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ABSTRACT

With the general availability of PetaFLOP clusters and the advent
of heterogeneous machines equipped with special accelerator cards
such as the Xeon Phi[2], computer scientist face the difficult task
of improving application scalability beyond what is possible with
conventional techniques and programming models today. In addi-
tion, the need for highly adaptive runtime algorithms and for appli-
cations handling highly inhomogeneous data further impedes our
ability to efficiently write code which performs and scales well.

In this paper we present the advantages of using HPX[19, 3,
29], a general purpose parallel runtime system for applications of
any scale as a backend for LibGeoDecomp[25] for implementing a
three-dimensional N-Body simulation with local interactions. We
compare scaling and performance results for this application while
using the HPX and MPI backends for LibGeoDecomp. LibGeoDe-
comp is a Library for Geometric Decomposition codes implement-
ing the idea of a user supplied simulation model, where the library
handles the spatial and temporal loops, and the data storage.

The presented results are acquired from various homogeneous
and heterogeneous runs including up to 1024 nodes (16384 conven-
tional cores) combined with up to 16 Xeon Phi accelerators (3856
hardware threads) on TACC’s Stampede supercomputer[1]. In the
configuration using the HPX backend, more than 0.35 PFLOPS
have been achieved, which corresponds to a parallel application
efficiency of around 79%. Our measurements demonstrate the ad-
vantage of using the intrinsically asynchronous and message driven
programming model exposed by HPX which enables better latency
hiding, fine to medium grain parallelism, and constraint based syn-
chronization. HPX’s uniform programming model simplifies writ-
ing highly parallel code for heterogeneous resources.
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1. INTRODUCTION

Due to the scale of today’s supercomputers, users must be able
to exploit multiple levels of parallelism if they hope to achieve de-
cent performance on today’s machines. In addition to the theoret-
ical scaling limits described by Amdahl’s Law[5] and Gustafson’s
Law[15] at least four additional factors limit application scalabil-
ity, also referred to as the SLOW factors: a) Starvation, i.e. current
concurrent work is insufficient to maintain high utilization of all re-
sources, b) Latencies, i.e. the delay intrinsic to accessing remote
resources and services deferring their responses, ¢) Overheads, i.e.
the work required for the management of parallel actions and re-
sources on the critical execution path which is not necessary in a
sequential variant, and d) Waiting for contention resolution, which
is caused by the delays due to oversubscribed shared resources.

We posit that in order to achieve the goal of making even highly
dynamic applications scalable, a new programming model is re-
quired. This programming model will need to overcome the limi-
tations of how applications are written today and make the full par-
allelization capabilities of today’s and tomorrow’s heterogeneous
hardware available to the application programmer in an simple and
uniform way. The work presented in this paper is based on HPX - a
runtime system implementing such a programming model. It is de-
scribed in detail in Section 2. HPX is based on the set of governing
principles of the ParalleX execution model [19, 17, 27] to enable
a maximum of application level parallelism, while minimizing the
effect of the SLOW factors.

In order to efficiently use the proposed programming model to-
day, already existing application frameworks need to be ported to
HPX such that those frameworks can benefit from the advanced lev-
els of parallelism provided. As an example, this paper describes the
results from porting the parallel simulation backend of LibGeoDe-
comp (see Section 3) to utilize HPX (see Section 5). Due to the
highly modular and careful design of LibGeoDecomp we were able
to develop the backend such that the user’s simulation code doesn’t
need to be changed. Nevertheless, the new parallelism provided by
the HPX backend is fully utilized. Due to the uniform program-
ming model, we are able to present numbers that outscale and out-
perform the already existing MPI backend on heterogeneous archi-
tectures by a significant margin while maintaining the high produc-
tive programmability of LibGeoDecomp (see Section 6).

This paper presents the results obtained from large scale runs on
TACC’s Stampede resource[1] using LibGeoDecomp’s HPX back-
end, comparing those to equivalent runs performed with LibGeoDe-
comp’s MPI backend. In order to evaluate the achieved perfor-
mance we used a N-Body application written in LibGeoDecomp
(see Section 4). It highlights the capabilities of Stampede’s hetero-
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Figure 1: Architecture of the HPX runtime system. An incoming par-
cel (delivered over the interconnect) is received by the parcel port and
dispatched to the parcel handler. The main task of the parcel handler is
to buffer incoming parcels for the action manager. The action manager
decodes the parcel and creates an HPX-thread based on the encoded
information. All HPX-threads are managed by the thread manager,
which schedules their execution on one of the cores. Usually HPX cre-
ates one OS-thread for each available core. The thread manager im-
plements several scheduling policies, such as a global queue scheduler,
where all cores pull their work from a single, global queue, or a local
priority scheduler, where each core pulls its work from a separate pri-
ority queue. The latter supports work stealing for better load balanc-
ing. Local Control Objects (LCOs) are responsible for synchronizing
access to shared resources and are tightly integrated with the thread
scheduling to resume threads whenever all preconditions for continu-
ing execution of a thread are met.

geneous architecture by fully utilizing its Xeon Phi accelerators [2]
combined with all cores of the used host nodes.

