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ABSTRACT
The addition of nuclear and neutrino physics to general rel-
ativistic fluid codes allows for a more realistic description of
hot nuclear matter in neutron star and black hole systems.
This additional microphysics requires that each processor
have access to large tables of data, such as equations of state,
and in large simulations, the memory required to store these
tables locally can become excessive unless an alternative ex-
ecution model is used. In this work we present relativistic
fluid evolutions of a neutron star obtained using a message
driven multi-threaded execution model known as ParalleX.
The goal of this work is to reduce the negative performance
impact of distributing the tables. We introduce a component
based on the notion of a “future”, or nonblocking encapsu-
lated delayed computation, for accessing large tables of data,
including out-of-core sized tables. The proposed technique
does not impose substantial memory overhead and can hide
increased network latency.
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1. INTRODUCTION
Future achievements in leading-edge science demand in-

novations in parallel computing models and methods to im-
prove efficiency and dramatically increase scalability. One
controversial issue is the relative value of global address
space models and management versus more conventional dis-
tributed memory structures. This paper demonstrates one
important use of global address space in the context of the
ParalleX many-tasking execution model in order to enable
simulation improvements in the domain of astrophysics that
are not feasible using conventional practices.

Accurate treatment of hot nuclear matter in astrophysical
compact object simulation is becoming increasingly impor-
tant in the search for coincident detection of gravitational
radiation and electromagnetic or neutrino emissions origi-
nating from the same source. Recent simulations have shown
that the gravitational wave signature from a binary neutron
star merger or a neutron star–black hole merger may even
reveal important empirical details about the neutron star
equation of state itself [27, 22].

The addition of nuclear and neutrino physics to general

relativistic fluid codes allows for a more realistic description
of hot nuclear matter in neutron star and black hole sys-
tems. Unfortunately, most of these and other microphysics
routines cannot be computed in place; they must be precom-
puted in a large table which is then read and interpolated as
the relativistic hydrodynamics simulation proceeds. Accu-
rate neutron star simulations will increasingly rely upon ever
larger tables of microphysics data that must be stored into
memory, searched, and interpolated [25]. As the memory
requirements grow for these tables, approaching and often
exceeding the size of the physical memory of a single locality,
the need to reduce the negative impact of distributing the
tables becomes increasingly important. That is the precisely
the goal of this work.

In this work we explore the experimental execution model
called ParalleX [16, 20, 33, 13] as a means of addressing
the critical computational requirement of dealing with very
large tables containing microphysics. Adaptive task based
approaches may provide other performance benefits to a dis-
tributed relativistic hydrodynamics simulation, but the fo-
cus of this work will be on reducing the negative impact of
distributing the tables, while introducing minimal changes
to the application code.

ParalleX is a synthesis of complementing semantic con-
structs delivering a dynamic adaptive framework for message-
driven multi-threaded computing in a global address space
context with constraint-based synchronization to exploit lo-
cality and manage asynchrony. The result is introspective
runtime alignment of computing requirements and comput-
ing resources while permitting asynchronous operation across
physically distributed resources. ParalleX was first imple-
mented in the form of the HPX runtime system [32, 4].
HPX was developed to support the semantics and mecha-
nisms comprising ParalleX targeting conventional SMP and
commodity cluster computing platforms. As such, HPX is
an experimental software package which not only tests the
semantics of ParalleX but also measures the overhead costs
of a software implementation and provides a prototype of a
next generation runtime system for extreme scale applica-
tions.

The outline of this paper as follows: Section 2 gives an
overview of the work related to this effort; related to Sec-
tion 3 describes the relativistic fluid evolution, initial data,
numerical methods, and equation of state details; Section 4



gives a brief overview of the HPX runtime system imple-
mentation of ParalleX; Section 5 describes how the equation
of state is distributed across localities and how “futures”, or
nonblocking encapsulated delayed computations, are used to
hide network latency in table access; Section 6 gives neutron
star evolution performance results using the Shen equation
of state comparing the futures approach of accessing the
equation of state table with that of reading in the table
for every core (referred to hereafter as the conventional ap-
proach); Section 7 gives our conclusions and implications for
future work.

