
HPX
The C++ Standards Library for Concurrency and Parallelism

Hartmut Kaiser (hkaiser@cct.lsu.edu)

The Application Problems

1
1

/1
3

/2
0

1
7

H
P

X
 -

A
 C

+
+

 S
ta

n
d

a
rd

 L
ib

ra
ry

 f
or

 C
on

cu
rr

en
cy

 a
n

d

P
a

ra
ll

el
is

m

2

HPX – A General Purpose Runtime
System
• The C++ Standards Library for Concurrency and Parallelism

• Exposes a coherent and uniform, C++ standards-conforming API for ease
of programming parallel, distributed, and heterogeneous applications.
 Enables to write fully asynchronous code using hundreds of millions of threads.

 Provides unified syntax and semantics for local and remote operations.

 Enables seamless data parallelism orthogonally to task-based parallelism

• HPX represents an innovative mixture of
 A global system-wide address space (AGAS - Active Global Address Space)

 Fine grain parallelism and lightweight synchronization

 Combined with implicit, work queue based, message driven computation

 Support for hardware accelerators

1
1

/1
3

/2
0

1
7

H
P

X
 -

A
 C

+
+

 S
ta

n
d

a
rd

 L
ib

ra
ry

 f
or

 C
on

cu
rr

en
cy

 a
n

d

P
a

ra
ll

el
is

m

3

HPX – A C++ Standard Library
• Widely portable

 Platforms: x86/64, Xeon/Phi, ARM 32/64, Power, BlueGene/Q

 Operating systems: Linux, Windows, Android, OS/X

• Well integrated with compiler’s C++ Standard libraries

• Enables writing applications which out-perform and out-scale existing
applications based on OpenMP/MPI

 http://stellar-group.org/libraries/hpx

 https://github.com/STEllAR-GROUP/hpx/

• Is published under Boost license and has an open, active, and thriving
developer community.

• Can be used as a platform for research and experimentation

1
1

/1
3

/2
0

1
7

H
P

X
 -

A
 C

+
+

 S
ta

n
d

a
rd

 L
ib

ra
ry

 f
or

 C
on

cu
rr

en
cy

 a
n

d

P
a

ra
ll

el
is

m

4

http://stellar-group.org/libraries/hpx
https://github.com/STEllAR-GROUP/hpx/

C++1y Concurrency/Parallelism APIs

HPX – A C++ Standard Library

1
1

/1
3

/2
0

1
7

H
P

X
 -

A
 C

+
+

 S
ta

n
d

a
rd

 L
ib

ra
ry

 f
or

 C
on

cu
rr

en
cy

 a
n

d

P
a

ra
ll

el
is

m

5

Threading Subsystem

Active Global Address
Space (AGAS)

Local Control Objects
(LCOs)

Parcel Transport Layer

API

OS

Performance Counter
Framework

P
ol

ic
y
 E

n
g
in

e/
P

ol
ic

ie
s

Programming Model
• Focus on the logical composition of data processing, rather than the physical

orchestration of parallel computation

• Provide useful abstractions that shield programmer from low-level details of
parallel and distributed processing

• Centered around data dependencies not communication patterns

• Make data dependencies explicit to system thus allows for auto-magic
parallelization

• Basis for various types of higher level parallelism, such as iterative, fork-join,
continuation-style, asynchronous, data-parallelism

• Enable runtime-based adaptivity while applying application-defined policies

1
1

/1
3

/2
0

1
7

H
P

X
 -

A
 C

+
+

 S
ta

n
d

a
rd

 L
ib

ra
ry

 f
or

 C
on

cu
rr

en
cy

 a
n

d

P
a

ra
ll

el
is

m

6

Programming Model
• The consequent application of the Concept of Futures

 Make data dependencies explicit and visible to the runtime

• Implicit and explicit asynchrony
 Transparently hide communication and other latencies

 Makes over-subscription manageable

 Uniform API for local and remote operation
 Local operation: create new thread

 Remote operation: send parcel (active message), create thread on behalf of sender

• Work-stealing scheduler
 Inherently multi-threaded environment

 Supports millions of concurrently active threads, minimal thread overhead

 Enables transparent load balancing of work across all execution resources inside a locality

• API is fully conforming with C++11/C++17 and ongoing standardization efforts

1
1

/1
3

/2
0

1
7

H
P

X
 -

A
 C

+
+

 S
ta

n
d

a
rd

 L
ib

ra
ry

 f
or

 C
on

cu
rr

en
cy

 a
n

d

P
a

ra
ll

el
is

m

7

HPX – The API

• As close as possible to C++11/14/17 standard library, where appropriate, for instance
 std::thread hpx::thread
 std::mutex hpx::mutex
 std::future hpx::future (including N4538, ‘Concurrency TS’)
 std::async hpx::async (including N3632)
 std::bind hpx::bind
 std::function hpx::function
 std::tuple hpx::tuple
 std::any hpx::any (N3508)
 std::cout hpx::cout
 std::for_each(par, …), etc. hpx::parallel::for_each (C++17)
 std::experimental::task_block hpx::parallel::task_block (Parallelism TS 2)

1
1

/1
3

/2
0

1
7

H
P

X
 -

A
 C

+
+

 S
ta

n
d

a
rd

 L
ib

ra
ry

 f
or

 C
on

cu
rr

en
cy

 a
n

d

P
a

ra
ll

el
is

m

8

Control Model:
How is parallelism achieved?
• Explicit parallelism:

 Low-level: thread
 Middle-level: async(), dataflow(), future::then()

• Higher-level constructs
 Parallel algorithms (parallel::for_each and friends, fork-join parallelism for

homogeneous tasks)
 Asynchronous algorithms (alleviates bad effect of fork/join)

 Task-block (fork-join parallelism of heterogeneous tasks)
 Asynchronous task-blocks

 Continuation-style parallelism based on composing futures (task-based
parallelism)

 Data-parallelism on accelerator architectures (vector-ops, GPUs)
 Same code used for CPU and accelerators

1
1

/1
3

/2
0

1
7

H
P

X
 -

A
 C

+
+

 S
ta

n
d

a
rd

 L
ib

ra
ry

 f
or

 C
on

cu
rr

en
cy

 a
n

d

P
a

ra
ll

el
is

m

9

Parallel Algorithms (C++17)

1
1

/1
3

/2
0

1
7

H
P

X
 -

A
 C

+
+

 S
ta

n
d

a
rd

 L
ib

ra
ry

 f
or

 C
on

cu
rr

en
cy

 a
n

d

P
a

ra
ll

el
is

m

10

STREAM Benchmark
std::vector<double> a, b, c; // data

// ... init data

auto a_begin = a.begin(), a_end = a.end(), b_begin = b.begin() ...;

// STREAM benchmark

parallel::copy(par, a_begin, a_end, c_begin); // copy step: c = a

parallel::transform(par, c_begin, c_end, b_begin, // scale step: b = k * c

[](double val) { return 3.0 * val; });

parallel::transform(par, a_begin, a_end, b_begin, b_end, c_begin, // add two arrays: c = a + b

[](double val1, double val2) { return val1 + val2; });

parallel::transform(par, b_begin, b_end, c_begin, c_end, a_begin, // triad step: a = b + k * c

[](double val1, double val2) { return val1 + 3.0 * val2; });

1
1

/1
3

/2
0

1
7

H
P

X
 -

A
 C

+
+

 S
ta

n
d

a
rd

 L
ib

ra
ry

 f
or

 C
on

cu
rr

en
cy

 a
n

d

P
a

ra
ll

el
is

m

11

Dot-product: Vectorization

std::vector<float> data1 = {...};

std::vector<float> data2 = {...};

double p = parallel::inner_product(

datapar, // parallel and vectorized execution

std::begin(data1), std::end(data1),

std::begin(data2),

0.0f,

[](auto t1, auto t2) { return t1 + t2; }, // std::plus<>()

[](auto t1, auto t2) { return t1 * t2; } // std::multiplies<>()

);

1
1

/1
3

/2
0

1
7

H
P

X
 -

A
 C

+
+

 S
ta

n
d

a
rd

 L
ib

ra
ry

 f
or

 C
on

cu
rr

en
cy

 a
n

d

P
a

ra
ll

el
is

m

12

Control Model:
How is synchronization expressed?
• Low-level (thread-level) synchronization: mutex,

condition_variable, etc.

