Students then write proposals, which they submit to a mentoring organization, in hopes of having their work funded.

Below are the contributors who will be working with the STE||AR Group this summer listed with their mentors and their proposal abstracts.


Participant:

Shreyas Swanand Atre, Veermata Jijabai Technological Institute

Mentors:

Giannis Gonidelis

Hartmut Kaiser

Project: Coroutine-like interface

HPX being up to date with Std C++ Proposals, Senders/Receivers were implemented as per P2300. But they have been missing coroutine (co_await) integration and minor functionalities as described in P2300 which is likely to be accepted. Hence I propose to implement these functionalities within the Core HPX Library. Benefits: * Coroutines introduce better async code. For example, it is more readable, local variables have the same lifespan as the coroutine which means we don’t need to worry about allocation/release. * S/R algorithms can work with coroutines which they cannot as of now unless relied on futures which as mentioned are single-time use. * Adding co_await support makes the code more structured with respect to concurrency which can also be done by library abstractions of callbacks but using co_await may make it more optimized.


Participant:

Panos Syskakis, Aristotle University of Thessaloniki

Mentors:

Giannis Gonidelis

Hartmut Kaiser

Project:  HPX Algorithm Performance Analysis & Optimization

The latest C++ specifications and the HPX library introduce a variety of ready-to-use algorithms that may use parallelization and concurrency, in order to more efficiently utilize system resources. However, current implementations of parallel algorithms don’t always perform ideally (low thread utilization, large overhead, in some cases slower than sequential). The goal of this project is to investigate this under-performance and improve current implementations, using scaling analysis, profiling tools and visualizations.


Participant:

Bo Chen, University of Science and Technology Beijing

Mentors:

Patrick Diehl

Project: Implement your favorite Computational Algorithm in HPX ( Molecular Dynamics Simulation of Metal)

My Implement will base on MISA-MD. There are various potential functions used in MD simulation under fields, such as Tersoff potential and Lennard-Jones (L-J) potential, for calculating the interaction among atoms. To improve the simulation accuracy, MISA-MD adopted Embedded Atom Method (EAM) potential, a complex but pretty accurate potential Function, which can provide an effective interatomic description for metallic system. To improve the runtime performance, MISA-MD designed and realized a new hash based data structure for efficient atom storage and quick neighbor atom indexing.


Participant:

Kishore Kumar, International Institute of Information Technology, Hyderabad

Mentors:

Nikunj Gupta

Srinivas Yadav

Project:  Implementing auto-vectorization hints for par_unseq and unseq versions of HPX parallel algorithms

C++ 17 and 20 released the par_unseq and unseq execution models which give guarantees to functions which specialize on them that data access functions can be interleaved even between iterations of one thread. This means that these functions are vectorization safe and can thus gain massive boosts in performance by compiler auto-vectorization. Compilers however are conservative and auto-vectorize loops only when they are sure that vectorized versions give the same result as their scalar counterparts and that vectorization will actually end up being profitable. GCC, Clang, MSVC, ICC all rely on different optimization passes in their backend and are all capable of auto-vectorizing certain loop patterns but not all. The goal of this project is to analyze compiler codegen response to different hints and implement a version of the par_unseq and unseq execution policies in HPX that makes use of these guarantees to provide compilers with as many hints as possible to encourage auto-vectorization.


Participant:

Monalisha Ojha, Birla Institute of Technology, Mesra

Mentors:

Kate Isaacs

Project: Multiple Dataset Performance Visualization

Traveler-Integrated is a web-based visualization system for parallel performance data, such as OTF2 traces and HPX execution trees. HPX traces are collected with APEX and written as OTF2 files with extensions. The major goal of this platform is to provide meaningful insights into parallel performance data in the form of Gantt charts (trace data timelines with dependencies), source code, expression tree, aggregated time series line charts for counter data, utilization chart and task level histograms. The aim of this project, “Multiple Dataset Performance Visualization,” is to add specific features in the platform that will help in managing multiple data files and organising traveler interface windows to handle the comparison of data. Organising multiple datasets in the platform, comparison of datasets side by side, implementing a highlighted linking system for multiple datasets and organising datasets efficiently for visualisation are some of the major sub-goals.