2. HPX: A GENERAL PURPOSE PARALLEL

RUNTIME SYSTEM

HPX is a general purpose parallel runtime system exposing a
uniform programming model for applications of any scale. It has
been developed for conventional architectures, such as SMP nodes,
large Non Uniform Memory Access (NUMA) machines and clus-
ters, and heterogeneous systems such as using Xeon Phi accelera-
tors. Strict adherence to Standard C++11 [28] and the utilization of
the Boost C++ Libraries [4] makes HPX both portable and highly
optimized. It is modular, feature-complete and designed for best
possible performance. HPX’s design focuses on overcoming con-
ventional limitations such as (implicit and explicit) global barri-
ers, poor latency hiding, static-only resource allocation, and lack
of support for medium- to fine-grain parallelism (see Figure 1).

The Active Global Address Space (AGAS): In HPX, AGAS
currently is a set of (distributed) services that implement a 128-
bit global address space spanning all localities. Those provide two
naming layers in HPX. The primary naming service maps 128-bit
unique, global identifiers (GIDs) to a tuple of meta-data that can
be used to locate an object on a particular locality. The higher-
level layer maps hierarchical symbolic names to GIDs. Unlike sys-
tems such as X10 [9], Chapel [8], or UPC [30], which are based
on PGAS [24], AGAS exposes a dynamic, adaptive address space
which evolves over the lifetime of an HPX application. When a
globally named object is migrated, the AGAS mapping is updated,
however its GID remains the same. This decouples references to
those objects from the locality that they are located on.

Parcel Transport Layer: HPX parcels are a form of active mes-

sages [32] used for communication between localities. In HPX,
parcels encapsulate remote method calls. A parcel contains the
global name of an object to act on, a reference to one of the ob-
ject’s methods and the arguments to call the method with. Parcels
are used to either migrate work to data by invoking a method on a
remote entity, or to bring pieces of data back to the calling locality.
Currently, HPX implements parcel communication over TCP/IP,
Infiniband, shared memory (for communication between localities
running on the same physical resource), and on top of low level
MPI functionality (MPI_Isend/MPI_Irecv). The MPI parcelport
is used mainly for enabling a smooth transition of existing appli-
cations and to ensure HPX can be run on any platforms with an
existing MPI transport layer implementation. Each locality has a
parcel port which reacts to inbound messages and asynchronously
transmits outbound messages. After a parcel port receives and de-
serializes a message, it passes the parcel to a parcel handler. If
the target object of a parcel is local, then the action manager con-
verts the parcel into a HPX-thread, which is scheduled by the HPX
thread-manager.

HPX-threads and their management: The HPX thread-manager
is responsible for the creation, scheduling, execution and destruc-
tion of HPX-threads. In HPX, threading uses an M:N or hybrid
threading model. In this model, N HPX-threads are mapped onto
M kernel threads (OS-threads), usually one OS-thread per core.
This threading model was chosen to enable fine-grained paralleliza-
tion; HPX-threads can be scheduled without a kernel call, reduc-
ing the overhead of their execution and suspension. The thread-
manager uses a work-queue based execution strategy with work
stealing similar to systems such as Cilk++ [20], Threading Build-
ing Blocks (TBB [18]), or the Parallel Patterns Library (PPL [21]).
HPX-threads are scheduled cooperatively, that is, they are not pre-
empted by the thread-manager. HPX-threads may voluntarily sus-
pend themselves when they must wait for data that they require to
continue execution, I/O operations or synchronization.

Local Control Objects (LCOs): LCOs provide a means of con-
trolling parallelization in HPX. Any object that may create a new
HPX-thread or reactivate a suspended HPX-thread exposes the re-
quired functionality of an LCO. Support for event-driven HPX-
thread creation, protection of shared data structures, and organi-
zation of flow control are provided by LCOs. They are designed to
allow for HPX-threads to proceed in its execution as far as possible
without waiting for a particular blocking operation, such as a data
dependency or 1/0O, to finish. Some of the more prominent LCOs
provided by HPX are:

1. Futures [7, 14, 16] represent results that are not yet known, pos-
sibly because they have not yet been computed. A future synchro-
nizes access to the result value associated with it by suspending
HPX-threads requesting the value if the value is not available at the
time of the request. When the result becomes available, the future
resumes all suspended HPX-threads waiting for the value. These
semantics allow execution to proceed unblocked until the actual
value is required for computation.

