
HPX backend for OpenCV
Summary for 2nd evaluation
List of my PRs:

● https://github.com/STEllAR-GROUP/hpx/pull/3335
● https://github.com/STEllAR-GROUP/hpx/pull/3214
● https://github.com/STEllAR-GROUP/hpx/pull/3365
● https://github.com/opencv/opencv/pull/11897

My repository with example applications and benchmarks:
● https://github.com/Jakub-Golinowski/opencv_hpx_backend

The image processing toolbox OpenCV supports multithreading in multiple ways, i.a. via
TBB or OpenMP, but not with the use of HPX. Therefore, the goal of this project is to provide
a reliable HPX parallel backend for OpenCV. As a result, current users of HPX will be able to
seamlessly use OpenCV in their applications and OpenCV users will be provided with the
possibility to utilize the HPX parallel backend.

The OpenCV API contains a cv::parallel_for_() function which allows for the parallelization of
simple for loops in the classic fork-join style. This function is both exposed to the end-user of
the OpenCV library and used by its other functions. Depending on the OpenCV compile-time
parameter the specific parallel backend is chosen to execute calls to cv::parallel_for_().
Apart from the backend implementation I added a cmake build option allowing to choose
HPX as the parallel backend. However, it is important to note at this point that I developed 2
versions of the HPX backend and the reasoning is presented below.

Since HPX is a general purpose C++ runtime system for parallel and distributed applications
which allows user to build a DAG of his workflow instead of the classic fork-join approach,
the primary use-case of the backend we have in mind is when a user of the HPX library
wants to employ functionality of OpenCV in his application as part of the above mentioned
workflow DAG. From now on I will refer to this backend version as primary.

In order to achieve the functionality of the primary backend version described above I had to
implement it in such a way that it assumes that the HPX runtime was started by the user
before the the call to the cv::parallel_for_(). Only in this way the full flexibility of workflow
DAG construction and runtime lifetime can be preserved in user’s hand.

Nevertheless we are aware, that it creates a problem for the users who want to use the HPX
backend without having to worry about runtime management. Therefore, a second version of
the backend was developed which automatically starts the HPX runtime for each
cv::parallel_for_() call. Currently the implementation is simple and does not perform any
checks whether the runtime was started or not and blindly starts at entry and stops it on exit
from cv::parallel_for_(). In the next month I plan to attempt developing a more advanced
implementation which will perform checks on a static object in order to prevent starting the
runtime multiple times. From now on I will refer to this version of backend as the start-stop
backend.

https://github.com/STEllAR-GROUP/hpx/pull/3335
https://github.com/STEllAR-GROUP/hpx/pull/3214
https://github.com/STEllAR-GROUP/hpx/pull/3365
https://github.com/opencv/opencv/pull/11897
https://github.com/Jakub-Golinowski/opencv_hpx_backend

It is worth pointing out that the start-stop version is not optimal. As mentioned before HPX is
a general purpose framework for parallel and distributed computation with a DAG workflow.
Therefore, starting and stopping it for each for-join style cv::parallel_for_() is introducing a
considerable overhead as can be seen in the following benchmark I performed:

In the plot above it is visible, that the best performance is achieved by pthreads backend
developed within OpenCV for the sole purpose of supporting the cv::parallel_for_() calls.
What we can see in the graph above is the trade-off between generality of the solution (hpx)
and tuning performance for a specific use-case (pthreads).

Apart from working on the backend itself I developed a set of example applications in order
to both familiarize myself with HPX and OpenCV but also to test and benchmark different
backend versions (see my repository). For example at first it was not clear to me what the
nstripes parameter of the cv::parallel_for_() function is and how to handle it in the HPX
backend, but after running a few benchmarks and analyzing results I chose the best out of
different possible solutions. The nstripes parameter allows the OpenCV to give a hint to the
parallel backend about the preferred partitioning of the tasks passed to cv::parallel_for_(). In
the final implementation I take into account the nstripes partitioning but allow at maximum
4*num_threads of HPX tasks to execute all the nstripes partitions. For example if OpenCV
uses nstripes equal to 100 and the HPX runtime is working on 8 threads it will still use 32
HPX-tasks and divide 100 chunks of work between them. It allows to avoid situations in
which too high number of tasks is introducing too big overhead.

https://github.com/Jakub-Golinowski/opencv_hpx_backend

Finally, after a reliable version of the HPX backend for OpenCV was developed I used the
OpenCV with freshly added backend for an example face-recognition application that works
in real time. This application is the example in which usage of primary HPX backend is
exemplified - as the user I have the full control of the HPX runtime and in particular over
HPX thread pools. In this application I am using 2 thread pools: the default thread pool which
receives 7 threads and the opencv thread pool which receives 1 thread. All the potentially
blocking tasks are executed by opencv thread pool (showing each frame of the image,
accessing the webcam in order to take each image of the video stream). The
face-recognition algorithm from OpenCV library is run on the default thread pool and makes
use of 7 threads assigned to this pool. Below is the gif presenting the application in use:

