
PXFS: A Persistent Storage Model for Extreme
Scale

Shuangyang Yang∗§, Maciej Brodowicz†, Walter B Ligon III‡, Hartmut Kaiser∗§
∗Center for Computation and Technology, Louisiana State University, Baton Rouge, LA
†Center for Research in Extreme Scale Technology, Indiana University, Bloomington, IN

‡Parallel Architecture Research Laboratory, Clemson University, Clemson, SC
§Department of Computer Science, Louisiana State University, Baton Rouge, LA

syang16@lsu.edu, mbrodowi@indiana.edu, walt@clemson.edu, hkaiser@cct.lsu.edu

Abstract—The continuing technological progress resulted in
sustained increase in the number of transistors per chip as
well as improved energy efficiency per FLOPS. This spurred
a dramatic growth in aggregate computational performance of
the largest supercomputing systems, yielding multiple Petascale
implementations deployed in various locations over the world.
Unfortunately, these advances did not translate to the required
extent into accompanying I/O systems, which primarily saw the
improvement in cumulative storage sizes required to match the
ever expanding volume of scientific data sets, but little more in
terms of architecture or effective access latency. Moreover, while
new models of computations are formulated to handle the burden
of efficiently structuring the parallel computations in anticipation
of the arrival of Exascale systems, a meager progress is observed
in the area of storage subsystems. New classes of algorithms
developed for massively parallel applications, that gracefully
handle the challenges of asynchrony, heavily multithreaded
distributed codes, and message-driven computation, must be
matched by similar advances in I/O methods and algorithms
to produce a well performing and balanced supercomputing
system. This paper discusses PXFS, a file system model for
persistent objects inspired by the ParalleX model of execution
that addresses many of these challenges. An early implementation
of PXFS utilizing a well known Orange parallel file system
as its back-end via asynchronous I/O layer is also described
along with the preliminary performance data. The results show
perfect scalability and 3x to 20x times speedup of I/O throughput
performance comparing to OrangeFS user interface. Also the
PXFS module on OrangeFS with 24 clients sees a 5x to 10x
times more throughput than NFS.

I. INTRODUCTION

Over the coming decade the performance of the largest
computing systems is expected to shift from Terascale and
Petascale to Exascale. According to the TOP500 supercom-
puter list [1] of June 2013, the performance of the top 26
systems breaks the PetaFLOPs barrier. These systems are
composed of tens of thousands of cores and nodes running
in parallel. For example, the top supercomputer, Tianhe-2, has
16,000 nodes equipped with 3,120,000 computing cores and
achieves the performance of 33.86 petaFLOP/s on the Linpack
benchmark [1]. The rapid growth in computing cores and high
demand for parallelism imposes significant challenges for the
parallel runtime and storage system.

Applications employing conventional parallel runtime sys-
tems, such as the Communicating Sequential Processes
(CSP) [2] execution model as reflected by the Message Passing

Interface (MPI) [3] programming model, are getting more
and more difficult to make effective use of the ever increas-
ing number of processors to achieve desired scalability and
performance. The main limiting factors are: a) Starvation
(insufficient concurrent work to maintain high utilization of
resources), b) Latencies (delay of remote resource access and
services), c) Overheads (work for management of parallel
actions and resources on critical path which is not necessary
in a sequential variant), and d) Waiting for contention res-
olution (delays due to lack of availability of oversubscribed
shared resources). All of these factors (SLOW) are diffi-
cult to avoid using today’s prevalent programming models,
and a new computational strategy is required to achieve
dramatic increases in performance. The ParalleX execution
model [4]–[6] is offered as a means of addressing these critical
computational requirements. It is striving to expose myriad
forms of parallelism, hide system wide latencies, decouple
hardware execution resources from executing software tasks to
prevent the blocking of processor cores, and to enable runtime
dynamic adaptive scheduling to employ real-time system state
to resource management decisions.

In the meantime, parallel storage system is expected to han-
dle the input/output (I/O) requests from parallel applications
with good performance and great scalability. Many parallel
file systems are developed to answer that challenge [7]–
[10]. Orange File System (OrangeFS) [8], [11], [12] is a
production-quality parallel file system designed for use on
high end computing (HEC) systems that provides very high
performance access to disk storage for parallel applications.
However, I/O for Exascale high-end computing (HEC) systems
is still hampered by several unfortunate issues, including
orders of magnitude slower speed and response time, storage
distribution problem, fast growing volume of application data
and complex data structures.

The challenges of Exascale computing suggest that not a
simple extension of our current model of computation, but
rather a new model of computation is needed upon which
a new framework for mass storage may be built. It is both
prudent and essential to consider a corresponding model of
I/O along with the design of next generation computation
ecosystem. In this paper we present PXFS (ParalleX File
System), a new I/O model aiming for Exascale computing.