2. Dataflow objects [11, 12, 6] provide a powerful mechanism for
managing data dependencies without the use of global barriers. A
dataflow LCO ensures that a predefined function will be called once
a set of values become available. The function is called passing
along all of this data.

3. Traditional concurrency control mechanisms including various
types of mutexes [10], counting semaphores, spinlocks, condition
variables and barriers are also exposed as LCOs in HPX. These
constructs can be used to cooperatively suspend an HPX-thread
while informing the HPX thread-manager that other HPX-threads
can be scheduled on the OS-thread.



LCOs are first class objects in HPX, they enable intrinsic over-
lapping of computation and communication. This not only hides
latencies, but also allows many phases of a computation to over-
lap, exposing greater application parallelism. They can be used to
control parallelism across multiple localities. The mechanisms for
naming and referencing first class objects such as LCOs is provided
by AGAS.

3. LIBGEODECOMP - AN AUTO-PARAL-
LELIZING LIBRARY

The purpose of LibGeoDecomp[25] is to simplify the develop-
ment of computer simulations. Typical challenges for such codes
are the adaptation to new hardware architectures and the scalability
on large-scale systems. Simulation models are generally developed
by domain scientists, e.g. physicists or material scientists. Their
productivity will be greatly increased if they can be relieved from
having to worry about the machine architecture.

The basic abstraction within LibGeoDecomp is the simulation

cell. Cells are placed in a regular grid and updated once per timestep.

During the update they may access their neighbors from the last
time step. In other words, in LibGeoDecomp simulations are writ-
ten as iterative algorithms with spatial discretization. Examples for
such models are cellular automata or Lattice Boltzmann Methods.
Other models, such as N-body codes, which cannot be directly rep-
resented by a regular grid are handled by wrapping the particles
into boxes according to their spatial location. The containers then
form a regular grid. This procedure works well if the particles are
evenly distributed, but efficiency is poor if pronounced hotspots are
present. Only local interactions can be represented.

The library is written as a set of C++ class templates. User code
describes the behavior and the data stored in a single simulation
cell. It is inserted into the library as a template parameter. Inter-
action of model and library is defined by a two-way callback in-
terface: the library calls a cell to update its state and the cell may
call back the library to retrieve the states of itself and its neighbors
from the last time step by means of a proxy object — the so called
neighborhood.

Within the library the objects which maintain the workflow of
the simulation are named Simulators. These implement var-
ious optimizations such as multi-node and multi-core paralleliza-
tion, overlapping communication and calculation, parallel 10, etc.
The library has support for in-situ visualization and live steering
(see Fig. 2).

The key advantage of this approach is that user code and par-
allelization are segregated. User code may benefit from improve-
ments of the parallelization without the need of modifications. Sin-
gle investments into the library benefit multiple applications.

4. SIMULATION MODEL

For our evaluation we chose the N-body model presented in [31].
This model represents a larger class of similar models (e.g. gravi-
tating bodies or electrostatically charged particles) and allows com-
parison of our results with previous publications. The only modifi-
cation we applied was to introduce a cut-off ratio to the force cal-
culation. This slightly decreases the computational complexity (i.e.
it increases the model’s demand for memory bandwidth).

In essence, the model is an N-body simulation with short range
interaction, which can be described by the following equations:
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Figure 2: High-level architecture of LibGeoDecomp: the
Simulator controls the workflow. Data is stored within
the Grid, whose elements, the Cells, are provided by the
user. The Cell also contains information on the topology and
boundary conditions required by the model. A Writer per-
forms periodic output, e.g. by dumping the grid in VisIt’s BOV
format to disk. Conversely, a Steerer may modify the grid
at runtime. This can be leveraged quickly patch errors within
the simulation or to conduct experiments with low turnaround
times.

F; is the force acting on body ¢, R; is its location. The force
is defined by those particles which interact with the current par-
ticle. As said, we do not take into account all particles, but just
those within a certain radius D. These particles are found in set
H,. Particles beyond the cutoff are assumed to have only a negli-
gible influence. The direction and magnitude of the forces further
depends on the factors C; which — depending on the physical model
— may represent mass or charge of the given body, and the model-
dependent constant K. The parameter s is often referred to as a
softening factor and has the purpose to avoid a division by zero if
the interaction of the particle with itself is being calculated — or if
two particles should accidentally occupy the same position.