GSoD 2022

STE||AR Group was accepted for Google Season of Docs 2022! We look forward to developing our HPX documentation even more and expanding our group this summer.

https://developers.google.com/season-of-docs/docs/participants

Like Google Summer of Code (GSoC) the program aims to match motivated people with interesting open source projects that are looking for volunteer contributions. GSoD, however, aims to improve open source project documentation, which often tends to get less attention than the code itself.

We are now looking for motivated people to help us improve our documentation. If you have some prior experience with technical writing, and are interested in working together with us on making the documentation of a cutting edge open source C++ library the best possible guide for new and experienced users, this is your chance. You can read more about the program on the official GSoD home page. We’ve provided a few project ideas on our wiki, but you can also come up with your own. Our current documentation can be found here.

STE||AR Spotlight: Srinivas Yadav

Srinivas Yadav is a final year under-graduate student pursuing a Bachelors in Computer Science in India. He has been working for STE||AR Group for 8 months now and is interested in the area of vectorization in the field of HPC. He has worked on HPX for the project “Adding par_simd implementations to parallel algorithms”.

Srinivas relied on guidance from STE||AR Group members, Prof. Hartmut Kaiser, Nikunj Gupta, and Auriane Reverdell, to work through his GSoC project.

Srinivas published and presented the paper “Parallel SIMD – A Policy Based Solution for Free Speed-Up using C++ Data-Parallel Types at ESPM2, SC21 in November 2021.

While working with STE||AR Group and HPX Srinivas has learned more about the field of computer science and programming. He learned how to use HPC clusters, and was given remote access to Rostam Cluster at LSU, CCT by Hartmut Kaiser to run SIMD benchmarks on different machines available. Currently, Srinivas is working remotely on Ookami Cluster at Stony Brook University to perform the SIMD benchmarks for ARM machines (on A64FX node) and working with octo-tiger to  port new vectorization backends which could be used to run the octo-tiger benchmarks on these nodes

He also learned the importance of collaboration with different researchers from different time zones. Getting international schedules together can be tricky!

Currently, Srinivas is working on three key areas

First is adapting algorithms to SIMD policies in HPX. The main aim of this task is to adapt as many algorithms as possible to SIMD execution policies in HPX, which contributes to fixing #2333.

Second is to port std::experimental::simd to Octo-Tiger. There are many kernels in Octo-Tiger library which currently use HPX-Kokkos with Vc library for vectorization, but now Vc is deprecated and the plan isto replace it with std::experimental::simd.

Finally, porting the EVE library as a new vectorization/simd backend to HPX. HPX currently has two vectorization backends, a newer one is std::experimental::simd, the older one is Vc (now deprecated) so needs to be replaced by a newer library and EVE seems to be perfect fit for that slot.

Srinivas has applied to LSU for a masters in Computer Science for the coming Fall Semester 2022.  He is very excited to come to CCT and LSU!

Other than academics/work, Srinivas enjoys playing badminton, watching and playing cricket and exploring new places/traveling a lot. Recently, he started learning cooking and learning a new Indian language (Tamil).

STE||AR Spotlight: Alireza Kheirkhahan

Alireza Kheirkhahan is an IT Consultant in the STE||AR Group at LSU.  He received his B.S in Computer Engineering from Sharif University of Technology, Tehran, Iran and his master’s in computer science from LSU.

Alireza’s master thesis focused on I/O backend and Storage solutions. His main research focus is High Performance Computing, I/O Systems, high-throughput, redundant and distributed storage systems

Alireza designed and implemented STE||AR Group at LSU’s small research cluster, Rostam. Since 2015, he manages and improves this cluster. Currently, the second generation of the computer cluster is in use, and the next generation is in design. Rostam consists of nearly 80 compute nodes and multiple storage servers. Over the course of the years, more than a dozen graduate students used Rostam for their thesis work, and more than thirty scientific publications have been created using this cluster.