2. RELATED WORK
Combining a many-tasking execution model implementa-

tion with a global address space for use in multiphysics has
been discussed several times in the literature but experi-
mental results are rare. There are multiple many-tasking
runtime systems and libraries available for experimentation:
Charm++ [21], Unified Parallel C (UPC) [8], Intel Thread-
ing Building Blocks library (TBB) [28, 23], HPX, Cilk plus [7],
Chapel [9], Qthreads [34], the SWift Adaptive Runtime Ma-
chine (SWARM) [3], X10 [10], and even OpenMP [14] with
some limitations. Among these many-tasking execution mod-
els and libraries, a small subset supports a global address
space model such as Partitioned Global Address Space (PGAS)
or Active Global Address Space (AGAS). This latter group
consists of Charm++, UPC, X10, and HPX. Prior work in
Charm++ describes a scheme for using shared arrays in mul-
tiphysics simulations along with a verification strategy for
error detection [24] but does not present performance or im-
plementation results. The proposed Phasers concept in X10
would also enable incorporation of equations of state tables
in multiphysics simulations [31] but such an implementation
has not yet been reported. An OpenMP based implementa-
tion is presented later in this work in order to contrast with
the HPX implementation; in the physics literature, OpenMP
is the preferred tool for this type of task [26].

3. RELATIVISTIC HYDRODYNAMICS
The work presented here adopts the flux-conservative for-

mulation of the relativistic magnetohydrodynamics equa-
tions presented in [5] and includes high-resolution shock
capturing (HRSC) methods. To calculate the numerical
fluxes, we use the Piecewise Parabolic Method (PPM) [11]
for reconstructing fluid variables. The approximate Rie-
mann solver employed is Harten-Lax-van Leer-Einfeldt (HLLE) [17].
While the code is capable of also evolving magnetic fields,
no magnetic fields were added to the initial data at this
stage. Neutron star simulations presented in Section 6 were
conducted using the Cowling approximation.

The tabulated equation of state used for generating the
initial neutron star and all subsequent fluid evolution is the
Shen equation of state [29]. A tabulated Shen equation of
state was provided by C. Ott and is available for download at
[2]. The publicly available tabulated Shen equation of state
used for tests here is 288 MB; however, an updated Shen
equation of state has since been released [30], and we have
created a table based on this update which is 5.9 GB in size.
Consequently, results from both tables will be presented in
the results section. The neutron star initial data was gen-
erated using the Lorene libraries [1]; the neutron star has a
mass of 1.4 solar masses and radius of 15.947 km. Tables re-

lated to neutrino transport, including neutrino opacity, were
not included in this work but are part of future work.

The entire relativistic magnetohydrodynamics solver has
been implemented in C++ using the HPX runtime system
for parallelism. The application has been modularized for
future incorporation into the HPX Adaptive Mesh Refine-
ment (AMR) toolkit, although simulations for this work per-
formed all computations with a uniform grid. The next sec-
tion will give a brief overview of HPX and introduce the
concepts crucial for asynchrony management in tabular ac-
cess and parallel computation in general.

4. THE HPX RUNTIME SYSTEM
The C++ prototype runtime implementation of ParalleX

is called High Performance ParalleX (HPX). A walkthrough
description of the HPX architecture is found in Figure 1.
An incoming parcel (delivered over the interconnect) is re-
ceived by the parcel port. One or more parcel handlers are
connected to a single parcel port, optionally allowing to dis-
tinguish different parts of the system as the parcel’s final
destination. Here, locality is a ParalleX term identifying
synchronous domain of computation, such as a single com-
pute node in a cluster. The main task of the parcel handler
is to buffer incoming parcels for the action manager. The
action manager decodes the parcel, which contains an action
bundled with relevant operands. An action is either a global
function call or a method call on a globally addressable ob-
ject. The action manager creates a HPX-thread based on
the encoded information.