• Replace (global) barriers with finer-grain synchronization
(synchronize of a ‘as-need-basis’)
 Wait only for immediately necessary dependencies, forward progress as much

as possible

• Many APIs hand out a future representing the result
 Parallel and sequential composition of futures (future::then(), when_all(), etc.)
 Orchestration of parallelism through launching and synchronizing with

asynchronous tasks

• Synchronization primitives: barrier, latch, semaphore, channel,
 Synchronize using futures

1
1

/1
3

/2
0

1
7

H
P

X
 -

A
 C

+
+

 S
ta

n
d

a
rd

 L
ib

ra
ry

 f
or

 C
on

cu
rr

en
cy

 a
n

d

P
a

ra
ll

el
is

m

13

Synchonization with Futures
• A future is an object representing a result which has not been calculated yet

Locality 1

Suspend

consumer

thread

Execute

another

thread

Resume

consumer

thread

Locality 2

Execute

Future:

Producer

thread

Future object

Result is being

returned

 Enables transparent synchronization
with producer

 Hides notion of dealing with threads

 Makes asynchrony manageable

 Allows for composition of several
asynchronous operations

 (Turns concurrency into parallelism)

1
1

/1
3

/2
0

1
7

H
P

X
 -

A
 C

+
+

 S
ta

n
d

a
rd

 L
ib

ra
ry

 f
or

 C
on

cu
rr

en
cy

 a
n

d

P
a

ra
ll

el
is

m

14

What is a (the) Future?
• Many ways to get hold of a future, simplest way is to use (std) async:

int universal_answer() { return 42; }

void deep_thought()

{

future<int> promised_answer = async(&universal_answer);

// do other things for 7.5 million years

cout << promised_answer.get() << endl; // prints 42

}

1
1

/1
3

/2
0

1
7

H
P

X
 -

A
 C

+
+

 S
ta

n
d

a
rd

 L
ib

ra
ry

 f
or

 C
on

cu
rr

en
cy

 a
n

d

P
a

ra
ll

el
is

m

15

Data Model
• AGAS essential underpinning for all data management

 Foundation for syntactic semantic equivalence of local and remote operations

• Full spectrum of C++ data structures are available
 Either as distributed data structures or for SPMD style computation

• Explicit data partitioning, manually orchestrated boundary exchange
 Using existing synchronization primitives (for instance channels)

• Use of distributed data structures, like partitioned_vector
 Use of parallel algorithms

 Use of co-array like layer (FORTRAN users like that)

• Load balancing: migration
 Move objects around in between nodes without stopping the application

1
1

/1
3

/2
0

1
7

H
P

X
 -

A
 C

+
+

 S
ta

n
d

a
rd

 L
ib

ra
ry

 f
or

 C
on

cu
rr

en
cy

 a
n

d

P
a

ra
ll

el
is

m

16

Small Example

1
1

/1
3

/2
0

1
7

H
P

X
 -

A
 C

+
+

 S
ta

n
d

a
rd

 L
ib

ra
ry

 f
or

 C
on

cu
rr

en
cy

 a
n

d

P
a

ra
ll

el
is

m

17

Extending Parallel Algorithms

1
1

/1
3

/2
0

1
7

H
P

X
 -

A
 C

+
+

 S
ta

n
d

a
rd

 L
ib

ra
ry

 f
or

 C
on

cu
rr

en
cy

 a
n

d

P
a

ra
ll

el
is

m

18
Sean Parent: C++ Seasoning, Going Native 2013

Extending Parallel Algorithms
• New algorithm: gather

template <typename BiIter, typename Pred>

pair<BiIter, BiIter> gather(BiIter f, BiIter l, BiIter p, Pred pred)

{

BiIter it1 = stable_partition(f, p, not1(pred));

BiIter it2 = stable_partition(p, l, pred);

return make_pair(it1, it2);

}

1
1

/1
3

/2
0

1
7

H
P

X
 -

A
 C

+
+

 S
ta

n
d

a
rd

 L
ib

ra
ry

 f
or

 C
on

cu
rr

en
cy

 a
n

d

P
a

ra
ll

el
is

m

19
Sean Parent: C++ Seasoning, Going Native 2013

Extending Parallel Algorithms
• New algorithm: gather_async

template <typename BiIter, typename Pred>

future<pair<BiIter, BiIter>> gather_async(BiIter f, BiIter l, BiIter p, Pred pred)

{

future<BiIter> f1 = parallel::stable_partition(par(task), f, p, not1(pred));

future<BiIter> f2 = parallel::stable_partition(par(task), p, l, pred);

return dataflow(

unwrapping([](BiIter r1, BiIter r2) { return make_pair(r1, r2); }),

f1, f2);

}

1
1

/1
3

/2
0

1
7

H
P

X
 -

A
 C

+
+

 S
ta

n
d

a
rd

 L
ib

ra
ry

 f
or

 C
on

cu
rr

en
cy

 a
n

d

P
a

ra
ll

el
is

m

20

Extending Parallel Algorithms (await)
• New algorithm: gather_async

template <typename BiIter, typename Pred>

future<pair<BiIter, BiIter>> gather_async(BiIter f, BiIter l, BiIter p, Pred pred)

{

future<BiIter> f1 = parallel::stable_partition(par(task), f, p, not1(pred));

future<BiIter> f2 = parallel::stable_partition(par(task), p, l, pred);

co_return make_pair(co_await f1, co_await f2);

}

1
1

/1
3

/2
0

1
7

H
P

X
 -

A
 C

+
+

 S
ta

n
d

a
rd

 L
ib

ra
ry

 f
or

 C
on

cu
rr

en
cy

 a
n

d

P
a

ra
ll

el
is

m

21

Recent Results

1
1

/1
3

/2
0

1
7

H
P

X
 -

A
 C

+
+

 S
ta

n
d

a
rd

 L
ib

ra
ry

 f
or

 C
on

cu
rr

en
cy

 a
n

d

P
a

ra
ll

el
is

m

22

Merging White Dwarfs

1
1

/1
3

/2
0

1
7

H
P

X
 -

A
 C

+
+

 S
ta

n
d

a
rd

 L
ib

ra
ry

 f
or

 C
on

cu
rr

en
cy

 a
n

d

P
a

ra
ll

el
is

m

23

1
1

/1
3

/2
0

1
7

H
P

X
 -

A
 C

+
+

 S
ta

n
d

a
rd

 L
ib

ra
ry

 f
or

 C
on

cu
rr

en
cy

 a
n

d

P
a

ra
ll

el
is

m

24

Adaptive Mesh Refinement

1
1

/1
3

/2
0

1
7

H
P

X
 -

A
 C

+
+

 S
ta

n
d

a
rd

 L
ib

ra
ry

 f
or

 C
on

cu
rr

en
cy

 a
n

d

P
a

ra
ll

el
is

m

25

0

0.2

0.4

0.6

0.8

1

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70

P
ar

al
le

l E
ffi

ci
en

cy
 (

re
la

tiv
e

to
 1

 c
or

e)

S
pe

ed
up

 (
re

la
tiv

e
to

 1
 c

or
e)

Number of Cores

Speedup and Parallel Efficieny of OctoTiger
(single node, 7 Levels of Refinement, 1641 sub-grids)

Speedup (1 HT)

Speedup (2 HT)

Speedup (4 HT)

Parallel Efficiency (1 HT)

Cori II (NERSC)

Adaptive Mesh Refinement

1
1

/1
3

/2
0

1
7

H
P

X
 -

A
 C

+
+

 S
ta

n
d

a
rd

 L
ib

ra
ry

 f
or

 C
on

cu
rr

en
cy

 a
n

d

P
a

ra
ll

el
is

m

26

0 100,000 200,000 300,000 400,000 500,000 600,000

0

100

200

300

400

500

600

700

0 2000 4000 6000 8000 10000

Number of Cores

S
ub

-g
rid

s
pe

r
se

co
nd

T
ho

us
an

ds

Number of Nodes

Number of Sub-grids Processed per Second

10 LoR

11 LoR

12 LoR

13 LoR

14 LoR

Cori II (NERSC)

The Solution to the Application Problem

1
1

/1
3

/2
0

1
7

H
P

X
 -

A
 C

+
+

 S
ta

n
d

a
rd

 L
ib

ra
ry

 f
or

 C
on

cu
rr

en
cy

 a
n

d

P
a

ra
ll

el
is

m

27

The Solution to the Application Problem

1
1

/1
3

/2
0

1
7

H
P

X
 -

A
 C

+
+

 S
ta

n
d

a
rd

 L
ib

ra
ry

 f
or

 C
on

cu
rr

en
cy

 a
n

d

P
a

ra
ll

el
is

m

28

1
1

/1
3

/2
0

1
7

H
P

X
 -

A
 C

+
+

 S
ta

n
d

a
rd

 L
ib

ra
ry

 f
or

 C
on

cu
rr

en
cy

 a
n

d

P
a

ra
ll

el
is

m

29

11/14/2017 HPX_Training

https://hpx-jupyter.cct.lsu.edu/user/sbrandt/nbconvert/html/share/HPX_Training.ipynb?download=false 1/10

HPX + Cling + Jupyter
This tutorial works in a special Jupyter notebook that can be used in one of two ways:

From this website: https://hpx-jupyter.cct.lsu.edu (https://hpx-jupyter.cct.lsu.edu)
From the docker image: stevenrbrandt/fedora-hpx-cling
Normally, each cell should contain declarations, e.g. definitions of functions, variables, or #include
statements.

```#include using namespace std;```

If you wish to process an expression, e.g. cout << "hello world\n" you can put .expr at the
front of the cell.
```.expr cout << "hello, world\n";```
Sometimes you will want to test a cell because you are uncertain whether it might cause a segfault or
some other error that will kill your kernel. Othertimes, you might want to test a definition without
permanently adding it to the current namespace. You can do this by prefixing your cell with .test.
Whatever is calculated in a test cell will be thrown away after evaluation and will not kill your kernel.

```.test.expr int foo[5]; foo[10] = 1;```
## Docker Instructions
Frist, install Docker on your local resource
Second, start Docker, e.g. sudo service docker start
Third, run the fedora-hpx-cling container, e.g.