Crucial to an efficient implementation of this model are two as-
pects: the calculations need to be vectorized and the calculation
of the sets H; should not incur any overhead. The latter can be
achieved by placing all particles in parallelepipeds of size D, as
shown in Figure 3. These serve as containers. Each particle can
only interact with particles from its own container or from those
surrounding it. This is a standard technique and has been used in
other scalable implementations before (e.g. [13]). As the particles
move through space, they may need to switch containers. Checking
for such transitions may be a time consuming test, but by choosing
the container size slightly too large we can defer such tests, thereby
rendering the overhead caused by this transition negligible.

Vectorization requires that particles are not stored as distinct ob-
jects, but rather in a Struct of Arrays [26] fashion. This means
that each member variable (e.g. the three scalars that make up its
position) is stored as a vector for all particles within a container.
Thanks to the softening factor, our model does not need to avoid
self-interaction of the particles. This simplifies the vectorization of
the loop. In fact, the pseudocode below can be vectorized in two
ways: we can either traverse the particles in cell.particles
in the innermost loop in a vectorized fashion or traverse the cells
particles in a scalar way and compute the interactions with
multiple p_1 from this->particles. In the first case we
would compute all acting forces for exactly one particle p_1 and all
particles p_2 from cell. The latter strategy requires the architec-
ture to perform a scalar load (for retrieving p_2) and to broadcast
that scalar value to a vector register in an efficient fashion.



J“/
! 1& -
| :
l

N

Figure 3: Illustration of simulation model. Particles are placed
in a container according to their physical location. All particles
of the shaded cell may interact with the particles of their own
cell and those cells neighboring it.

void addForce (Particle& p_1, const Particle
& p_2)
{
vec3 delta =
p_l.force +=
+ s);

p_2.pos — p_l.pos;
p_2.c * delta / (norm(delta)
}

for (Particle p_1: this->particles) {
for (Cell cell: neighborhood) {
for (Particle p_2: cell.particles) {
add_force(p_1, p_2);
}
}
}

S. IMPLEMENTATION

This section details the port of LibGeoDecomp to HPX and the
implemented mechanisms that allow the efficient use of heteroge-
neous resources such as the Stampede supercomputer. As described
in Section 3, LibGeoDecomp consists of several high-level compo-
nents. The HPX backend to LibGeoDecomp merely touches the
Simulator module without the need to change the already existing
API and semantics of existing backends, such as the MPI backend.
As a matter of fact, the HPX backend is closely modeled after the
MPI implementation to allow the reuse of the already existing in-
frastructure for domain decomposition and synchronization.

5.1 Overview

The simulator features a layered design, which separates the do-
main decomposition from the synchronization of the node domains
and the intra-node threading. The design needs to satisfy two goals:
reduce the impact of network latency and equalize the load on
CPUs and accelerators. Latency can be hidden by overlapping
communication and calculation. This in turn requires a low-over-
head communication infrastructure and the ability to make asyn-
chronous progress. Load equalization mandates a tunable domain
decomposition scheme. In LibGeoDecomp a domain decomposi-
tion (or partition) is a function which maps the nodes to sets of
coordinates. These coordinate sets represent the domains of the
nodes. Their sizes can be tuned via a weight vector. The design
can be summarized by the following modules:

Simulator: The Simulator acts as the main interface to the
user. It acts as the glue code to set up all the following classes. It
will set up as many UpdateGroups as requested at runtime.

UpdateGroup: An UpdateGroup represents the entity to cre-

HpxSimulator }—*’ UpdateGroup }—*’ PartitionManager

—>’ PatchAcceptor "—-—>

PatchLink

CELL

PatchProvider

Grid

Writer Steerer

Figure 4: Main objects and their interactions when using Lib-
GeoDecomp’s HPX backend. The idea is to reduce complex-
ity by decomposing the codebase into specialized classes. The
Simulator manages the workflow of the simulation. It will
contain one UpdateGroup per NUMA. Each UpdateGroup
is responsible for a sub-domain of the grid. Which do-
main exactly is determined by the PartitionManager. The
Stepper contains the temporal and spatial loops. It will call
back the user code within the CELL class. Halos are synchro-
nized by the PatchLinks. A Writer is an output plugin,
while a Steerer can be used for live-steering.

ate the simulation Stepper and the neighborhood communica-
tions defined by the PatchAcceptor and PatchProvider.
Additionally, the partitioning is done within an UpdateGroup
which is implemented in a PartitionManager.
PartitionManager: As the discrete domain of computation
needs to be decomposed, or partitioned, in order to be parallelized
efficiently, a PartitionManager is needed to implement vari-
ous partitioning strategies and determine the simulation domain as
well as the ghostzones of a certain UpdateGroup.