All HPX-threads are managed by the thread manager,
which schedules their execution on one of the OS-threads
allocated to it. HPX threads are implemented as user level
threads, which decreases the costs associated with their cre-
ation, destruction, and state updates by minimizing the
number of interactions with the OS kernel. HPX creates one
worker OS-thread for each available core, whose purpose is
to carry out the majority of computations in an application.
Several scheduling policies have been implemented for the
thread manager, such as the global queue scheduler, where
all cores pull their work from a single global queue, or the
local queue scheduler, where each core pulls its work from a
separate queue. The latter supports work stealing for better
load balancing. In the local scheduler, a queue is created
for each of the worker OS-threads. When a worker thread is
searching for work, it first checks its own queue. If there is
no work there, the OS-thread begins to steal work by search-
ing for work in other queues, first from its own non-uniform
memory access (NUMA) domain, then from cores located
on different NUMA domains.

If a possibly remote action has to be executed by an HPX-
thread, the action manager queries the active global address
space (AGAS) to determine whether the target of the action
is local or remote to the locality that the HPX-thread is run-
ning on. If the target happens to be local, a new HPX-thread
is created immediately and passed to the thread manager.
This thread encapsulates the work (function) and the corre-
sponding arguments for that action. If the target is remote,
the action manager creates a parcel encoding the action (i.e.
the function and its arguments). This parcel is handed to
the parcel handler, which makes sure that it gets sent over
the interconnect, causing a new HPX-thread to be created
at the target locality.

The Active Global Address Space (AGAS) provides global
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Figure 1: Modular structure of HPX implementation. HPX implements the supporting functionality for most of

the elements needed for the ParalleX model: AGAS (active global address space), parcel port and parcel handlers,

HPX-threads and thread manager, ParalleX processes, LCOs (local control objects), performance counters enabling

dynamic and intrinsic system and load estimates, and the means of integrating application specific components.

address resolution services that are used by the parcel port
and the action manager. AGAS addresses are 128bit unique
global identifiers (GIDs). AGAS maps these global identi-
fiers to local addresses and additionally provides symbolic
mappings from strings to GIDs. The local addresses to
which the GIDs are bound are typed, providing a degree of
protection from type errors. Any object that has been regis-
tered with a GID in AGAS is addressable from all localities
in an instance of the HPX runtime. AGAS also provides a
powerful reference counting system which implements trans-
parent and automatic global garbage collection.

Lightweight Control Objects (LCOs) are the synchroniza-
tion primitives upon which HPX applications are built. LCOs
provide a means of controlling parallelization and synchro-
nization of HPX-threads. Semaphores, mutexes and condi-
tion variables [12] are all available in HPX as LCOs. Fu-
tures [6] are another type of LCO provided by HPX and are
discussed in greater detail later in this paper.

Local memory management, performance counters (a generic
monitoring framework), LCOs and AGAS are all implemented
on top of an underlying component framework. Compo-
nents are the main building blocks of remotely executable
actions and can encapsulate arbitrary, possibly application
specific functionality. Actions are special types which ex-
pose the functionality of a (possibly remote) function. An
action can be invoked on a component instance using only
its GID, which allows any locality to invoke the exposed
methods of a component. In the case of the aforementioned
components, the HPX runtime system implements its own
functionality in terms of this component framework. Typi-
cally, any application written using HPX extends the set of
existing components based on its requirements.

The relativistic hydrodynamics simulations make use of
all the key features of HPX. The most crucial feature for
contention and network latency hiding in tabulated equation
of state access is the Future [6, 15]. The next section will

describe the strategy adopted in HPX for distributing a large
table and hiding network latency.

5. USING THE SHEN EQUATION OF STATE
TABLES

The Shen equation of state (EOS) tables of nuclear matter
at finite temperature and density with various electron frac-
tions within the relativistic mean field (RMF) theory are a
set of three dimensional data arrays enabling high precision
interpolation of 19 relevant parameters required for neutron
star simulations. As noted in Section 3, the publicly avail-
able Shen equation of state table is relatively small in size
(288 MB); however, the most recent Shen table created for
the neutron star evolutions presented here is 5.9 GB in size.
Results using both tables will be presented in Section 6. In
the case of the larger table, loading the whole data set into
main memory on each locality is not feasible.