```  docker run -it -p 8000:8000
stevenrbrandt/fedora-hpx-cling```

After you do this, docker will respond with something like
`http://0.0.0.0:8000/?token=5d1eb8a4797851910de481985a54c2fdc3be80280023bac5`

Paste that URL into your browser, and you will be able to interact with the notebook.
Fourth, play with the existing ipynb files or create new ones.
Fifth, save your work! This is an important step. If you simply quit the container, everything you did will
be lost. To save your work, first find your docker image using docker ps.
```$ docker ps CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES 4f806b5f4fb3
stevenrbrandt/fedora-hpx-cling "/bin/sh -c 'jupyter " 11 minutes ago Up 11 minutes 0.0.0.0:8000-
>8000/tcp dreamy_turing```

Once you have it (in this case, it's 4f806b5f4fb3), you can use docker cp to transfer files to or from
your image.

```  docker cp
HPX_by_example.ipynb 4f806b5f4fb3:/home/jup```

In [1]: #include <hpx/hpx.hpp>

dockerpullstevenrbrandt/fedora − hpx − cling

dockercp4f806b5f4fb3 : /home/jup/HP xample. ipynb.X

b

y

e

Out[1]:

https://hpx-jupyter.cct.lsu.edu/

11/14/2017 HPX_Training

https://hpx-jupyter.cct.lsu.edu/user/sbrandt/nbconvert/html/share/HPX_Training.ipynb?download=false 2/10

In [2]: using namespace std;
using namespace hpx;

What is a (the) Future?
Many ways to get hold of a future, simplest way is to use (std) async:

In [3]: int universal_answer() { return 42; }
void deep_thought()
{
 future<int> promised_answer = async(&universal_answer);
 // do other things for 7.5 million years
 cout << promised_answer.get() << endl; // prints 42

}

If we want to do something other than a declaration, use the ".expr" prefix.

In [4]: .expr deep_thought()

Compositional Facilities

In [5]: future<string> make_string()
{
 future<int> f1 = async([]()->int { return 123; });
 future<string> f2 = f1.then(
 [](future<int> f) -> string
 {
 return to_string(f.get()); // here .get() won't block
 });
 return f2;

}

In [6]: .expr cout << make_string().get() << endl;

Out[2]:

Out[3]:

42

Out[4]:

Out[5]:

123

Out[6]:

11/14/2017 HPX_Training

https://hpx-jupyter.cct.lsu.edu/user/sbrandt/nbconvert/html/share/HPX_Training.ipynb?download=false 3/10

In [7]: int do_work(hpx::lcos::future<hpx::util::tuple<hpx::lcos::future<int>,
 hpx::lcos::future<std::basic_string<char> > > >& w) {
 // extract the value of the first argument.
 return hpx::util::get<0>(w.get()).get();

}

future<int> test_when_all()
{
 future<int> future1 = async([]()->int { return 125; });
 future<string> future2 = async([]()->string { return string("hi");

});

 auto all_f = when_all(future1,future2);

 future<int> result = all_f.then(
 [](auto f)->int {
 return do_work(f);
 });
 return result;

}

In [8]: .test.expr cout << test_when_all().get() << endl;

Parallel Algorithms
HPX allows you to write loop parallel algorithms in a generic fashion, applying to specify the way in which
parallelism is achieved (i.e. threads, distributed, cuda, etc.) through polcies.

In [9]: #include <hpx/include/parallel_for_each.hpp>
#include <hpx/parallel/algorithms/transform.hpp>
#include <boost/iterator/counting_iterator.hpp>

In [10]: vector<int> v = { 1, 2, 3, 4, 5, 6 };

Transform
Here we demonstrate the transformation of a vector, and the various mechnanisms by which it can performed in
parallel.

Out[7]:

125

Test

Out[8]:

Out[9]:

Out[10]:

11/14/2017 HPX_Training

https://hpx-jupyter.cct.lsu.edu/user/sbrandt/nbconvert/html/share/HPX_Training.ipynb?download=false 4/10

In [11]: .expr
// This parallel tranformation of vector v
// is done using thread parallelism. An
// implicit barrier is present at the end.
parallel::transform (
 parallel::execution::par,
 begin(v), end(v), begin(v),
 [](int i) -> int
 {
 return i+1;
 });
for(int i : v) cout << i << ",";

In [12]: .expr
// This parallel tranformation of vector v
// is done using thread parallelism. There
// is no implicit barrier. Instead, the
// transform returns a future.
auto f = parallel::transform (
 parallel::par (parallel::execution::task),
 begin(v), end(v), begin(v),
 [](int i) -> int
 {
 return i+1;
 });
 // work here...

// wait for the future to be ready.
f.wait();

for(int i : v) cout << i << ",";

In [13]: #include <hpx/include/parallel_fill.hpp>
#include <hpx/include/compute.hpp>
#include <hpx/include/parallel_executors.hpp>

In [14]: auto host_targets = hpx::compute::host::get_local_targets();
typedef hpx::compute::host::block_executor<> executor_type;
executor_type exec(host_targets);

2,3,4,5,6,7,

Out[11]:

3,4,5,6,7,8,

Out[12]:

Out[13]:

Out[14]:

11/14/2017 HPX_Training

https://hpx-jupyter.cct.lsu.edu/user/sbrandt/nbconvert/html/share/HPX_Training.ipynb?download=false 5/10

In [15]: .expr
// Print out a list of the localities, i.e. hosts
// that can potentially be involved in this calculation.
// This notebook will probably show 1, alas.
for(auto host : host_targets)
 cout << host.get_locality() << endl;

Other Algorithms
There are a great many algorithms. Here we demonstrate a handful of them.

In [16]: .expr
std::vector<float> vd;
for(int i=0;i<10;i++) vd.push_back(1.f);
parallel::fill(parallel::execution::par.on(exec),vd.begin(),vd.end(),
0.0f);

In [17]: #include <hpx/parallel/algorithms/reverse.hpp>

In [18]: .expr
std::vector<float> vd;
for(int i=0;i<10;i++) vd.push_back(1.f*i);
parallel::reverse(parallel::par,vd.begin(),vd.end());
for(int val : vd) cout << val << " ";

In [19]: #include <hpx/include/parallel_minmax.hpp>

In [20]: .expr
std::vector<float> vd;
for(int i=0;i<10;i++) vd.push_back(1.f*rand());
auto ptr = parallel::max_element(parallel::par,vd,std::less<float>());
for(float val : vd) cout << val << " ";
cout << endl << *ptr << endl;

{0000000100000000, 0000000000000000}

Out[15]:

Out[16]:

Out[17]:

9 8 7 6 5 4 3 2 1 0

Out[18]:

Out[19]:

8.02369e+08 1.63599e+09 1.60543e+09 3.22506e+08 4.34983e+08 1.87237e+0
9 2.04466e+09 1.82667e+09 1.27975e+09 1.95976e+09
2.04466e+09

Out[20]:

11/14/2017 HPX_Training

https://hpx-jupyter.cct.lsu.edu/user/sbrandt/nbconvert/html/share/HPX_Training.ipynb?download=false 6/10

In [21]: #include <hpx/traits/is_executor.hpp>
#include <hpx/include/parallel_executors.hpp>

In [22]: int count_async = 0;
struct test_async_executor
{
 typedef hpx::parallel::parallel_execution_tag execution_category;

 template <typename F, typename ... Ts>
 static hpx::future<typename hpx::util::result_of<F&&(Ts&&...)>::ty

pe>
 async_execute(F && f, Ts &&... ts)
 {
 ++count_async;
 return hpx::async(hpx::launch::async, std::forward<F>(f),
 std::forward<Ts>(ts)...);
 }

};

In [23]: // Note that the exact way to specify this trait for an executor is in
flux

// and the code here is tied to the specific version of HPX on the tes
t machine.
namespace hpx { namespace traits
{
 template<>
 struct is_two_way_executor<test_async_executor>
 : std::true_type
 {};

}}

In [24]: .test.expr
// This parallel tranformation of vector v
// is done using using distributed parallelism.
test_async_executor e;
parallel::transform (
 parallel::execution::par.on(e),
 begin(v), end(v), begin(v),
 [](int i) -> int
 {
 return i+1;
 });

cout << "count=" << count_async << endl;

Out[21]:

Out[22]:

Out[23]:

count=3

Test

Out[24]:

11/14/2017 HPX_Training

https://hpx-jupyter.cct.lsu.edu/user/sbrandt/nbconvert/html/share/HPX_Training.ipynb?download=false 7/10

Let’s Parallelize It – Adding Real Asynchrony
Here we take a step back. Instead of using a pre-designed parallel operation on a vector, we instead introduce
task-level parallelism to an existing program.