Stepper: The Stepper class represents the main simulation
control flow implementation. The Ce11’s update function as well
as the ghost zone exchange as provided by the Pat chAcceptors
and PatchProviders is done here. This class is mainly respon-
sible for the scalability of LibGeoDecomp and is the class in which
the parallelization has to happen. A more detailed discussion of
the algorithm implemented and the parallelization strategy can be
found in Subsection 5.2.

PatchAcceptor: A PatchAcceptor provides an abstraction
for the Stepper which is used to retrieve the state of the Grid
in the current time step. It used to either notify a Writer to
write the grid elements (see Section 3) or to update it’s neighboring
UpdateGroups ghost zones through a Pat chLink. The setting
of a neighboring ghost zone can be completely behind the compu-
tation through the Stepper.

PatchProvider: Similar to the PatchAcceptor, the Patch-
Provider is providing an abstraction to set the portions of the
Grid at the current timestep. It is used to either notify a Steerer
to set a new state of the current’s grid elements (see Section 3) or
to set the ghost zone retrieved from a neighboring UpdateGroup
through a Pat chLink. This is the only place in LibGeoDecomp’s
parallelization backend where a synchronization between the dif-
ferent UpdateGroups happens as it is guaranteed that the time-
steps match between UpdateGroups.

As noted above, both the Scalable MPI backend (implemented
in the class HiParSimulator) and the HPX backend (imple-
mented in the class HpxSimulator) make use of this generic
structure while maintaining as much API compatibility as possible.
The only notable difference in the interface lies within the creation
of an Simulator object. Where with the HiParSimulator,



the number of UpdateGroups are equal to the number MPI Ranks
created, the HPXSimulator allows the user to decide how many
UpdateGroups are created per node by inputting an additional
parameter. The details and benefits to this approach are discussed
in the following subsection.

5.2 Parallelization and scalability considera-
tions

As discussed previously, the heavy lifting of the parallelization
efforts of LibGeoDecomp lie within the responsibilities of the
UpdateGroup, Stepper, and PatchLink.

An UpdateGroup creates a partition for itself based on the se-
lected partitioning scheme, which not only determines which par-
tition belongs to the current UpdateGroup in question, but also
determined which UpdateGroups have corresponding neighbor-
ing regions. The size of a partition is determined by an initial
weight vector, which might consist of equal weights for homoge-
neous runs, or consist of different weights, for heterogeneous runs.
This weight factor is determined by the user and defined in the
Cell implementation, which takes different computation speeds
of the various processing units involved in the simulation into ac-
count.

In addition, two Pat chLinks are created for each corresponding
neighboring Region; They are responsible for (a) receiving a ghost-
zone fragment (handled by a PatchProvider) or (b) sending
a ghostzone fragment (handled by a PatchAcceptor). As de-
scribed in the previous subsection, the Patchlink of a Patch-
Provider, is the only place where a single UpdateGroup is
synchronized with its neighbors. It is important to note that no col-
lective operations are used here; therefore, the implementation is
scalable by design. The HpxSimulator and HiParSimulator
share this important design decision, however, the implementation
specifics are worthy to note as they highlight the advantages of the
HPX programming model over MPI. While within the HiPar—
Simulator one UpdateGroup per rank is created and the com-
munication within the PatchLink is implemented via the two-
sided MPI asynchronous communication primitives, the HPX Back-
end is able to leverage the AGAS (see Sec. 2). It creates a vary-
ing number of UpdateGroup components per node based on the
compute requirements of a specific node. Additionally, the Patch—-
Links do not need to communicate via low level primitives such
asMPI_TIsend () andMPI_TIrecv () butcan rely oninvoking a
(possibly remote) set function of the neighboring UpdateGroup
component taking full advantage of the unified program model pro-
vided by HPX. This mechanism is not only implemented in a truly
Object Oriented fashion, but it is also inherently asynchronous. By
moving the UpdateGroups into the AGAS, and thereby only
needing one HPX locality per node, we gain considerable advan-
tages over the MPI programming model which requires one MPI
process per CPU core. This avoids, possibly expensive, inter-process
communications which leads to an increased scalability on a single
node.

