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Abstract DE ]S

In distributed computing programming, lots of Iarge-scale data object will be involved (i.e. matrix template <typename T, construction_type C = all_to_all

Coe .. : : : : : : 1 distributed obiect
multiplication, transposition, etc), which cannot be stored in memory on a single node. A single logical object Sun e TPHEEA-ORIEe
is often needed to represent and control this large data object across a set of nodes or localities. We
: .. : : : : distributed_object(std: :string base, T const& data
Imp|ement d C"‘“ based distributed ObueCt abstraction using HPX, d C‘I“I‘ Standard lerary for COncurrency std: :vector<size t> sub_localities all localities
and Parallelism. This poster will introduce an easy-to-use C++ distributed container with simple use-case, its . | |

_ _ - _ - _ distributed_object(std::string base, T&& data

user-friendly APl of handling data transfer between localities, and its background of distributed computing std::vector<size_t> sub_localities - all_localities

and HPX.
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T& operator
T const* operator const

Background T* operator

PX (High Performance ParalleX) is a general purpose C++ runtime system for parallel and distributed Figure 3:Distributed Object API
applications of any scale. The following infrastructure in HPX provides support for the distributed object:

. _ _ _ - void add(distributed_object<int>& local, int& remote) {
» Active Global Address Space: AGAS exposes a single uniform address space spanning all localities an (*local) += remote:

application runs on.

» Component: A component is a C object which can be accessed remotely.

distributed_object<int> dist_int("unique_name"”, cur_locality);

» Action: An action is a function that can be invoked remotely. if (cur_locality == @)

{ fetch() Is an asynchronous function
: : std::vector<future<void>> results; which returns a future of a copy of
Registration Methods auto range = irange(1, num_localities); the instance of this
for_each(seq, begin(range), end(range), distributed object associated with
Locality O Locality 1 Locality n-1 Locality O Locality 1 Locality n-1 [&](std::size_t remote_loc) the given locality index.

- -1-- {

- M_O -} - _ dist i :
Server0_ | | §Prver‘1~ | _Server n-1 | | servero Server 1 Server n-1 future<int> remote_val = dist_int.fetch(remote_loc);

- - results.push_back(hpx::dataflow(unwrapped(add), dist_int, f1));

1)
\ . \ wait_all(results);
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Figure 4:fetch function
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if (cur_locality 9 or cur_locality 1

The constructor is able to accepts a
std: :vector<size_t> participants{0, 1 subset of localities such that

_ _ _ o | | o workloads are split into constituent
Figure 1:all to all method. Figure 2:meta object method distributed_object<int> dist_int dlStcﬁ?'tlocality parts so relevant distributed_object
participants); is only used particular sub localities

Active Global Address Space (AGAS) Service Active Global Address Space (AGAS) Service

» In every case, N lookups must be done, for each
» Look-ups happen on an as-needed basis locality to find the Meta object

» Worst case N? lookups » Slower on startup than All-to-All but a much lower

» Currently the template’s default registration method upper-bound on messages sent
» Specified as template parameter Figure 5:sub localities
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