Calculate Fibonacci numbers in parallel (1st attempt)

In [25]: uint64_t fibonacci(uint64_t n)
{
 // if we know the answer, we return the value
 if (n < 2) return n;
 // asynchronously calculate one of the sub-terms
 future<uint64_t> f = async(launch::async, &fibonacci, n-2);
 // synchronously calculate the other sub-term
 uint64_t r = fibonacci(n-1);
 // wait for the future and calculate the result
 return f.get() + r;

}

In [26]: .expr cout << fibonacci(10) << endl;

Let’s Parallelize It – Introducing Control of Grain
Size
Parallel calculation, switching to serial execution below given threshold

Out[25]:

55

Out[26]:

11/14/2017 HPX_Training

https://hpx-jupyter.cct.lsu.edu/user/sbrandt/nbconvert/html/share/HPX_Training.ipynb?download=false 8/10

In [27]: const int threshold = 20;

uint64_t fibonacci_serial(uint64_t n)
{
 if (n < 2) return n;
 uint64_t f1 = fibonacci_serial(n-2);
 uint64_t f2 = fibonacci_serial(n-1);
 return f1 + f2;

}

uint64_t fibonacci2(uint64_t n)
{
 if (n < 2) return n;
 if (n < threshold) return fibonacci_serial(n);
 // asynchronously calculate one of the sub-terms
 future<uint64_t> f = async(launch::async, &fibonacci2, n-2);
 // synchronously calculate the other sub-term
 uint64_t r = fibonacci2(n-1);
 // wait for the future and calculate the result
 return f.get() + r;

}

In [28]: .expr cout << fibonacci2(22) << endl;

Let’s Parallelize It – Apply Futurization
Parallel way, futurize algorithm to remove suspension points

In [29]: future<uint64_t> fibonacci3(uint64_t n)
{
 if(n < 2) return make_ready_future(n);
 if(n < threshold) return make_ready_future(fibonacci_serial(n));

 future<uint64_t> f = async(launch::async, &fibonacci3, n-2);
 future<uint64_t> r = fibonacci3(n-1);

 return dataflow(
 [](future<uint64_t> f1, future<uint64_t> f2) {
 return f1.get() + f2.get();
 },
 f, r);

}

Out[27]:

17711

Out[28]:

Out[29]:

11/14/2017 HPX_Training

https://hpx-jupyter.cct.lsu.edu/user/sbrandt/nbconvert/html/share/HPX_Training.ipynb?download=false 9/10

In [30]: .expr cout << fibonacci3(22).get() << endl;

Let’s Parallelize It – Unwrap Argument Futures

In [31]: #include <hpx/util/unwrapped.hpp>

using hpx::util::unwrapping;

future<uint64_t> fibonacci4(uint64_t n)
{
 if(n < 2) return make_ready_future(n);
 if(n < threshold) return make_ready_future(fibonacci_serial(n));

 future<uint64_t> f = async(launch::async, &fibonacci4, n-2);
 future<uint64_t> r = fibonacci4(n-1);

 return dataflow(
 unwrapping([](uint64_t f1, uint64_t f2) {
 return f1+f2;
 }),
 f, r);

}

In [32]: .expr cout << fibonacci4(22).get() << endl;

Excercise: Parallelize a sort

Test what you've learned. See if you can speed up the quicksort program below by find a place to:

1. parallelize the code with async
2. use parallel transforms

In [33]: #include <unistd.h>
#include <stdlib.h>
#include <iostream>
#include <vector>
#include <functional>
using namespace std;
function<void(vector<int>&)> myqsort = [](vector<int>& v)->void {};

17711

Out[30]:

Out[31]:

17711

Out[32]:

Out[33]:

11/14/2017 HPX_Training

https://hpx-jupyter.cct.lsu.edu/user/sbrandt/nbconvert/html/share/HPX_Training.ipynb?download=false 10/10

Discussion
We want to define the myqsort function repeatedly, and call it recursively. This is hard to do in C++. So we define
it as a std::function<>. There is a slight awkwardness to this. If you want to call myqsort() with an async function,
you have to do it like this:

 auto f = hpx::async([&arg](){ myqsort(arg); });

Not like this

 auto f = hpx::async(myqsort,arg);

In [42]: .test.expr
myqsort = [](vector<int>& v)->void {
 if(v.size()<2) return;
 vector<int> pre, eq, post;
 int pivot = v[rand() % v.size()];
 for(int val : v) {
 if(val < pivot) pre.push_back(val);
 else if(pivot < val) post.push_back(val);
 else eq.push_back(val);
 }
 myqsort(pre);
 myqsort(post);
 //for(int i=0;i<eq.size();i++) v[i+pre.size()] = eq[i];
 parallel::transform(parallel::par,
 eq.begin(), eq.end(), v.begin()+pre.size(),[](int i) { return i;

});
 for(int i=0;i<post.size();i++) v[i+pre.size()+eq.size()] = post[i];
 for(int i=0;i<pre.size();i++) v[i] = pre[i];

};
vector<int> vv{20};
for(int i=0;i<20;i++) vv.push_back(rand() % 100);
for(int val : vv) cout << val << " ";
cout << endl;
myqsort(vv);
for(int val : vv) cout << val << " ";
cout << endl;

20 26 32 84 5 66 50 81 7 5 53 69 45 84 94 59 21 80 96 17 6
5 5 6 7 17 20 21 26 32 45 50 53 59 66 69 80 81 84 84 94 96

Test

Out[42]:

11/14/2017 WaveToy

https://hpx-jupyter.cct.lsu.edu/user/sbrandt/nbconvert/html/share/WaveToy.ipynb?download=false 1/6

The Wave Equation
This problem file sets up a very simple physical system, a wave propagating in one dimension. It is a nice
example because it requires several loops in sequence and presents an opportunity to practice creating and
using HPX parallel algorithms.

In [1]: #include <hpx/hpx.hpp>
#include <vector>
#include <hpx/include/parallel_for_each.hpp>
#include <hpx/parallel/algorithms/transform.hpp>
#include <boost/iterator/counting_iterator.hpp>

Basic Variables
We are going to evolve two variables, phi and psi on a grid described by , , and . The system of
equations we will solve is

In [2]: const int N = 300;
std::vector<double> phi(N),psi(N);
const double dx = 0.01, x0 = -1.5;

N dx x

0

ϕ = c ψ∂

t

∂

x

ψ = c ϕ∂

t

∂

x

Out[1]:

Out[2]:

11/14/2017 WaveToy

https://hpx-jupyter.cct.lsu.edu/user/sbrandt/nbconvert/html/share/WaveToy.ipynb?download=false 2/6

In [3]: #include <fstream>
#include <sstream>
#include <iostream>
#include <vector>
#include <content.hpp>

/**
* The following function plots an array of vectors
* of doubles in a single overlapping plot.
*/

void plot_vector(std::vector<std::vector<double>> v,std::string iname)
{
 // Store the data in a text file
 const char *fname = "data.txt";
 std::ofstream o(fname);
 for(int n=0;n<v.size();n++) {
 const std::vector<double>& vv = v[n];
 for(int i=0;i<vv.size();i++) {
 if(i > 0) o << ' ';
 o << i;
 }
 o << std::endl;
 for(int i=0;i<vv.size();i++) {
 if(i > 0) o << ' ';
 o << vv[i];
 }
 o << std::endl;
 }
 o.close();

 // Create a python script to run matplotlib
 std::ostringstream cmd;
 cmd << "import matplotlib\n";
 cmd << "matplotlib.use('Agg')\n";
 cmd << "import numpy as np\n";
 cmd << "import matplotlib.pyplot as plt\n";
 cmd << "f = np.genfromtxt('" << fname << "')\n";
 cmd << "plt.figure()\n";
 cmd << "for n in range(0,f.shape[0],2):\n";
 cmd << " plt.plot(f[n,:],f[n+1,:])\n";
 cmd << "plt.savefig('" << iname << ".png')\n";
 cmd << "exit(0)\n";
 std::ofstream o2("p.py");
 o2 << cmd.str();
 o2.close();
 system("python3 p.py");

 // Create the html. The pid is added to prevent caching.
 // Note that the pid changes with every cell with the
 // current implementation of HPX/cling.
 std::ostringstream html;
 html << "<img src='" << iname << ".png?pid=" << getpid() << "-" << r

and() << "'>";
 std::string htmls = html.str();
 create_content(htmls.c_str());

}

11/14/2017 WaveToy

https://hpx-jupyter.cct.lsu.edu/user/sbrandt/nbconvert/html/share/WaveToy.ipynb?download=false 3/6

In [4]: .expr
// What follows is a random test of the plot function.
std::vector<double> v1 = {1,2,3,4,3.5,2,9,9};
std::vector<double> v2 = {5,6,7,8,8.5,7.4,2,4};
std::vector<std::vector<double>> plots;
plots.push_back(v1);
plots.push_back(v2);
plot_vector(plots,"test");

In [8]: // This version of plot_vector plots a single vector only.
void plot_vector(const std::vector<double>& v) {
 std::vector<std::vector<double>> vv;
 vv.push_back(v);
 plot_vector(vv,"vec");

}

Out[3]:

Out[4]:

Out[8]:

11/14/2017 WaveToy

https://hpx-jupyter.cct.lsu.edu/user/sbrandt/nbconvert/html/share/WaveToy.ipynb?download=false 4/6

In [9]: // Apply boundary conditions. In this case, we are using periodic boun
dary
// conditions, i.e. if we move N-2 points to the right we come back to
where we were.

void boundary(std::vector<double>& vv) {
 const int n = vv.size();
 vv[0] = vv[n-2];
 vv[n-1] = vv[1];

}

In [10]: // The following are auxiliary variables which are required by our Run
ge-Kutta
// time integration scheme.
std::vector<double> phi2(N), psi2(N), phi3(N), psi3(N);
std::vector<double> k1_phi(N), k1_psi(N), k2_phi(N), k2_psi(N), k3_phi
(N), k3_psi(N);

In [11]: #include <hpx/include/parallel_for_each.hpp>
#include <hpx/parallel/algorithms/transform.hpp>
#include <boost/iterator/counting_iterator.hpp>

The Wave Equation Evolution Code
The sequence of loops below will perform an evolution of the wave equation, essentially, a sine wave that
propagates unchanged to the right. The important thing is not understanding the physics, but in parallelizing the
loops and recognizing the dependencies between them.

