Distributed Object Abstraction in HPX

Weile Wei, Maxwell Reeser, Hartmut Kaiser, Adrian Serio, Avah Banerjee, R. Tohid

Louisiana State University

Center for C tati
LSL) cTectnoiogy T (D STE||AR GROUP

Abstract DE]S

In distributed computing programming, lots of Iarge-scale data object will be involved (i.e. matrix template <typename T, construction_type C = all_to_all

Coe .. : : : : : : 1 distributed obiect
multiplication, transposition, etc), which cannot be stored in memory on a single node. A single logical object Sun e TPHEEA-ORIEe
is often needed to represent and control this large data object across a set of nodes or localities. We
: .. : : : : distributed_object(std: :string base, T const& data
Imp|ement d C"‘“ based distributed ObueCt abstraction using HPX, d C‘I“I‘ Standard lerary for COncurrency std: :vector<size t> sub_localities all localities
and Parallelism. This poster will introduce an easy-to-use C++ distributed container with simple use-case, its . | |

_ _ - _ - _ distributed_object(std::string base, T&& data

user-friendly APl of handling data transfer between localities, and its background of distributed computing std::vector<size_t> sub_localities - all_localities

and HPX.

T const& operator const
T& operator
T const* operator const

Background T* operator

PX (High Performance ParalleX) is a general purpose C++ runtime system for parallel and distributed Figure 3:Distributed Object API
applications of any scale. The following infrastructure in HPX provides support for the distributed object:

. _ _ _ - void add(distributed_object<int>& local, int& remote) {
» Active Global Address Space: AGAS exposes a single uniform address space spanning all localities an (*local) += remote:

application runs on.

» Component: A component is a C object which can be accessed remotely.

distributed_object<int> dist_int("unique_name"”, cur_locality);

» Action: An action is a function that can be invoked remotely. if (cur_locality == @)

{ fetch() Is an asynchronous function
: : std::vector<future<void>> results; which returns a future of a copy of
Registration Methods auto range = irange(1, num_localities); the instance of this
for_each(seq, begin(range), end(range), distributed object associated with
Locality O Locality 1 Locality n-1 Locality O Locality 1 Locality n-1 [&](std::size_t remote_loc) the given locality index.

- -1-- {

- M_O -} - _ dist i :
Server0_ | | §Prver‘1~ | _Server n-1 | | servero Server 1 Server n-1 future<int> remote_val = dist_int.fetch(remote_loc);

- - results.push_back(hpx::dataflow(unwrapped(add), dist_int, f1));

1)
\ . \ wait_all(results);

Client 0 Client 1 Client n-1 M O
Client

Client 0 Client 1 Client n-1

Figure 4:fetch function

Parcelport Parcelport

if (cur_locality 9 or cur_locality 1

The constructor is able to accepts a
std: :vector<size_t> participants{0, 1 subset of localities such that

_ _ _ o | | o workloads are split into constituent
Figure 1:all to all method. Figure 2:meta object method distributed_object<int> dist_int dlStcﬁ?'tlocality parts so relevant distributed_object
participants); is only used particular sub localities

Active Global Address Space (AGAS) Service Active Global Address Space (AGAS) Service

» In every case, N lookups must be done, for each
» Look-ups happen on an as-needed basis locality to find the Meta object

» Worst case N? lookups » Slower on startup than All-to-All but a much lower

» Currently the template’s default registration method upper-bound on messages sent
» Specified as template parameter Figure 5:sub localities

Conclusion Acknowledgments

» Provides an easy-to-use distributed container and offers a user-friendly APl that hides communication details » This material is based upon work supported by the National Science Foundation under Grant No. 1737785.
for user which allows easy transfer of data between localities Any opinions, findings, and conclusions or recommendations expressed in this material are those of the

» Delivers high reusable code and ensures code portability author(s) and do not necessarily reflect the views of the National Science Foundation. This work is supported

» Improves user's programming productivity in high performance computing by The Defense Technical Information Center under the contract: DTIC Contract FA8075-14-D-0002/0007.

https://github.com/STE11AR-GROUP/hpx wwei9@lsu.edu