The techniques described above amount to a complete port of
LibGeoDecomp to HPX. However, only a small portion of the HPX
parallel runtime system is used. To fully exploit the potentials
of the emerging technology, the Stepper class will need to be
ported to HPX as well. However, for now, the Stepper used by
MPI backend can be used without any further modifications. The
conventional VanillaStepper is outlined in Fig. 5: For each
timestep, the inner region is updated, once done, we notify the
PatchAccepters in order to retrieve the new ghostzones. Af-
terwards, our inner ghostzone can be updated and, once finished,
sent to the neighboring UpdateGroups.

for (Region r: innerRegion) {
update (r, 0ldGrid, newGrid, step);

swap (0ldGrid, newGrid);

++step;

for (Region r: outerGhostZoneRegion) {
notifyPatchProviders (r, o0ldGrid);

}

for (Region r: outerGhostZoneRegion) {
update (r, 0ldGrid, newGrid, step);

}

for (Region r: innerGhostZoneRegion) {
notifyPatchAccepters(r, o0ldGrid);

}

Figure 5: VvanillaStepper: Algorithm sketch of a Stepper
for LibGeoDecomp. This is a basic outline for how the simu-
lation stepping inside LibGeoDecomp works. The implementa-
tion is fully serial.

Due to the serial nature of a single MPI process, the outlined
algorithm is as good as it can get. However, the advanced paral-
lelization techniques provided by HPX open the doors to further
improve and take full advantage of the parallel capabilities of a
single CPU. The described code can be fully futurized. Futuriza-
tion is a technique which allows users to turn otherwise serial code
into a chain of asynchronously executed functions. The serial con-
trol flow is transformed into a sequence of depending continua-
tions to previous calculations. A simple loop without dependencies
can be simply formulated as a loop where every loop body is ex-
ecuted in parallel. A possibly depending calculation can simply
be chained by passing a continuation function which will be exe-
cuted whenever every chunk of the loop has finished (as described
in [22] and [23]). This will lead us to the futurized version of the
VanillaStepper, the HoxStepper (see Fig. 6). The algo-
rithm works in the same way as the one presented in Fig. 5. The
distinctions between the two codes are that different independent
regions are computed and notification of the PatchAccepters
and PatchProviders are performed in parallel. In addition we
break up each step into a sequence of continuations. This results in
taking a very coarse grained function and reducing it into multiple
fine grained functions whose parts are executed in parallel.

By applying the described techniques, we gain a powerful back-
end which is able to make use of all parallel resources. On the node
level, we benefit from futurization and the ability to have only one
process per node. When running the application in distributed, we
are profiting from the unified programming model which gives us
increased asynchronity which in turn leads to better latency hiding
by being able to properly hide communications behind useful com-
putation. All this was achieved while being 100% API compatible
for existing LibGeoDecomp applications, which means they can
immediately benefit from the HPX backend.

6. BENCHMARKS

In order to evaluate our developed approaches, and test the scal-
ability of our the newly developed library we used the simulation
model as described in Section 4. The computing resource used is
TACC’s Stampede [1]. It consist of a total of 6400 nodes with two
Intel Xeon ES5 processors and one Intel Xeon Phi coprocessor (see
Table 1). The compute nodes are interconnected with Mellanox
FDR InfiniBand technology (56 Gb/s) in a 2-level fat-tree topol-
ogy. The complete system is a 10 PFLOPS cluster. In our weak
scaling experiments, we scale the problem size with the number of
cores. For each core we assigned 1000 grid elements. The dis-



typedef vector<hpx::future<void>>
future_vector;
future_vector updateFutures;
for (Region r: innerRegion) {
updateFutures.push_back (
hpx::async(update, r, o0ldGrid, newGrid,
step));
}
hpx::when_all (updateFutures,
[] (const future_vectoré&) {
swap (0ldGrid, newGrid);
++step;
future_vector notifyFutures;
for (Region r: outerGhostZoneRegion) {
notifyFutures.push_back (
hpx::async (notifyPatchProviders, r,
0ldGrid));
}
hpx::when_all (notifyFutures,
[] (const future_vector&) {
future_vector updateFutures;
for (Region r: outerGhostZoneRegion) {
updateFutures.push_back (
hpx::async (update, r, oldGrid,
newGrid, step));
}
hpx::when_all (updateFutures,
[] (const future_vector&) {
future_vector notifyFutures;
for (Region r: innerGhostZoneRegion) {
notifyFutures.push_back(
hpx::async (notifyPatchAccepters,
r, o0ldGrid));

Figure 6: Futurized VanillaStepper, the HpxStepper.
Due to the Advanced parallelization strategies provided by
HPX, this Stepper implementation is now fully parallel and
scalable due to it’s highly asynchronous nature.

tributed HPX applications use the MPI parcelport since it currently
provides the best performance.