As an example, the first loop is already parallelized with for_each. Note: You should be able to find a place to use
parallel::execution::task.

Out[9]:

Out[10]:

Out[11]:

11/14/2017 WaveToy

https://hpx-jupyter.cct.lsu.edu/user/sbrandt/nbconvert/html/share/WaveToy.ipynb?download=false 5/6

In [15]: .expr
std::vector<std::vector<double>> plots;
double t = 0.0,t_end = 1.0;
double t_every = t_end/10;
double t_plot = 0;
double dt = dx/2.0;

const double w = 1;
const double pi = 4.0*atan2(1.0,1.0);
const double k = 2.0*pi/(dx*(N-2));

const double c = w/k;
const double A = 1.0;
const double B = c*k*A/w; // == 1.0

// Initialize the physical variables
/*

11/14/2017 WaveToy

https://hpx-jupyter.cct.lsu.edu/user/sbrandt/nbconvert/html/share/WaveToy.ipynb?download=false 6/6

for(int i=0;i<N;i++) {
 // psi = A*cos(k*x + w*t)
 // phi = B*cos(k*x + w*t)
 // d(phi)/dt = c*d(psi)/dx
 // w*B*sin(k*x + w*t) = c*k*A*sin(k*x + w*t)
 // B = -c*k*A/w
 // d(psi)/dt = c*d(phi)/dx
 // w*A*sin(k*x + w*t) = c*k*B*sin(k*x + w*t)
 double x = x0 + i*dx;
 phi[i] = B*sin(k*x);
 psi[i] = A*sin(k*x);

}
*/
hpx::parallel::for_each(
 hpx::parallel::par,
 boost::counting_iterator<int>(0),
 boost::counting_iterator<int>(N),
 [&](int i) {
 double x = x0 + i*dx;
 phi[i] = B*sin(k*x);
 psi[i] = A*sin(k*x);

});
while(t < t_end) {
 for(int i=1;i<N-1;i++) {
 k1_phi[i] = c*(psi[i+1]-psi[i-1])/(2*dx);
 k1_psi[i] = c*(phi[i+1]-phi[i-1])/(2*dx);
 }
 for(int i=1;i<N-1;i++) {
 phi2[i] = phi[i] + (1./3.)*dt*k1_phi[i];
 psi2[i] = psi[i] + (1./3.)*dt*k1_psi[i];
 }
 // the boundary routines can be parallelized also
 boundary(phi2);
 boundary(psi2);
 for(int i=1;i<N-1;i++) {
 k2_phi[i] = c*(psi2[i+1]-psi2[i-1])/(2*dx);
 k2_psi[i] = c*(phi2[i+1]-phi2[i-1])/(2*dx);
 }
 for(int i=1;i<N-1;i++) {
 phi3[i] = phi[i] + (2./3.)*dt*k1_phi[i];
 psi3[i] = psi[i] + (2./3.)*dt*k1_psi[i];
 }
 boundary(phi3);
 boundary(psi3);
 for(int i=1;i<N-1;i++) {
 k3_phi[i] = c*(psi3[i+1]-psi3[i-1])/(2*dx);
 k3_psi[i] = c*(phi3[i+1]-phi3[i-1])/(2*dx);
 }
 for(int i=1;i<N-1;i++) {
 phi[i] = phi[i] + 0.5*dt*(k2_phi[i]+k3_phi[i]);
 psi[i] = psi[i] + 0.5*dt*(k2_psi[i]+k3_phi[i]);
 }
 boundary(phi);
 boundary(psi);
 t += dt;
 t_plot += dt;
 if(t_plot >= t_every) {

Performance	Analysis	of	HPX	

in	Jupyter	Notebooks	using	APEX	

Kevin	Huck	

khuck@cs.uoregon.edu		

hAp://github.com/khuck/xpress-apex		
Download	slides	from:	hAp://tau.uoregon.edu/SC17-HPX-APEX.pdf		

Install	Docker	image	from	USB	

•  Install	Docker	(if	necessary)	

•  Insert	USB	key,	open	a	terminal,	navigate	to	key	

directory	and:	

•  (sudo)	docker	load	-i	fedora-hpx-cling	

•  (sudo)	docker	pull	stevenrbrandt/fedora-hpx-cling	

•  (sudo)	docker	run	-it	-p	8000:8000	stevenrbrandt/

fedora-hpx-cling	

•  “sudo”	may	be	necessary	on	some	machines	

InteracVve	HPC:	Using	C++	and	HPX	inside	Jupyterhub	to	Write	Performant	Portable	Parallel	Code	(APEX)		 2	

Outline	
•  IntroducVon	to	APEX	– Autonomic	Performance	
Environment	for	eXascale	

•  MoVvaVon,	overview,	API	

•  IntegraVon	with	HPX	

•  Building	HPX	with	APEX	

•  APEX	event	listeners	

•  Postmortem	analysis	of	HPX	applicaVons	

– Gnuplot/Python	visualizaVons	of	APEX	data	

– OTF2	output	to	Vampir	

– Profile	output	to	TAU	

InteracVve	HPC:	Using	C++	and	HPX	inside	Jupyterhub	to	Write	Performant	Portable	Parallel	Code	(APEX)		 3	

APEX	Measurement	:	MoVvaVon	
•  Originally	designed	as	a	performance	measurement	library	
for	distributed,	asynchronous	tasking	models/run9mes		

–  i.e.	HPX,	but	there	are	others	

•  Why	another	measurement	library?	

–  “not	invented	here”	mentality?	ReinvenVng	the	wheel?	No.	

•  New	challenges:	

–  Lightweight	measurement	(tasks	<1ms)	

–  High	concurrency	(both	OS	threads	and	tasks	in	flight)	

–  DisVncVon	between	OS	and	runVme	(HPX)	thread	context	

–  Lack	of	a	tradiVonal	call	stack	
•  Task	dependency	chain	instead	

–  RunVme	controlled	task	switching	

–  Dynamic	run+me	control	

InteracVve	HPC:	Using	C++	and	HPX	inside	Jupyterhub	to	Write	Performant	Portable	Parallel	Code	(APEX)		 4	

APEX	RunVme	AdaptaVon	:	MoVvaVon	
•  Controlling	concurrency	

– Energy	efficiency	

– Performance	

•  Parametric	variability	

– Granularity	for	this	machine	/	dataset?	

•  Load	Balancing	

– When	to	perform	AGAS	migraVon?	

•  Parallel	Algorithms	(for_each…)	

– Separate	what	from	how	

•  Address	the	“SLOW(ER)”	performance	model	

InteracVve	HPC:	Using	C++	and	HPX	inside	Jupyterhub	to	Write	Performant	Portable	Parallel	Code	(APEX)		 5	

IntroducVon	to	APEX	
•  Performance	awareness	and	performance	adapta9on	

•  Top	down	and	boOom	up	performance	mapping	/	feedback	

– Make	node-wide	resource	uVlizaVon	data	and	analysis,	energy	
consumpVon,	and	health	informaVon	available	in	real	Vme	

–  Associate	performance	state	with	policy	for	feedback	control	

•  APEX	introspec9on	

–  OS:	track	system	resources,	uVlizaVon,	job	contenVon,	overhead	

–  RunVme	(HPX):	track	threads,	queues,	concurrency,	remote	
operaVons,	parcels,	memory	management	

–  ApplicaVon	Vmer	/	counter	observaVon	

•  Post-mortem	performance	analysis	

–  “secondary”	goal,	but	has	been	useful	

•  Integrated	with	HPX	performance	counters	

InteracVve	HPC:	Using	C++	and	HPX	inside	Jupyterhub	to	Write	Performant	Portable	Parallel	Code	(APEX)		 6	

APEX	architecture	

InteracVve	HPC:	Using	C++	and	HPX	inside	Jupyterhub	to	Write	Performant	Portable	Parallel	Code	(APEX)		 7	

APEX Introspection

APEX Policy Engine

APEX State

System Info
(/proc, getrusage,

LM Sensors, etc.) Application

HPX

Synchronous Asynchronous

Triggered Periodic

events

APEX	IntrospecVon	

•  APEX	collects	data	through	“inspectors”	

–  Synchronous	uses	an	event	API	and	event	“listeners”	

•  IniValize,	terminate,	new	thread	–	added	to	HPX	runVme	

•  Timer	start,	stop,	yield*,	resume*	-	added	to	HPX	task	scheduler	

•  Sampled	value	(counters	from	HPX)	

•  Custom	events	(meta-events)	

– Asynchonous	do	not	rely	on	events,	but	occur	periodically	

•  APEX	exploits	access	to	performance	data	from	lower	

stack	components	

–  “Health”	data	through	other	interfaces	(/proc/stat,	cpuinfo,	

meminfo,	net/dev,	self/status,	lm_sensors,	power*,	etc.)	

