
Distributed Object Abstraction in HPX
Weile Wei, Maxwell Reeser, Hartmut Kaiser, Adrian Serio, Avah Banerjee, R. Tohid

Louisiana State University

Abstract

In distributed computing programming, lots of large-scale data object will be involved (i.e. matrix
multiplication, transposition, etc), which cannot be stored in memory on a single node. A single logical object
is often needed to represent and control this large data object across a set of nodes or localities. We
implement a C++ based distributed object abstraction using HPX, a C++ Standard Library for Concurrency
and Parallelism. This poster will introduce an easy-to-use C++ distributed container with simple use-case, its
user-friendly API of handling data transfer between localities, and its background of distributed computing
and HPX.

Background

HPX (High Performance ParalleX) is a general purpose C++ runtime system for parallel and distributed
applications of any scale. The following infrastructure in HPX provides support for the distributed object:

I Active Global Address Space: AGAS exposes a single uniform address space spanning all localities an
application runs on.

I Component: A component is a C++ object which can be accessed remotely.
I Action: An action is a function that can be invoked remotely.

Registration Methods

Figure 1:all to all method. Figure 2:meta object method

I Look-ups happen on an as-needed basis
I Worst case N2 lookups
I Currently the template’s default registration method

I In every case, N lookups must be done, for each
locality to find the Meta object

I Slower on startup than All-to-All but a much lower
upper-bound on messages sent

I Specified as template parameter

Conclusion

I Provides an easy-to-use distributed container and offers a user-friendly API that hides communication details
for user which allows easy transfer of data between localities

I Delivers high reusable code and ensures code portability
I Improves user’s programming productivity in high performance computing

Examples

Figure 3:Distributed Object API

Figure 4:fetch function

Figure 5:sub localities

Acknowledgments

I This material is based upon work supported by the National Science Foundation under Grant No. 1737785.
Any opinions, findings, and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science Foundation. This work is supported
by The Defense Technical Information Center under the contract: DTIC Contract FA8075-14-D-0002/0007.

https://github.com/STEllAR-GROUP/hpx wwei9@lsu.edu


