Recently built supercomputers demonstrate
that the number of GPUs and OpenCL
devices In clusters increases rapidly. While
these devices offer a whole new level of
computing power, GPUs are still rather
unpopular. Writing scalable OpenCL
applications takes more effort than the
average user Is willing to spend. We tried to
overcome this obstacle by implementing
HPXCL, a scalable OpenCL API for
distributed systems, based on HPX. To
demonstrate the scalability, we implemented
a distributed Mandelbrot visualization using
HPXCL and evaluated its performance in a
cluster environment. Using this visualization,

we created an interactive demo utilizing the
Google Maps API.

HPXCL and HPX

We wrote HPXCL (HPX Compute Language)
to create an open source API that is able to
control OpenCL devices in a cluster
environment. Our main focus was to keep the
interface simple and easy to use, while still
providing scalability and performance.
HPXCL uses HPX (High Performance
ParalleX) to utilize the parallel resources as
efficient and asynchronous as possible. HPX
IS an open source and freely available C++
runtime system, providing remarkable
performance and scaling on many distributed
and parallel systems. It is available for
Windows, Linux and OSX, and can be used
on a variety of cluster architectures.

'Louisiana State University, Center for Computation and Technology
* Friedrich-Alexander-University Erlangen-Nuremberg

The Mandelbrot Set

” =
,,,,,,,,

Fig. 1: Left: The Mandelbrot Set; Right: Detail of the I\/‘IaAhdeibrot Set

We chose to use a visualization of the Mandelbrot set to test
our HPXCL implementation. It is a well known example of
an embarrassingly parallel problem, which makes itanideal
testcase to demonstrate the efficiency of HPXCL. The set is
based on the divergence behavior of the complex series
z., =z’ + ¢ with z, = 0 for different ¢ values. Using the real
and imaginary part of ¢ as coordinates, and applying color
based on how rapidly zdiverges, one can create impressive
looking pictures. Furthermore, its computational
characteristics make it a perfect fit for OpenCL devices.

Implementation

In order to solve a problem in a distributed fashion, the
problem needs to be split into several parts. Splitting the
computation of a mandelbrot image is rather easy, as every
pixel can be calculated independently from its surrounding
pixels. Hence, a number of sub-images can be created,
using a grain size modifier to control the split size. These
sub-images can then be computed by several independent
distributed workers. This approach scales even with
heterogeneous workers, enabling the simultaneous use of
GPU, acceleratorand CPU based OpenCL devices.

We wrapped the resulting Image Generator in a webserver
and used the Google Maps API to create an interactive
Mandelbrot renderer. (Fig. 2)

Implementing an interactive Mandelbrot Visualization
on a GPGPU cluster using HPXCL

Martin Stumpf'“, Hartmut Kaiser', Thomas Heller’

D STE||AR GROUP

Mandelbrot Benchmark - Speedup Mandelbrot Benchmark - Parallel Efficiency

1
25) :

Parallel Efficienc
o
(@))

1 4 8 12 16 20 24 28 32 1 4 8 12 16 20 24 28 32
Number of GPUs Number of GPUs

emmme Optimal Speedup ~ e Measured Speedup emmme Optimal Efficiency — esssm|\Veasure d Efficiency

Fig. 3: Left: Speedup vs Number of Devices; Right: Parallel Efficiency vs Number of Devices

One of the most important factors on distributed
programs is scalability, measured in parallel efficiency.
The perfect value would be a constant parallel efficiency
of 100%, which, however, Is impossible to achieve in a
real life application. Therefore, having an efficiency of
90% on 32 devices is a notable result.

Conclusion

Our Mandelbrot renderer was able to demonstrate the
performance and scalability of HPXCL. Still, it is a rather
simple use-case and only reflects a certain class of
problems. Therefore, the next step would be to try HPXCL
on a more complex task, like a multi-dimensional stencil
code, whilst improving and extending it along the way.

Acknowledgements

- The Stellar Group - Friedrich-Alexander-University Erlangen-
- Center for Computation and Technology, Nuremberg
Louisiana State University - National Science Foundation

\ - Stampede (XSEDE) /
~)
r \F 1 r 1 r I 1 " Worker
. \ Webserver Queue Generator 2 |
Google = : " |
Maps API P ﬁ' ﬁ /
Client Ja Q‘Q Worker
) | |

\Fig. 2: Structure of the interactive Mandelbrot renderer /