InteracVve	HPC:	Using	C++	and	HPX	inside	Jupyterhub	to	Write	Performant	Portable	Parallel	Code	(APEX)		 8	

APEX	Measurement	API	(subset)	
Star9ng	Timers:	

apex::profiler* apex::start(const string &name,
void** data_ptr = 0LL);

apex::profiler* apex::start(const uint64_t
address, void** data_ptr = 0LL);

apex::profiler* apex::resume(const string name,
void** context = 0LL);

apex::profiler* apex::resume(const uint64_t
address, void** context = 0LL);

Stopping	Timers:	

void apex::stop(apex::profiler* p);
void apex::yield(apex::profiler* p);
Sampling	a	counter:	

void apex::sample_value(const string name,
double value);

InteracVve	HPC:	Using	C++	and	HPX	inside	Jupyterhub	to	Write	Performant	Portable	Parallel	Code	(APEX)		 9	

•  Note	about	yield,	resume	–	exist	for	accurate	
counVng	of	“number	of	calls”	in	the	face	of	pre-

empVon	(usually	handled	by	HPX	scheduler):	

	

InteracVve	HPC:	Using	C++	and	HPX	inside	Jupyterhub	to	Write	Performant	Portable	Parallel	Code	(APEX)		 10	

Timer	Start	

Command	

Timer	Stop	

Command	

Call	count	is	

increased	by:	

apex::start()	 apex::stop()	 1	

apex::start()	 apex::yield()	 0	

apex::resume()	 apex::yield()	 0	

apex::resume()	 apex::stop()	 0	

APEX	Measurement	API	example	
void foo(int x) {
 // sample the argument, for example
 apex::sample_counter(“foo(x)”, x);
 // start a timer

 apex::profiler* p = apex::start(&foo);
 /* do some work in function foo */

 ...
 // stop the current timer to wait on some asynchronous subtask

 apex::yield(p);
 /* wait on result from “subtask” */
 result = some_future.get();

 // “resume” the APEX timer
 p = apex::start(&foo);
 /* do some more work in function foo */

 ...
 // stop the timer

 apex::stop(p);
}

InteracVve	HPC:	Using	C++	and	HPX	inside	Jupyterhub	to	Write	Performant	Portable	Parallel	Code	(APEX)		 11	

HPX	and	APEX	-	IntegraVon	

•  In	HPX,	all	tasks	scheduled	by	the	thread	scheduler	

are	“automaVcally”	Vmed	–	with	some	caveats	

•  HPX	registered	acVons	are	automaVcally	Vmed	

•  All	threads/tasks	are	Vmed,	aAribuVon	is	the	

required	user	intervenVon	

– Asynchronous	funcVons,	direct	acVons	are	correctly	

aAributed	if	wrapped	with	an	

hpx::util::annotated_function	object.	

– See	notebook	examples	for	details	

InteracVve	HPC:	Using	C++	and	HPX	inside	Jupyterhub	to	Write	Performant	Portable	Parallel	Code	(APEX)		 12	

AnnotaVon	examples:	

InteracVve	HPC:	Using	C++	and	HPX	inside	Jupyterhub	to	Write	Performant	Portable	Parallel	Code	(APEX)		 13	

APEX	Event	Listeners	
•  Profiling	listener	

–  Start	event:	input	name/address,	get	Vmestamp,	return	profiler	handle	

–  Stop	event:	get	Vmestamp,	put	profiler	object	in	a	queue	for	back-end	
processing,	return	

–  Sample	event:	put	the	name	&	value	in	the	queue	

–  Asynchronous	consumer	thread:	process	profiler	objects	and	samples	to	build	
staVsVcal	profile	(in	HPX,	processed/scheduled	as	a	thread/task)	

–  OpVonal:	screen/CSV	output,	build	task	scaAerplot,	build	taskgraph,	etc.	

•  TAU	Listener	(postmortem	analysis)	
–  Synchronously	passes	all	measurement	events	to	TAU	to	build	an	offline	profile	

•  OTF2	Listener	(postmortem	analysis)	

–  Synchronously	passes	all	measurement	events	to	libot2	for	trace	analysis	

•  Concurrency	listener	(postmortem	analysis)	
–  Start	event:	push	Vmer	ID	on	stack	

–  Stop	event:	pop	Vmer	ID	off	stack	

–  Asynchronous	consumer	thread:	periodically	log	current	Vmer	for	each	thread,	
output	report	at	terminaVon	

InteracVve	HPC:	Using	C++	and	HPX	inside	Jupyterhub	to	Write	Performant	Portable	Parallel	Code	(APEX)		 14	

APEX	Policy	Listener	
•  Policies	are	rules	that	decide	on	outcomes	based	on	
observed	state	
–  Triggered	policies	are	invoked	by	introspecVon	API	events	

–  Periodic	policies	are	run	periodically	on	asynchronous	thread	

•  Polices	are	registered	with	the	Policy	Engine	
– ApplicaVons,	runVmes,	and/or	OS	register	callback	funcVons	

•  Callback	funcVons	define	the	policy	rules	
–  “If	x	<	y	then…”	

•  Enables	runVme	adaptaVon	using	introspecVon	data	
–  Feedback	and	control	mechanism	

–  Engages	actuators	across	stack	layers	

–  Could	also	be	used	to	involve	online	auto-tuning	support*	
•  AcVve	Harmony	hAp://www.dyninst.org/harmony		

InteracVve	HPC:	Using	C++	and	HPX	inside	Jupyterhub	to	Write	Performant	Portable	Parallel	Code	(APEX)		 15	

APEX	Policy	API	(subset)	
apex_event_type

apex::register_custom_event(const
string &name);

apex::custom_event(apex_event_type, void*
event_data);

apex_tuning_session_handle

apex::setup_custom_tuning(std::functio
n<double(void)> metric,

apex_event_type event_type, int
num_inputs, long** inputs, long* mins,

long* maxs, long* steps);

InteracVve	HPC:	Using	C++	and	HPX	inside	Jupyterhub	to	Write	Performant	Portable	Parallel	Code	(APEX)		 16	

APEX	Policy	API	example	

See	last	example	in	notebook:	

apex::register_custom_event() in
setup_counters()

apex::get_profile() (as potential
exercise) in get_counter_value()

apex::setup_custom_tuning() in
do_1d_solve_repart()

InteracVve	HPC:	Using	C++	and	HPX	inside	Jupyterhub	to	Write	Performant	Portable	Parallel	Code	(APEX)		 17	

Building	HPX	with	APEX	

$	cmake	<usual	HPX	sexngs>…	

-DHPX_WITH_APEX=TRUE	\	

-DAPEX_WITH_ACTIVEHARMONY=TRUE/FALSE	\	

-DAPEX_WITH_PAPI=TRUE/FALSE	\	

-DAPEX_WITH_MSR=TRUE/FALSE	\	

-DAPEX_WITH_OTF2=TRUE/FALSE	\	

…	

$	make	(as	usual)	i.e.	“make	–j	8	core	examples	tests”	

InteracVve	HPC:	Using	C++	and	HPX	inside	Jupyterhub	to	Write	Performant	Portable	Parallel	Code	(APEX)		 18	