It will be taking advantage of ParalleX execution model and
OrangeFS parallel storage research to extract the maximum
of parallelism and performance out of the storage resources.
Based on some preliminary work [13], [14], this paper, for
the first time, presents a novel design of PXFS model and a
complete implementation using HPX and OrangeFS interfaces.
This paper also evaluates its performance against traditional
model and shows tens of times speedup on I/O throughputs.

In the rest of the paper, the related work is listed in
Section II. The design and a primitive implementation of
PXFS is detailed in Section III. The performance evaluation
is presented in Section IV. Finally Section V draws the
conclusion and a plan of future work.

II. BACKGROUND

High Performance ParalleX (HPX) [5], [15]–[17] is the
first open-source implementation of the ParalleX execution
model. HPX is a state-of-the-art runtime system developed
for conventional architectures and, currently, Linux-based sys-
tems, such as large Non Uniform Memory Access (NUMA)
machines and clusters. The modular framework facilitates
simple compile- or runtime-configuration and minimizes the
runtime footprint. HPX has been carefully designed as an
alternative to mainstream parallel frameworks such as MPI. It
focuses on overcoming conventional limitations such as global
barriers, poor latency hiding, and lack of support for fine-
grained parallelism.

The current implementation of HPX (see Fig. 1) supports
most of the key ParalleX elements: Parcels, PX-threads, Local
Control Objects (LCOs) and the Active Global Address Space
(AGAS) .

HPX currently implements AGAS as a set of services that
support a 128-bit global address space spanning all localities.
AGAS provides two naming layers in HPX. The primary
naming service maps 128-bit unique, global identifiers (GIDs)
to a tuple of meta-data that can be used to locate an object on
a particular locality. The higher-level layer maps hierarchical
symbolic names to GIDs. Unlike systems such as X10 [18],
Chapel [19], or UPC [20], which are based on PGAS [21],
AGAS exposes a dynamic, adaptive address space which
evolves over the lifetime of an HPX application. When a
globally named object is migrated, the AGAS mapping is
updated, however, its GID remains the same. This decouples
references to those objects from the locality that they are
located on.

LCOs provide a means of controlling parallelization and
synchronization in HPX. Any object that may create a new
HPX-thread or reactivates a suspended HPX-thread exposes
the required functionality of an LCO. Support for event-driven
HPX-thread creation, protection of shared data structures, and
organization of flow control are provided by LCOs. They
are designed to allow for HPX-threads to proceed in their
execution as far as possible, without waiting for a particular
blocking operation, such as a data dependency or I/O, to finish.
Some of the more prominent LCOs provided by HPX are:

• Futures [22]–[24] are proxies for results that are not yet
known, possibly because they have not yet been com-
puted. A future synchronizes access to the result value
associated with it by suspending HPX-threads requesting
the value if the value is not available at the time of the
request. When the result becomes available, the future
reactivates all suspended HPX-threads waiting for the
value. These semantics allow execution to proceed un-
blocked until the actual value is required for computation.

• Dataflow objects [25]–[27] provide a powerful mecha-
nism for managing data dependencies without the use of
global barriers. A dataflow LCO waits for a set of values
to become available and triggers a predefined function
passing along all input data.

• Traditional concurrency control mechanisms such as var-
ious types of mutexes [28], counting semaphores, spin-
locks, condition variables and barriers are also exposed
as LCOs in HPX. These constructs can be used to coop-
eratively block an HPX-thread while informing the HPX
thread-manager that other HPX-threads can be scheduled
on the underlying OS-thread.

The HPX thread-manager is responsible for the creation,
scheduling, execution and destruction of HPX-threads. In
HPX, threading uses an M : N or hybrid threading model.
In this model, N HPX-threads are mapped onto M kernel
threads (OS-threads), usually one OS-thread per core. This
threading model was chosen to enable fine-grained paralleliza-
tion and low overhead context switches; HPX-threads can be
scheduled without a kernel call, reducing the overhead of their
execution and suspension. The thread-manager uses a work-
queue based execution strategy with work stealing similar
to systems such as Cilk++ [29], Intel Threading Building
Blocks (TBB [30]) and the Microsoft Parallel Patterns Library
(PPL [31]). HPX-threads are scheduled cooperatively, that is,
they are not preempted by the thread-manager. HPX-threads
voluntarily suspend themselves when they must wait for data
that they require to continue execution, I/O operations, or
synchronization. The latter fact requires special consideration
when designing a persistent storage model as care must be
taken not to suspend any of the HPX-threads on the OS level.
This would block any further progress as no other HPX-
threads could be executed while the underlying OS thread is
suspended.

