Introduction

The n-body problem, i.e. the
prediction of the motion of a group of objects
that interact with each other under the
Influence of a force, is a method that
continues to present a computational
challenge to scientist in a broad range of
application areas, like astrophysics or
computational biology. Existing codes are
usually scaling-challenged causing overly
long runtimes for real-world problem sizes.
We hope to overcome some of the
challenges that face computing an n-body
problem by using a message driven,
Inherently asynchronous approach based on
the HPX (High-Performance ParalleX)
library. This runtime system provides
researchers the ability to assign work to
nodes, independent of other nodes, and
allows users to have control of the timing of
the execution of the work. Our goals for this
project are to produce a program using HPX
which calculates the forces due to gravity
between all of the points, only calculates the
forces between a pair of points once,
updates the coordinates to a new position
every timestep, and breaks the global
barriers that prevent work form being done.

Methods

In order to calculate the forces
between each point we used a nested for
loop:

for (1=0,; 1i+1<k; 1i++)
for (L=1+1; L<k; L++)
In this way, the force between each point “”
and each subsequent point “L” is calculated
(see Figure 1). Latter on, this calculated force
IS added to a vector which stores all of the
forces acting on a single point.

Solving n-body Problem Using HPX

Adrian Seriol, Hartmut Kaiser-2

1Center for Computation and Technology, 2LSU Department of Computer Science

Force Calculations

Figure 1: Each successive point has to calculate one less
force than the previous point.

A point’s new location is calculated using

basic kinematic equations:
1

X = Xo + Upt +§at2
And
Ve =V, +at

As implied by the equations, this program
also stores the values of each particles
velocity.

One of the problem common to the n-
body problem is that all of the forces must be
calculated between all of the points before
the particles’ new positions can be
calculated. In traditional parallel
computation models, this created a “Global
Barrier” in the program where all of the
processes had to wait until every force had
been calculated. Using HPX, however, we
were able to “break” this barrier by breaking
the problem into smaller work packets which
after gathering the dependent variables can
begin working (see Figure 2). In this way,
nodes will be less starved for work and the
calculation can proceed quicker (see Figure
3).

In order to break the problem down into
smaller packets of work we split the nested
“for” loop into two pieces. The first loop creates
“promises”, which are small packets of work
that can be assigned to a node. These packets
of work instruct the node to execute the second
“for” loop, thus calculating all the forces
between one point and the rest of the points.

Parallelism using HPX

Timestep=0 Timestep=0 Timestep=0 ’

The new position of points 3

The new position of point 1 The new position of point 2 and 4 can be calculated. The

can be calculated. can be calculated. forces between all the points
in timestep 1 can now be

calculated.

Time?
@

Timestep=1 Timestep=1 .

Figure 2: The top half of the chart shows what one node is
computing. The bottom half shows what can now be computed
after the computation is finished.

Additionally, the move function is
wrapped in a promise, which allows work
to begin on updating a point’s position as
soon as all the forces on a point are
calculated. Because the two main
functions of the program are wrapped in
promises, HPX has the ability to assign all
of the work at the start of the program.
Therefore, as soon as the relevant
Information becomes available a node can
begin the next step in computation.

STE||AR

stellar.cct.Isu.edu

N

Ll T

if

~

LS

CENTER FOR COMPUTATION
& TECHNOLOGY

Breaking Barriers

Traditional

Solutions HPX Solution

Calculate
Forces

Global
Barriers

Update |=
Coordinates

Figure 3: The HPX model

Conclusions

This programming model is one that we
believe will propel computation into the future.
By breaking down the problem into smaller
pieces, we hope to achieve shorter
computation times and better scaling, as more
nodes will have better access to work. Our
work with this program is far from over, while
preliminary results are promising we hope to
Improve program stability by creating a
Independent queue which will handle all writing
to the programs main storage vector,
Incorporate a cutoff distance to improve the
speed of calculation of large datasets, and
begin to optimize the programs code.

Acknowledgements:

NSF Grants 1117470, 1048019, 1029161
DARPA UHPC Funding

LONI Allocation loni_hpx

Bryce Adelstein-Lelbach

Vinay C Amatya

Maciej Brodowicz

Thomas Heller

Thomas Sterling