5.1 Interpolation Technique and Characteris-
tics

The values of each of 19 variables describing the Shen
EOS are contained in individual 3-D tables stored in mem-
ory in a row-major fashion. Single table data are arranged
as samples of a single physical quantity computed at coor-
dinates laying on a regularly spaced grid. The sizes of each
grid vary from 220 × 180 × 50 for the smaller 288 MB set
to 440 × 360 × 130 for the large, 5.9 GB set. The dimen-
sions correspond to baryon mass density, temperature, and
electron fraction, respectively.

To obtain the value of a variable at an arbitrary point
within the 3-D domain, a 2× 2× 2 cube of double-precision
floating numbers must be accessed. The result is computed
using a simple tri-linear interpolation from these values. Our
neutron star simulations require only 8 out 19 tabulated
quantities, which helps reduce the memory pressure. How-
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Figure 2: Schematic of a Future execution. At the point

of creation of the Future, its encapsulated execution is

started. The consumer thread is suspended only if the

result of executing the Future has not returned yet. In

this case the core is free to execute some other work

(here ’another thread’) in the meantime. If the result

is available, the consumer thread continues without in-

terruption to complete execution. The producer thread

may be executed on the same locality as the consumer

thread or on a different locality, depending on whether

the target data is local or not.

ever, even when using a single instance of the smaller set of
tables on each node to permit the efficient sharing of table
data among all cores, the aggregate size of accessed data
volume still significantly exceeds the combined size of L3
processor caches. Given that, in each interpolation request,
effectively at most 2 × 8 = 16 out of 64 bytes per cache
line (x86 architecture) are used and the coordinate stream
generated by the application is random, the performance of
interpolation function is memory bound.

5.2 The Overhead of Futures
Many HPX applications, including the relativistic hydro-

dynamics simulation detailed here, utilize Futures for ease
of parallelization and synchronization. For this reason, the
overheads of management and access of these constructs are
a large factor in the total overhead of the HPX runtime
in our code. In this subsection, we give a description of Fu-
tures, outline a performance test for measuring the overhead
of Futures, and present the results of the test.

As shown in Figure 2, a Future encapsulates a delayed
computation. It acts as a proxy for a result initially not
known, most of the time because the computation of the
result has not completed yet. The Future synchronizes the
access of this value by optionally suspending HPX-threads
requesting the result until the value is available. When a
Future is created, it spawns a new HPX-thread (either re-
motely with a parcel or locally by placing it into the thread
queue) which, when run, will execute the action associated
with the Future. The arguments of the action are bound
when the Future is created. Once the action has finished
executing, a write operation is performed on the Future.
The write operation marks the Future as completed, and
optionally stores data returned by the action.

When the result of the delayed computation is needed, a
read operation is performed on the Future. If the Future’s
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Figure 3: Results of the Future overhead benchmark.

In each test, 100,000 Futures were invoked, with varying

workloads. Each data set shows the strong scaling results

for a particular workload.

action hasn’t completed when a read operation is performed
on it, the reader HPX-thread is suspended until the Future
is ready.

Our benchmark for Future overhead created a fixed num-
ber of Futures, each of which had a fixed workload. Then
asynchronous read operations were performed on the Fu-
tures until all of the Futures had completed. A high reso-
lution timer measured the wall-time of the aforementioned
operations. The test was run on an 8-socket HP ProLiant
DL785 (each socket sports a 6-core AMD Opteron 8431)
with 96 GB of RAM (533 MHz DDR2). Varying workload
sizes and OS-thread counts were used. Five runs were per-
formed for each combination of the parameters and the re-
sults were averaged to produce a final dataset. The numbers
are presented in Figure 3.

On the locality we used for this benchmark, the amortized
overhead of a Future is approximately 17 microseconds. This
overhead includes the time required to create the Future in-
stance, start the evaluator thread, perform synchronization
with the accessors, and destroy the Future object. This
number was extrapolated from the data presented in Fig-
ure 3. We multiplied the workload by the number of Futures
used in each run, and then subtracted that from the aver-
age wall-time of the trial. We divided that number by the
number of Futures invoked in the trial to get the overhead
per Future for each set of parameters:

overhead =
avg. wall-time − (workload ∗ futures invoked )

futures invoked
.