As a first measure we conduct weak scaling tests on a single
node. The theoretical peak performance of the two Xeon E5 pro-
cessors is 691.2 GFLOPS, or 896 GFLOPS with the Intel Turbo
Boost technology. This performance can be reached by simulta-
neously scheduling 8 multiply and 8 addition operations per cycle.
Our computational kernel introduced in Section 4 has a ratio of
multiply/add to other floating instructions of 4:6, as such the theo-
retical peak performance of our algorithm is 552.9 GFLOPS on the
Xeon ES5 processor (assuming the CPU is almost always running in
its turbo mode).

Fig. 7 shows the results obtained from running on a single node.
While the MPI backend needs to perform inter-process commu-
nication in order to exchange the ghostzones, the HPX is able to
overcome this limitation by efficiently parallelizing the simulation
steps (see Section 5.2). We are able to reach ~98% peak perfor-
mance with the HoxSimulator while MPI backend is only able
to achieve ~63%. The sub-optimal performance of the MPI back-
end is mainly due to the extra overheads introduced by inter-process
communication and the need to update the ghostzones separately.
Even though one would think that using high level parallelization
APIs, like the C++ API exposed by HPX and high level application
frameworks like LibGeoDecomp, would create a significant over-
head, the benchmark shows that they impose an overhead of only
~8%.

Intel Xeon E5 Intel Xeon Phi
Clock Frequency 2.7 (3.5 Turbo) GHz 1.1 GHz
Number of Cores 16 (2x8) 61
SMT 2-way (deactivated) 4-way
NUMA Domains 2 1
RAM 32GB 8 GB
SIMD AVX (256 bit) MIC (512 bit)
GFLOPS 691.2 (896.0 Turbo) 2147.2
Microarchitecture Sandy Bridge Knights Corner

Table 1: Overview of the processors built into one compute
node of the Stampede supercomputer. GLFOPS are presented
in single precision

Execution Times of HPX and MPI N-Body Codes
(SMP, Weak Scaling)
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Figure 7: Weak scaling execution times for the HPX and MPI
N-Body codes collected on a single SMP node while varying the
number of cores used from 1 to 16. The figure shows the times
for the overall Sim and the overheads introduced by Comm.
Additionally demonstrating the benefit of the futurization tech-
nique, as no extra communication is needed for the HPX back-
end while the MPI backend needs to perform extra actions for
the halo exchange. By that, the HPX backend only has 8% par-
allel overhead, while the MPI backend shows ~27% overhead.
Which accounts for a sustained performance of ~546 GFLOPS
using the HPX backend.

In addition to the scaling experiments on the host CPU, we are
interested in how well our code works on the Intel Xeon Phi archi-
tecture. Due to the lack of OpenMP support in LibGeoDecomp,
we only ran experiments with the HPX backend. To use the Xeon
Phi, we compiled native binaries for the coprocessor. Similar to
the host CPU, the Xeon Phi coprocessor is able to schedule one, so
called, fused multiply add (fma) instruction, which is able to per-
form 16 single precision floating point operations in a single cycle.
As such, our algorithm has a theoretical peak of 1717.7 GLFOPS.
We are able to sustain the same performance characteristics we see
on the host processor when running on the Xeon Phi (see Fig. 8).
The futurization approach is able to scale even on this architecture.
However, due to the architectural specifics of its in-order nature,
the usage of more than 2 cores per thread only leads to a minimal
advantage. Overall the HPX backend is able to achieve 89% of the
peak performance on a single Xeon Phi. Achieving an overhead
of only 11% is remarkable as no further modifications to the run-
time system or the application framework were necessary besides
the intrinsics that were used in the computational kernel.

To further test the scalability of our approach, we ran our bench-
mark on multiple nodes. We were able to scale up to 1024 nodes,
using 16384 Xeon ES5 cores. Furthermore, heterogeneous runs us-
ing up to 16 nodes utilizing both, the Xeon ES5 host CPUs and one
Xeon Phi coprocessor on each node, using a total of 4160 hardware



Weak Scaling Results for HPX N-Body Code
(Single Xeon Phi, Futurized)
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Figure 8: Weak scaling results for the HPX N-Body code col-
lected on a single Xeon Phi coprocessor while varying both the
number of cores used and the number of threads per core. The
figure shows excellent weak scaling behavior of the HPX back-
end. The overall performance doesn’t increase much more af-
ter two threads per core are used. We are able to sustain a
peak performance of 1504.7 GFLOPS using all 244 available
hardware threads which is equivalent to a parallel overhead
of ~11% and ~89% of the theoretical achievable peak perfor-
mance.