The software architecture of OrangeFS is shown in Fig. 2.
It deploys a client/server structure and dynamically distributes
file data and metadata across a system. This strategy alleviates
file system bottlenecks and improves system scalability. There
is a user library which provides system call APIs, POSIX
library APIs to be incorporated to other applications.

III. DESIGN AND IMPLEMENTATION

The PXFS model is designed as a layer on top of storage
media and file systems, and as a part of a parallel runtime
system. The system diagram is depicted in Fig. 3. It is imple-
mented as a component of HPX and manages I/O operations
through different levels.
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Fig. 1. Architecture of the HPX runtime system. HPX implements the supporting functionality for most of the elements needed for the ParalleX
model: Parcels (parcel-port and parcel-handlers), HPX-threads (thread-manager), LCOs, AGAS, HPX-processes, performance counters and
a means of integrating application specific components.
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Fig. 2. Software architecture of OrangeFS parallel file system.

While designing the PXFS APIs, special attention was
directed towards a natural integration with the existing highly
asynchronous programming model exposed by HPX. By de-
sign, all functionality in HPX which can potentially take
longer than 100 microseconds to execute is exposed through
asynchronous functions. An asynchronous function in HPX is
a function which is returning a future representing the result of
that function. The caller can continue executing immediately
without being suspended or without having to wait for the
function result. The code example in Fig.4 shows part of the
developed file oriented API. Note that the HPX future type
exposes an interface consistent with the C++11 Standard [32]
with extensions as proposed to the C++ standardization pro-
cess [33], [34].

The advantage of the chosen asynchronous programming
model for PXFS is demonstrated in the code example shown

HPX Application

OrangeFS
Servers

OrangeFS 
Interface

PXFS Component

Local FS 
Interface

Other FS 
Interface

….

threads

Fig. 3. Design of PXFS storage component as a part of HPX runtime.

in Fig.5, which demonstrates how easy it is to fully overlap the
asynchronous I/O operations (create a file followed by writing
a chunk of data to it) with other useful work.

As a coordinated work, an asynchronous interface is also
designed and a prototype has been implemented [14] in
OrangeFS. It is part of the PXFS model to interact with parallel
file system in an asynchronous fashion. The asynchronous



Examplar Asynchronous File API

namespace hpx { namespace io {
struct file {
˜file(); // closes file synchronously

static future<file> create(std::string name, int mode);
static future<file> open(std::string name, int mode);

future<void> close();

// read/write operations
future<ssize_t> read(const void *buf, size_t count);
future<ssize_t> write(const void *buf, size_t count);
future<off_t> lseek(off_t offset, int whence);

};
}}

Fig. 4. This code example shows the asynchronous file oriented API exposed
by the implementation of the presented persistent storage model.

Examplar Asynchronous File API

using namespace hpx;
using namespace hpx::io;

std::vector<char> data = {...};

// spawn asynchronous file creation and write operation
future<void> op =
file::create("filename", mode).then(

[&data](future<file> f) {
f.get().write(data);

});

// do other operations here, concurrently to I/O

op.wait(); // synchronize with whole I/O operation

Fig. 5. This code example demonstrates an exemplar use of the file oriented
API to asynchronously create a new file and to write some data to it. The I/O
operation is performed fully overlapping any other work which needs to be
performed before synchronizing with the result of the I/O.

interface will use the OrangeFS system calls to schedule I/O
operations and execute a callback function when the task is
finished.

The implementation of PXFS will create HPX futures for
I/O operations and set the future value in the callback function
of OrangeFS asynchronous APIs to integrate the parallel
file system into the HPX runtime system seamlessly. Thus
the PXFS APIs provide a uniform asynchronous interface
to bridge the gap between HPX runtime components and
OrangeFS storage components efficiently and transparently.
The nature of object oriented programming can enable other
file systems to be adopted into PXFS model easily.

IV. PERFORMANCE EVALUATION

A. Method

A disk performance micro benchmark is developed in HPX
to measure the total throughput of PXFS module on I/O
reading and writing performance. The benchmark can adjust
the following parameters:

• nc: number of client nodes
• nt: number of threads on each client node, a thread is

carrying out the actual I/O operations.
• r/w: select between read and write tests.
• nf : number of test files.

• nb: number of total blocks composed in one file. A
thread is operating on one block when issuing one I/O
commands.

• sb: number of bytes in one block.
These test files are read or written in a sequential fashion at the
current time. Then the read/write throughput can be calculated
as

Throughput =
nc ∗ nt ∗ nf ∗ nb ∗ sb

Elapsed Time

It is obvious that larger throughput means a better perfor-
mance.