As can be seen in Figure 3, the performance curves quickly
reach a saturation point when the number of competing OS-
threads becomes significant. This is primarily due to con-
tention on the thread queue scheduler. As the number of OS-
threads grows, the contention on the thread queue scheduler
also increases, due to a higher number of concurrent searches
for available work. This increased contention occurs in both
global queue schedulers (where all OS-threads poll the same
work queue and must obtain exclusive access to said queue
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Figure 4: Schematic of an application using the dis-

tributed partitioned Shen equation of state (EOS) tables.

Each locality has a Shen EOS client side object (SC) al-

lowing to access all of the table data transparently. At

the same time, the Shen EOS table data is partitioned

into chunks of approximately equal size, each of which

is loaded into the main memory of one of the localities

(Part 1 ... Part N), thus lessening the required memory

footprint for each of the localities.

for some period of time) and to some extent in local queue
schedulers (where work stealing occurs, which causes queue
contention, albeit to a lesser degree than in the global queue
scheduler). As we increase the workload in each Future, OS-
threads spend more time executing the workloads and less
time searching for more work. This decreases contention on
the queues. Adding a new OS-thread is beneficial as long as
the contention overhead that it causes is not greater than
the parallel speedup that it provides.

5.3 The Overhead of the Shen EOS Table Par-
titioning

We created an HPX component encapsulating the mini-
mally overlapping partitioning (ghost zone of single element
width) and distribution of the Shen EOS tables to all avail-
able localities, thus reducing the required memory footprint
per locality [19]. A special client side object ensures the
transparent dispatching of interpolation requests to the ap-
propriate partition corresponding to the locality holding the
required part of the tables (see Figure 4). The client side
object exposes a simple API for easy programmability.

The second part of this section describes the setup and
results of the measurements we performed in order to es-
timate the overheads introduced by distributing the Shen
EOS tables across all localities. To evaluate the scalability
and associated overheads of the distributed implementation
of the Shen EOS tables, a number of tests have been per-
formed, all of them with a fixed number of total data ac-
cesses (measuring strong scaling). The tests have been run
on a different number of localities and with varying numbers
of OS-threads per locality. The current HPX implementa-
tion supports only a centralized AGAS server that may be
invoked in two configurations: either as a standalone task
on a dedicated locality or as a part of one of the user ap-
plication tasks. Our tests used a standalone AGAS server,
firstly to avoid interfering with the user workload and sec-
ondly to eliminate the generation of asymmetric AGAS traf-
fic on localities hosting data tables. Unlike the client appli-
cations, the AGAS server used a fixed number of OS-threads
throughout the testing to ensure that sufficient processing
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resources are available to the incoming resolution requests.
The tests were performed on a small heterogeneous clus-

ter. The cluster consists of 18 localities (excluding the head
node) connected by Gigabit Ethernet network. Two of the
machines are 8-socket HP ProLiant DL785s, with 6-core
AMD Opteron 8431s and 96 GB of RAM (533 MHz DDR2).
The other 16 localities are single-socket HP ProLiant DL120s,
with Intel Xeon X3430s and 4 GB of RAM (1332 MHz
DDR3). All machines run x86-64 Debian Linux. Torque
PBS was used to run multi-locality tests.

Figure 5 shows the execution times collected for the data
access phase with a special test application executed on up
to 16 localities and 1, 2, and 4 OS-threads per locality. The
total number of distributed partitions was fixed at 32 to pre-
serve the AGAS traffic pattern when run on a different num-
ber of localities; all partitions were uniformly distributed
across the test localities. The number of separate, non-bulk
queries to the distributed Shen EOS partitions was set to a
fixed number of 16K. Each of these queries created a Future
encapsulating the whole operation of sending the request to
the remote partition, schedule and execute a HPX-thread,
perform the interpolation based on the supplied arguments
for the Shen EOS data, sending back the resulting values to
the requesting HPX-thread, and resuming the HPX-thread
that was suspended by the Future in order to wait for the
results to come back.

