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Abstract

In distributed computing programming, lots of large-scale data object will be involved (i.e. matrix
multiplication, transposition, etc), which cannot be stored in memory on a single node. A single logical object
is often needed to represent and control this large data object across a set of nodes or localities. We
implement a C++ based distributed object abstraction using HPX, a C++ Standard Library for Concurrency
and Parallelism. This poster will introduce an easy-to-use C++ distributed container with simple use-case, its
user-friendly API of handling data transfer between localities, and its background of distributed computing
and HPX.

Background

HPX (High Performance ParalleX) is a general purpose C++ runtime system for parallel and distributed
applications of any scale. The following infrastructure in HPX provides support for the distributed object:

I Active Global Address Space: AGAS exposes a single uniform address space spanning all localities an
application runs on.

I Component: A component is a C++ object which can be accessed remotely.
I Action: An action is a function that can be invoked remotely.

Registration Methods

Figure 1:all to all method. Figure 2:meta object method

I Look-ups happen on an as-needed basis
I Worst case N2 lookups
I Currently the template’s default registration method

I In every case, N lookups must be done, for each
locality to find the Meta object

I Slower on startup than All-to-All but a much lower
upper-bound on messages sent

I Specified as template parameter

Conclusion

I Provides an easy-to-use distributed container and offers a user-friendly API that hides communication details
for user which allows easy transfer of data between localities

I Delivers high reusable code and ensures code portability
I Improves user’s programming productivity in high performance computing

Examples

Figure 3:Distributed Object API

Figure 4:fetch function

Figure 5:sub localities
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