B. Experiment Setup

All the tests are executed on the Hermione cluster at
STE | |AR [16] group in Center for Computation and Tech-
nology (CCT) [35] at Louisiana State University (LSU) [36].
At the time when the experiments are conducted, the cluster
is a heterogeneous system consisting of 39 computing nodes
connected with Gigabit Ethernet. The nodes are running Linux
and using SLURM as the scheduler.

Four OrangeFS systems are started with 2,4,8,16 server
nodes. The client nodes are distributed in the cluster and not
using the server nodes. The number of client nodes is selected
to be comparable to the number of server nodes. HPX runtime
system is responsible for managing threads on the client nodes.
Large number of blocks and files are picked to keep the system
under its full capacity.

Several sets of test cases is performed in this experiment
on HPX with and without PXFS module systems on top of
OrangeFS file system and Network File System (NFS) [37].

• w-5f-100x64KB: writing 5 files with 100 blocks and
block size 64KB;

• r-5f-100x64KB: reading 5 files with 100 blocks and
block size 64KB;

• w-5f-100x1MB: writing 5 files with 100 blocks and
block size 1MB;

• r-5f-100x1MB: reading 5 files with 100 blocks and
block size 1MB;

These four file test cases can represent reading and writing
medium and large block size cases in large scale scientific
applications which read and create sets of data frequently.

As an alternative use case, the OrangeFS user interface
is called directly from the benchmark. The user interface
can only support 1 thread per client node and deploys a
synchronous API set. In the PXFS module, multiple threads
can be enabled and multi-core architecture can be utilized.

C. Results and Discussions

The I/O throughput results of four test cases are presented
in Fig. 6, Fig. 7, Fig. 8 and Fig. 9 respectively.

It is crystal clear that the PXFS module has increased the
throughput dramatically than the direct synchronous interface.
For one thread, 24 clients and 16 OrangeFS servers, the
PXFS has 10x times speedup for w-5f-100x64KB, 20x
times speedup for r-5f-100x64KB, 4x times speedup for
w-5f-100x1MB and 3x times speedup for r-5f-100x1MB.



Fig. 6. I/O performance of file test case w-5f-100x64KB between PXFS
and direct interface on HPX and OrangeFS.

Fig. 7. I/O performance of file test case r-5f-100x64KB between PXFS
and direct interface on HPX and OrangeFS.

Fig. 8. I/O performance of file test case w-5f-100x1MB between PXFS
and direct interface on HPX and OrangeFS.

Fig. 9. I/O performance of file test case r-5f-100x1MB between PXFS
and direct interface on HPX and OrangeFS.

When using multiple threads, w-5f-100x64KB nearly
doubles the throughput, r-5f-100x64KB sees some down-
grades and w/r-5f-100x1MB have little variations. It is
indicated that the thread management and I/O access pat-
tern can influence the throughput and the w-5f-100x64KB
case still has potentials for higher performance, while
r-5f-100x64KB might have some thread contention and
needs some fine tune on I/O and parallelism parameters. More
work will be done to examine the PXFS performances with
large number of threads and different I/O access patterns.

In all of the four cases, PXFS has shown perfect scalability
when the number of OrangeFS servers is changing from 2
through 16. The throughput increases at the same ratio as the
number of OrangeFS servers. The great scalability is a strong
argument for running large scale application on thousands of
nodes now and in the future.

To compare the performance of a parallel file system and a
centralized file system, the tests are also run on NFS with 24
HPX clients and the results are displayed in Fig. 10.

As seen from the results, the performance with the PXFS
model and a parallel system underneath greatly surpasses the
NFS system with a 5x to 10x times improvement in I/O
throughput with 24 HPX clients. It is shown that in Exascale
era, the new storage model should take into account the
experience of parallel file system development.

V. CONCLUSION

This paper presents PXFS, a novel persistent storage model
for extreme scale. It aims to explore the maximum of paral-
lelism and performance in the Exascale computing era, which
is expected to arrive in the next decade. The early imple-
mentation of PXFS utilizes Orange parallel file system as the
back-end and incorporates an asynchronous I/O interface into
HPX, an implementation of ParalleX execution model. The
I/O performance is evaluated with a homemade benchmark
and the I/O throughput shows a perfect scalability, along with
a 3x to 20x times speedup against the OrangeFS user interface



Fig. 10. I/O performance of all four file test cases between HPX+PXFS
module on OrangeFS and HPX on NFS.

and a 5x to 10x times higher throughput than NFS with 24
clients.

PXFS is our first try to combine the strength of parallel file
system and parallel runtime system to extract the maximum
of parallelism and performance out of the storage resources.
In the future, more layers of Orange parallel file system
and ParalleX model will be analyzed to develop a more
sophisticated storage model. For the benchmark, the effect
of threads and various architectures on I/O performance will
be tested thoroughly. Real world applications will be used as
another benchmark to evaluate the performance of PXFS.
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