The graph demonstrates that the overhead of distributed
table implementation does not increase significantly over the
entire range of available localities. While the scaling is much
better when the number of localities remains small (up to
4), the overall time required to service the full 16K data
lookup requests remains roughly constant. The test appli-
cation itself does not execute any work besides querying and
interpolating the distributed tables, which does not leave
much room to overlap the significant network traffic gener-
ated with useful computation. This causes the scaling to
flatten out beyond 8 localities. Using the distributed tables
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Figure 6: The relative slowdown in table access when

run across various numbers of cores on a shared mem-

ory machine. For comparison, results using OpenMP are

also provided; all other results use HPX for table access.

When no additional work is overlapped with the table ac-

cess, the slowdown relative to that seen on a single core

can reach as high as a factor of 3; however, when other

workload is overlapped with the table access, the con-

tention in table access is increasingly amortized. These

results used the smaller (288 MB) table.

in real applications that do much more work will allow for
further amortization of the introduced network overheads.
The results also imply that a single AGAS server is quite
capable of servicing at least 16 client localities, especially
considering the intensity of request traffic over the Ethernet
interconnect deployed in out testbed. We plan to further
evaluate this aspect of distributed table implementation us-
ing faster interconnect networks, such as Infiniband.

6. RESULTS
Accessing a single, potentially distributed Shen equation

of state table using multiple threads for converting conserva-
tive variables to primitives and vice versa as required for the
flux-conservative HRSC method results in a slowdown when
compared with using multiple independent copies of the ta-
ble. There is also some additional overhead in using Futures
in the tabular access. In Figure 6 the table access slow-
down relative to a single core on a shared memory machine
is presented. The results are a weak scaling test where the
results for each workload have been normalized to the cor-
responding single core performance. In this test, each core
accesses and interpolates 64k unique values in the table as a
single bulk operation. Using HPX on a single core of an In-
tel Xeon X5660 processor, this test takes 0.0728 seconds; for
comparison, using the Fortran codes provided at [2] access
and interpolation of the exact same 64k values takes 0.0549
seconds, reflecting the increased overhead in using HPX. As
the number of cores accessing the same table increases, the
access performance degrades. The primary reason for that is
the competition of hardware threads executing on the same
processor for access to memory, since most of the interpola-
tion requests cannot be satisfied solely from processor caches
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Figure 7: Weak scaling results using the 5.9 GB table

based on the latest Shen equation of state [30]. The num-

bers above the data points indicate across how many lo-

calities the table was distributed. Each locality consists

of two quad-core Intel Nehalem (2.8 GHz) processors.

The interconnect between localities was Gigabit Ether-

net. The workload provided was only that of table ac-

cess and interpolation of 64000 values per locality. The

results have been scaled to account for the linear growth

in communication as the number of localities increases

for this problem so that the computation and commu-

nication workload remain constant on each locality for

each point in the plot.

(for the machine used in test, the ratio of utilized fraction
of EOS dataset to the aggregate size of L3 caches was about
5). This is compounded even further by the fact that ac-
cesses are sparse and random in nature, and therefore result
in decrease of the effective memory bandwidth. When no
additional work is overlapped with the table access, the ta-
ble access slowdown relative to a single core can reach as
high as a factor of 3, an unacceptably high number for neu-
tron star simulations. However, by overlapping work with
the table access futures, the slowdown relative to a single
core becomes much more reasonable.

For relatively small tables like the 288 MB table explored
here, the memory cost of reading in a table for each core
might be a manageable strategy in order to avoid any higher
overhead costs associated with sharing the table using fu-
tures. For very large tables, however, there is no other vi-
able option: the table would have to be distributed across
several nodes and shared using futures. Using the recently
released improved Shen equation of state [30], we have cre-
ated Shen tables 5.9 GB in size for neutron star simulations.
The increased table resolution contributes to improving the
accuracy and robustness of neutron star evolutions as well
as includes the most recently improved RMF results.