APEX	environment	variables	

APEX_DISABLE	:	0	

APEX_SUSPEND	:	0	

APEX_PAPI_SUSPEND	:	0	

APEX_PROCESS_ASYNC_STATE	:	1	

APEX_TAU	:	0	

APEX_POLICY	:	1	

APEX_MEASURE_CONCURRENCY	:	0	

APEX_MEASURE_CONCURRENCY_PERIOD	:	1000000	

APEX_SCREEN_OUTPUT	:	1	

APEX_PROFILE_OUTPUT	:	0	

APEX_CSV_OUTPUT	:	0	

APEX_TASKGRAPH_OUTPUT	:	0	

APEX_PROC_CPUINFO	:	0	

APEX_PROC_MEMINFO	:	0	

APEX_PROC_NET_DEV	:	0	

APEX_PROC_SELF_STATUS	:	0	

APEX_PROC_SELF_IO	:	0	

APEX_PROC_STAT	:	1	

APEX_PROC_PERIOD	:	1000000	

APEX_THROTTLE_CONCURRENCY	:	0	

APEX_THROTTLING_MAX_THREADS	:	4	

APEX_THROTTLING_MIN_THREADS	:	1	

APEX_THROTTLE_ENERGY	:	0	

APEX_THROTTLE_ENERGY_PERIOD	:	1000000	

APEX_THROTTLING_MAX_WATTS	:	300	

APEX_THROTTLING_MIN_WATTS	:	150	

APEX_PTHREAD_WRAPPER_STACK_SIZE	:	0	

APEX_OMPT_REQUIRED_EVENTS_ONLY	:	0	

APEX_OMPT_HIGH_OVERHEAD_EVENTS	:	0	

APEX_PIN_APEX_THREADS	:	1	

APEX_TASK_SCATTERPLOT	:	1	

APEX_POLICY_DRAIN_TIMEOUT	:	1000	

APEX_PAPI_METRICS	:		

APEX_PLUGINS	:		

APEX_PLUGINS_PATH	:	./	

APEX_OTF2	:	0	

APEX_OTF2_ARCHIVE_PATH	:	OTF2_archive	

APEX_OTF2_ARCHIVE_NAME	:	APEX	

	

InteracVve	HPC:	Using	C++	and	HPX	inside	Jupyterhub	to	Write	Performant	Portable	Parallel	Code	(APEX)		 19	

Note	about	environment	variables…	

•  Some	batch	submission	systems	do	not	pass	

environment	variables	to	the	applicaVon	without	

considerable	effort	

•  APEX	will	read	environment	variables	from	$PWD/

apex.conf	file	

•  All	variables	also	have	API	calls	for	gexng/sexng	

– Note:	some	are	only	effecVve	at	startup	because	they	

change/set	the	APEX	configuraVon

•  i.e.	APEX_DISABLE,	APEX_TAU,	APEX_PAPI_METRICS,	…	

InteracVve	HPC:	Using	C++	and	HPX	inside	Jupyterhub	to	Write	Performant	Portable	Parallel	Code	(APEX)		 20	

Post-mortem	output	examples	

InteracVve	HPC:	Using	C++	and	HPX	inside	Jupyterhub	to	Write	Performant	Portable	Parallel	Code	(APEX)		 21	

Example	Screen	Output	
Elapsed time: 2.40514 seconds

Cores detected: 4

Worker Threads observed: 5

Available CPU time: 9.62057 seconds

Timer : #calls | mean | total | % total

--

 someThread(void*) : 2 1.39e+00 2.79e+00 28.965

 foo(int) : 131072 2.00e-05 2.63e+00 27.306

 bar(int, apex::profiler**, void**) : 131072 9.69e-06 1.27e+00 13.198

 someUntimedThread(void*) : 2 1.12e+00 2.24e+00 23.271

 main : 1 1.40e+00 1.40e+00 14.548

 APEX MAIN : 1 2.41e+00 2.41e+00 100.000

--

 Total timers : 262,150

InteracVve	HPC:	Using	C++	and	HPX	inside	Jupyterhub	to	Write	Performant	Portable	Parallel	Code	(APEX)		 22	

To	enable:	

export APEX_SCREEN_OUTPUT=1

or, call apex::dump(bool reset);

Concurrency	View	(before	fix)	

InteracVve	HPC:	Using	C++	and	HPX	inside	Jupyterhub	to	Write	Performant	Portable	Parallel	Code	(APEX)		 23	

 0

 10000

 20000

 30000

 40000

 50000

 60000

0 150 300 450 600 750 900 1050 1200
 0

 50000

 100000

 150000

 200000

T
o

ta
l
T

h
re

a
d

s
 E

x
e

c
u

ti
n

g

P
o

w
e

r
(W

a
tt

s
)

Time (sample period)

Concurrency	View	(a�er	fix)	

InteracVve	HPC:	Using	C++	and	HPX	inside	Jupyterhub	to	Write	Performant	Portable	Parallel	Code	(APEX)		 24	

 0

 10000

 20000

 30000

 40000

 50000

 60000

0 150 300 450 600 750
 0

 50000

 100000

 150000

 200000

T
o

ta
l
T

h
re

a
d

s
 E

x
e

c
u

ti
n

g

P
o

w
e

r
(W

a
tt

s
)

Time (sample period)

To	enable:	

export APEX_MEASURE_CONCURRENCY=1

export APEX_MEASURE_CONCURRENCY_PERIOD=100000

OTF2	View	in	Vampir	

InteracVve	HPC:	Using	C++	and	HPX	inside	Jupyterhub	to	Write	Performant	Portable	Parallel	Code	(APEX)		 25	

To	enable:	

export APEX_OTF2=1

Profile	View	in	TAU	ParaProf	

InteracVve	HPC:	Using	C++	and	HPX	inside	Jupyterhub	to	Write	Performant	Portable	Parallel	Code	(APEX)		 26	

To	enable:	

export APEX_PROFILE_OUTPUT=1

Or:	

export APEX_TAU=1

and run with “tau_exec”

Task	ScaAerplot	Analysis	(prototype)	

InteracVve	HPC:	Using	C++	and	HPX	inside	Jupyterhub	to	Write	Performant	Portable	Parallel	Code	(APEX)		 27	

To	enable:	

export APEX_TASK_SCATTERPLOT=1

Taskgraph	View	(prototype)	

InteracVve	HPC:	Using	C++	and	HPX	inside	Jupyterhub	to	Write	Performant	Portable	Parallel	Code	(APEX)		 28	

To	enable:	

export APEX_TASKGRAPH_OUTPUT=1

HPX	+	APEX	Policy	Examples	

InteracVve	HPC:	Using	C++	and	HPX	inside	Jupyterhub	to	Write	Performant	Portable	Parallel	Code	(APEX)		 29	

Example	:	HPX+APEX	

•  Heat	diffusion	

•  1D	stencil	code	

•  Data	array	

parVVoned	into	

chunks	

•  1	node	with	

no	hyperthreading	

•  Performance	increases	to	a	point	with	increasing	

worker	threads,	then	decreases	

InteracVve	HPC:	Using	C++	and	HPX	inside	Jupyterhub	to	Write	Performant	Portable	Parallel	Code	(APEX)		 30	

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

R
u
n
ti
m
e
((
s)

Number(of(Worker(Threads

1d_stencil

Concurrency	&	Performance	

•  Region	of	

maximum	

performance	

correlates	with	

thread	queue	

length	runVme	

performance	counter	

– Represents	#	tasks	currently	waiVng	to	execute	

•  Could	do	introspecVon	on	this	to	control	

concurrency	throAling	policy	(see	next	example)	

InteracVve	HPC:	Using	C++	and	HPX	inside	Jupyterhub	to	Write	Performant	Portable	Parallel	Code	(APEX)		 31	

53

63

73

83

93

103

113

123

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

T
h
re
a
d
'Q
u
e
u
e
'L
e
n
g
th

R
u
n
ti
m
e
'(
s)

Number'of'Worker'Threads

1d_stencil

R
u
n
ti

m
e

T
h
re

ad
 q

u
eu

e
le

n
g
th

1d_stencil_4	Baseline	
•  48	worker	
threads	(with	
hyperthreading,	
on	Edison)	

•  Actual	
concurrency	
much	lower	
–  ImplementaVon	
is	memory	
bound	

•  Large	variaVon	in	
concurrency	over	
Vme	
–  Tasks	waiVng	on	
prior	tasks	to	
complete	

InteracVve	HPC:	Using	C++	and	HPX	inside	Jupyterhub	to	Write	Performant	Portable	Parallel	Code	(APEX)		 32	

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0

 300

C
o
n
c
u
rr

e
n
c
y

P
o
w

e
r

Time

partition_data
do_work_action

hpx::lcos::local::dataflow::execute
primary_namespace_bulk_service_action

primary_namespace_service_action
other

thread cap
power

100,000,000	elements,	1000	parVVons	

138 secs

Event-generated

metrics
Where

calculation

takes place

1d_stencil	w/opVmal	#	of	Threads	
•  12	worker	
threads	on	
Edison	

•  Greater	
proporVon	of	
threads	kept	
busy	
–  Less	
interference	
between	acVve	
threads	and	
threads	waiVng	
for	memory	

•  Much	faster	
–  61	sec.	vs	138	
sec.	

InteracVve	HPC:	Using	C++	and	HPX	inside	Jupyterhub	to	Write	Performant	Portable	Parallel	Code	(APEX)		 33	

 0

 2

 4

 6

 8

 10

 12

 0

 300

C
o
n
c
u
rr

e
n
c
y

P
o
w

e
r

Time

partition_data
do_work_action

hpx::lcos::local::dataflow::execute
primary_namespace_bulk_service_action

primary_namespace_service_action
other

thread cap
power

100,000,000	elements,	1000	parVVons	

61 secs

1d_stencil	AdaptaVon	with	APEX	

•  IniVally	32	

worker	threads	

•  AcVveHarmony	

searches	for	

minimal	thread	

queue	length	

•  Quickly	

converges	on	

12	

	

InteracVve	HPC:	Using	C++	and	HPX	inside	Jupyterhub	to	Write	Performant	Portable	Parallel	Code	(APEX)		 34	

 0

 4

 8

 12

 16

 20

C
o

n
c
u

rr
e

n
c
y

Time

APEX MAIN THREAD
apex_policy_handler

hpx::lcos::local::dataflow::execute
other

thread cap

AdapVng	Block	Size	

•  Is	1000	parVVons	of	100000	cells	the	best	

parVVoning?	