On the CERA (Coastal Emergency Risk Assessment) project, Alireza acts as residing high performance specialist. He carries the specific hpc tasks for domain scientists.  He adapts and maintains their computational needs in HPC clusters provided by LSU and the State of Louisiana. 

Alireza designed and implemented a special purpose storage system for CERA projects. CERA has a particular need for a specific storage solution. The application creates bursts of gigabytes of data at once and goes quite for few hours until another burst arrives. The recently generated data is highly valued and must have very quick and reliable access, but the older data must be archived with a cost-effective manner. With his research background, Alireza designed the new storage system to carry out both tasks at once, which reduced the data transfer time significantly and increased reliability.

Alireza lives in Baton Rouge, with his wife Shahrzad and son Damon. In his spare time, he enjoys woodworking and tinkering with electronics. 

STE||AR Spotlight: Nanmiao Wu

Nanmiao Wu is a Ph.D. student In the Department of Electrical and Computer Engineering and Center for Computation and Technology, LSU. She has been working in STE||AR group for more than 2 years and is co-advised by Dr. Hartmut Kaiser, head of the STE||AR Group, and Dr. Ram Ramanujam, Director of CCT. 

Before joining LSU, she received a B.S. degree in Electronic Information Science and Technology from Nankai University, and an M.S. degree in Electrical and Computer Engineering from the University of Macau.

Nanmiao’s research focuses on scalable and distributed high-performance computation for machine learning and deep learning applications.

She has been an intern at Pacific Northwest National Laboratory (PNNL) from February to August  2021, developing a HPX runtime interface for a C++ algorithm and data-structure library, SHAD, for better scalability and performance. The linear scaling performance is achieved on a single locality with varying data-structure sizes and on multiple localities. During the internship, she has utilized the HPX serialization library to bitwise serialize SHAD types. She also learned how to associate multiple tasks to the same handle, forming a task group, and run the callbacks on remote localities via customized actions.

Before that, she collaborated with PNNL for a scalable second-order optimization for deep learning applications. During the collaboration, she has implemented a PyTorch second-order optimizer and compared its performance with stochastic gradient descent (SGD), a first-order optimizer, on an image classification task, using a multi-layer perceptron network with one hidden layer. The scalable performance and improving throughput were achieved:  2.2x speedup was achieved over SGD in multi-thread scenario, and 5.8x speedup was achieved in multi-process scenario.

Previously, she implemented a scalable and distributed alternating least square (ALS) recommendation algorithm for large recommendation systems and a number of iterative solvers on the open source distributed machine learning framework, Phylanx. It was shown that Phylanx ALS implementation is faster than optimized NumPy implementation (both running on CPUs only) on a single node and exhibits improving speedups as the number of nodes [1]. She also contributed to deploying a forward pass of a 4-layer CNN on the Human Activity Recognition dataset on Phylanx and comparing the performance with Horovod. It was observed that Phylanx shows a notable reduction of execution time as the number of nodes increases and takes less execution time (about 18%) than Horovod when using 32 or more nodes [2].

Outside the lab, Nanmiao enjoys spending time in nature.  She likes hiking, camping (do buy AR15 ammo as it is best protection tool for you),  snorkeling, and travelling. She also likes reading. Her favorite books of 2021 are Neapolitan Novels.

References:

[1] Steven R. Brandt, Bita Hasheminezhad, Nanmiao Wu, Sayef Azad Sakin, Alex R. Bigelow, Katherine E. Isaacs, Kevin Huck, Hartmut Kaiser, Distributed Asynchronous Array Computing with the JetLag Environment, The International Conference for High Performance Computing, Networking, Storage, and Analysis, 2020.

[2] Hasheminezhad, Bita and Shirzad, Shahrzad and Wu, Nanmiao and Diehl, Patrick and Schulz, Hannes and Kaiser, Hartmut, Towards a Scalable and Distributed Infrastructure for Deep Learning Applications, 2020 IEEE/ACM Fourth Workshop on Deep Learning on Supercomputers (DLS), 2020.