In Figure 7 distributed weak scaling results for the 5.9 GB
table are presented. In these results, each locality consists
of two quad-core Intel Nehalem (2.8 GHz) processors con-
nected with Gigabit Ethernet. The table was distributed
across as many as 20 localities and each locality interpolates
64K different table queries. The growth in communication
due to distributed table access grows linearly as the num-
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Figure 8: The relative slowdown in running a 3-D Neu-

tron star evolution with a finite temperature equation of

state for 10 iterations on a shared memory machine com-

paring Futures based table access with the traditional

approach - reading in the table for each core. The table

used in the comparison is the smaller (288 MB) Shen ta-

ble. The simulation used a uniform grid with 503 points

across the computational domain. We find the relative

slowdown in using Futures based table access compared

to reading in the table on multiple cores to be extremely

minimal – at worse a factor of 1.13 when table access is

shared across 12 cores – with a considerable savings in

memory. These results resemble the 14 µs workload line

seen in Figure 6.

ber of localities increases. For example, when the table is
distributed across two localities, each locality will need to
generate parcels to get N/2 nonlocal data points where N
is 64K; when distributed across three localities, each local-
ity will need to generate parcels to access 2N/3 nonlocal
data points; for four localities, that number becomes 3N/4
for each locality, and so on. Hence while the workload on
each locality is 64K interpolations, the overall communica-
tion grows linearly with the number of localities across which
the table is distributed. The results in Figure 7 have been
scaled to account for the growth in network communica-
tion so that the computation and communication workload
remain constant on each locality for each point in the plot.
This was done as follows: the baseline performance was mea-
sured on a single locality; performance and the exact number
of parcels generated on the non-AGAS localities were mea-
sured for each case involving more than a single locality;
weak scaling for those cases with more than one locality was
then determined by

S = 1 +
M −B

BP

where S is the weak scaling reported, M is the multiple
locality performance time, B is the baseline performance
time on a single locality, and P is the number of messages
for a non-AGAS locality. We note that P is between 48
and 121 for the results on multiple localities presented in
Figure 7 since messages are bulked together for improved
performance; message sizes varied as the number of localities

increase. All other weak scaling results presented in this
paper compute weak scaling in the traditional way

S = 1 +
M −B

B
=
M

B

since they were not distributed.
In Figure 8 we evolve a neutron star with the Shen equa-

tion of state on a shared memory machine (Intel Xeon X5660,
12 cores) for 10 iterations using a grid with 503 points across
the computational domain and compare performance be-
tween the Futures based table access approach and the con-
ventional approach of reading in a separate table for each
core. By necessity this comparison had to use the smaller
(288 MB) Shen table because using the larger table would
have exceeded the memory available when testing the con-
ventional approach. The Futures based table access per-
forms extremely well compared to the conventional approach
with negligible slowdown on up to 4 cores. At worst, when
the table is shared across 12 cores, the slowdown is a factor
of 1.13, consistent with the numbers presented in Figure 6
for the 14µs workload case.

7. CONCLUSION
We have examined finite temperature tabulated equation

of state access in the context of neutron star simulations
using a relatively new execution model called ParalleX. Us-
ing Futures to manage asynchrony, amortize contention, and
hide network latency, we have presented a strategy for per-
forming neutron star evolutions using extremely large tabu-
lated equations of state with minimal performance and mem-
ory cost. Using the Futures based partitioned Shen EOS ta-
ble access the slowdown compared to the conventional way
of accessing these tables is less than ∼15%, and often much
less than that. This added cost is justifiable, since as larger
tables become available in simulation efforts, astrophysics
simulations can then achieve a more realistic description of
hot nuclear matter and incorporate more microphysics, in-
cluding neutrino transport. Managing large tables in this
asynchronous way would be difficult to implement when us-
ing conventional programming models, such as MPI.

Several key improvements to the results presented here
are currently underway. As the HPX runtime system be-
comes NUMA aware, much of the memory contention ob-
served here in both OpenMP and HPX runs can be elimi-
nated [18]. Ways to reduce the Futures overhead reported
in Fig. 3 even further are currently under investigation. All
distributed runs presented here used Gigabit Ethernet in-
terconnect; however, HPX support for the native Verbs in-
terface for Infiniband is also underway. Hardware support
for AGAS translation, whose first-cut implementation could
utilize FPGA (Field-Programmable Gate Array) technology,
promises to reduce key overheads, both in execution and
storage, related to the software implementation. OpenCL
support via percolation in HPX is also under development
and could substantially impact the capability to perform
neutrino transport in neutron star simulations.
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