threads, have been conducted. For the scaling experiment with-
out the coprocessor, we compared the HPX backend with the MPI
backend. Our results show that both backends are able to scale well
to up to 1024 nodes (see Fig. 9), reaching a parallel efficiency of
~80% (HPX) and ~66% (MPI). The HPX backend is able to out-
perform the MPI backend at scale by ~8% and is able to reach a
sustained performance of ~0.35 PFLOPS. The main reason for this
performance gain can be attributed to the inherently asynchronous
nature of the HPX runtime system which leads to better latency
hiding at scale (see Fig. 10) which allows efficient overlapping of
computation and communication and furthermore reduces the over-
heads introduced by communication. The symmetric benchmark

Weak Scaling Results for HPX and MPI N-Body Codes
(Host Cores only)
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Figure 9: Weak scaling performance results for the HPX and
MPI N-Body codes collected for runs on the host’s cores only
(16 cores per node) while increasing the number of nodes from
1 to 1024 (16 to 16384 cores). On 1024 nodes, the HPX code
outperforms the equivalent MPI code by ~8% and reaches a
performance of ~0.35 PFLOPS.

runs (using both, the host processors and the coprocessor of a node)
were only conducted with the HPX backend for the same reason as
for the single Xeon Phi runs. Additionally, we needed to take the
different speeds of the now heterogeneous processors into account.
As the Xeon Phi is about 2.75 times faster then the Xeon E5 pro-
cessors, we chose the partitioning in such a way, that the Xeon Phi
gets 2.75 times more grid elements.

Execution Times of HPX and MPI N-Body Codes
(Host Cores Only, Weak Scaling)
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Figure 10: Weak scaling execution times for the HPX and MPI
N-Body codes collected on runs for host’s cores only (16 cores
per node) while increasing the number of nodes from 1 to 1024).
The figure shows the times for the overall Sim and the over-
heads introduced by Comm. It can be seen that both backend
implementations are able to consequently overlap computation
with computation, with a slight advantage to the HPX backend
at scale which is caused by the advanced asynchronous capa-
bilities of the runtime system.

Weak Scaling Results for HPX N-Body Codes
(Host Cores and Xeon Phi Accelerator)
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Figure 11: Weak scaling performance results for the HPX N-
Body code collected for symmetric runs on the host’s cores (16
cores per node) combined with all cores of the associated Xeon
Phi accelerators (61 cores, 4 hardware threads each) while in-
creasing the number of hosts from 1 to 16. On 16 nodes, the
HPX application reaches a performance of ~19.5 TFLOPS.

The results (see Fig. 11) show a sustained performance of ~19.5
TFLOPS when using a total of 4160 hardware threads (256 Xeon
E5 cores and 976 Xeon Phi cores, 4 hardware threads each). The
parallel efficiency is ~73% at the achieved scale. The reduced effi-
ciency in comparison to the runs on the hosts only can be explained
by an additional overhead introduced by communicating with the
coprocessor; the communication always requires an extra hop over
the PCI Express bus of the host system. In addition, we were not
able to scale beyond 16 nodes at this time as there are still major
problems with the underlying MPI software stack provided by Intel
which could not be solved in time.

7. CONCLUSION

The work presented in this paper shows how the unified pro-
gramming model of the HPX runtime system can be efficiently
used to implement C++ application frameworks. We successfully
ported the parallelization backend of LibGeoDecomp to use HPX.
We used a three dimensional N-Body Simulation written in Lib-
GeoDecomp to compare the HPX backend with an already existing



MPI backend. We are able to show perfect scaling at a single node
level by reaching ~98% peak performance of a single node of the
Stampede supercomputer. In addition, due to advanced paralleliza-
tion techniques, we were able to show ~89% peak performance
when using the many-core Xeon Phi coprocessor. Furthermore,
the scalability of the HPX backend could be proofed by scaling the
code to up to 1024 nodes using only the host CPUs of the Stampede
supercomputer (overall 16384 cores) by reaching a parallel effi-
ciency of ~79% and a sustained performance of ~0.35 PFLOPS,
outperforming and outscaling the MPI backend by ~8%. Running
this code on up to 16 nodes while utilizing the host and the co-
processor, the HPX backend was able to sustain a performance of
~19.5 TFLOPS while reaching a parallel efficiency of ~73%.

Our results show that HPX can be efficiently used for homoge-
neous large scale applications as well as scaling in heterogeneous
environments. However, to fully utilize future and current Peta-
FLOP scale supercomputers, we need to advance further. The abil-
ity to make use of migration within AGAS has to be refined in
order to dynamically balance load, as we were facing limitations
with static load balancing in our heterogeneous benchmarks. Ad-
ditionally, migration will make it easier to write work-imbalanced
applications and improve overall fault tolerance.
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