•  Parametric	studies	say	“no”.	

•  Can	we	modify	the	example	to	reparVVon	as	

necessary	to	find	beAer	performance?	

InteracVve	HPC:	Using	C++	and	HPX	inside	Jupyterhub	to	Write	Performant	Portable	Parallel	Code	(APEX)		 35	

1d_stencil:	adapVng	block	size	

InteracVve	HPC:	Using	C++	and	HPX	inside	Jupyterhub	to	Write	Performant	Portable	Parallel	Code	(APEX)		 36	

 0

 4

 8

 12

 0

 10

 20

 30

 40

 50

C
o
n
c
u
rr

e
n
c
y

G
ra

in
 S

iz
e
 P

a
ra

m
e
te

r
V

a
lu

e

Time

hpx::lcos::local::dataflow::execute
hpx_main

other
grain_size_parameter

Support	Acknowledgements	

InteracVve	HPC:	Using	C++	and	HPX	inside	Jupyterhub	to	Write	Performant	Portable	Parallel	Code	(APEX)		 37	

•  Support	for	this	work	was	provided	through	ScienVfic	Discovery	through	
Advanced	CompuVng	(SciDAC)	program	funded	by	U.S.	Department	of	Energy,	
Office	of	Science,	Advanced	ScienVfic	CompuVng	Research	(and	Basic	Energy	
Sciences/Biological	and	Environmental	Research/High	Energy	Physics/Fusion	
Energy	Sciences/Nuclear	Physics)	under	award	numbers	DE-SC0008638,	DE-
SC0008704,	DE-	FG02-11ER26050	and	DE-SC0006925.	

•  This	research	used	resources	of	the	NaVonal	Energy	Research	ScienVfic	
CompuVng	Center,	a	DOE	Office	of	Science	User	Facility	supported	by	the	
Office	of	Science	of	the	U.S.	Department	of	Energy	under	Contract	No.	DE-
AC02-05CH11231.	

•  This	material	is	(will	be?)	based	upon	work	supported	by	the	NaVonal	Science	
FoundaVon	Graduate	Research	Fellowship	under	Grant	No.	1737803.	

•  The	authors	acknowledge	that	the	Talapas	HPC	cluster	and	the	High	
Performance	CompuVng	Research	Core	Facility	at	The	University	of	Oregon	
have	contributed	to	the	research	results	reported	within	this	paper.		

11/14/2017 APEX-SC17-Tutorial

https://hpx-jupyter.cct.lsu.edu/user/sbrandt/nbconvert/html/share/APEX-SC17-Tutorial.ipynb?download=false 1/18

HPX + Cling + Jupyter
This tutorial works in a special Jupyter notebook that can be used in one of two ways:

From this website: https://hpx-jupyter.cct.lsu.edu (https://hpx-jupyter.cct.lsu.edu)
From the docker image: stevenrbrandt/fedora-hpx-cling
Normally, each cell should contain declarations, e.g. definitions of functions, variables, or #include
statements.

```#include using namespace std;```

If you wish to process an expression, e.g. cout << "hello world\n" you can put .expr at the
front of the cell.
```.expr cout << "hello, world\n";```
Sometimes you will want to test a cell because you are uncertain whether it might cause a segfault or
some other error that will kill your kernel. Othertimes, you might want to test a definition without
permanently adding it to the current namespace. You can do this by prefixing your cell with .test.
Whatever is calculated in a test cell will be thrown away after evaluation and will not kill your kernel.

```.test.expr int foo[5]; foo[10] = 1;```
## Docker Instructions
Frist, install Docker on your local resource
Second, start Docker, e.g. sudo service docker start
Third, run the fedora-hpx-cling container, e.g.

```  docker run -it -p 8000:8000
stevenrbrandt/fedora-hpx-cling```

After you do this, docker will respond with something like
`http://0.0.0.0:8000/?token=5d1eb8a4797851910de481985a54c2fdc3be80280023bac5`

Paste that URL into your browser, and you will be able to interact with the notebook.
Fourth, play with the existing ipynb files or create new ones.
Fifth, save your work! This is an important step. If you simply quit the container, everything you did will
be lost. To save your work, first find your docker image using docker ps.
```$ docker ps CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES 4f806b5f4fb3
stevenrbrandt/fedora-hpx-cling "/bin/sh -c 'jupyter " 11 minutes ago Up 11 minutes 0.0.0.0:8000-
>8000/tcp dreamy_turing```

Once you have it (in this case, it's 4f806b5f4fb3), you can use docker cp to transfer files to or from
your image.

```  docker cp
HPX_by_example.ipynb 4f806b5f4fb3:/home/jup```

dockerpullstevenrbrandt/fedora − hpx − cling

dockercp4f806b5f4fb3 : /home/jup/HP xample. ipynb.X

b

y

e

https://hpx-jupyter.cct.lsu.edu/

11/14/2017 APEX-SC17-Tutorial

https://hpx-jupyter.cct.lsu.edu/user/sbrandt/nbconvert/html/share/APEX-SC17-Tutorial.ipynb?download=false 2/18

Measuring HPX performance
HPX is integraged with APEX, "An Autonomic Performance Environment for eXascale". APEX serves two
primary roles in HPX - to measure the HPX runtime and applicaiton tasks, and to use introspection of those
measurements to control behavior.

Measurement

APEX provides an API for measuring actions within a runtime. The API includes methods for timer start/stop, as
well as sampled counter values. APEX is designed to be integrated into a runtime, library and/or application and
provide performance introspection for the purpose of runtime adaptation. While APEX can provide rudimentary
post-mortem performance analysis measurement, there are many other performance measurement tools that
perform that task much better (such as TAU http://tau.uoregon.edu (http://tau.uoregon.edu)). That said, APEX
includes an event listener that integrates with the TAU measurement system, so APEX events can be forwarded
to TAU and collected in a TAU profile and/or trace to be used for post-mortem performance anlaysis. That
process is not covered in this tutorial, but for more information, see http://github.com/khuck/xpress-apex
(http://github.com/khuck/xpress-apex).

Runtime Adaptation

APEX provides a mechanism for dynamic runtime feedback and control, either for autotuning or adaptation to
changing environment. The infrastruture that provides the adaptation in APEX is the Policy Engine, which
executes policies either periodically or triggered by events. The policies have access to the performance state as
observed by the APEX introspection API. APEX is integrated with Active Harmony
(http://www.dyninst.org/harmony (http://www.dyninst.org/harmony)) to provide dynamic search for autotuning.

Fibonacci example - what's the performance?
Using the first fibonacci implementation from the HPX introduction, let's examine the performance. To get a
simple text report of performance from HPX in a regular program, you would set the APEX_SCREEN_OUTPUT
environment variable to a postitive number (i.e. "1"). In the Jupyter notebook, we will use the
apex::dump(bool reset); method instead. Because the HPX environment is continuously running in the
Jupyter kernel, we also need to reset the timers before executing our test.

First, include the HPX header for our example, and declare some useful namespaces.

In []: #include <hpx/hpx.hpp>
using namespace std;
using namespace hpx;

Next, we will define the first implementation of the fibonacci algorithm from the previous presentation.

http://tau.uoregon.edu/
http://github.com/khuck/xpress-apex
http://www.dyninst.org/harmony

11/14/2017 APEX-SC17-Tutorial

https://hpx-jupyter.cct.lsu.edu/user/sbrandt/nbconvert/html/share/APEX-SC17-Tutorial.ipynb?download=false 3/18

In []: uint64_t fibonacci(uint64_t n)
{
 // if we know the answer, we return the value
 if (n < 2) return n;
 // asynchronously calculate one of the sub-terms
 future<uint64_t> f = async(launch::async, &fibonacci, n-2);
 // synchronously calculate the other sub-term
 uint64_t r = fibonacci(n-1);
 // wait for the future and calculate the result
 return f.get() + r;

}

And we will execute that definition:

In []: .expr
apex::reset(0L);
cout << fibonacci(22) << endl;
apex::dump(true);

We get some useful information, but what is task_object::apply? That is the HPX runtime executing
asynchronous tasks. To get a useful label for that function (and distinguish the different task types), we will use
hpx::util::annotated_function. Note carefully that we will add the hpx::util namespace, and also that we
will change the name to fibonacci2, to distinguish from the previous definition (that still exists in this compilation
unit). We will use that renaming pattern throughout this tutorial.

(markdown padding for proper formatting)

In []: using namespace hpx::util;

In []: uint64_t fibonacci2(uint64_t n)
{
 // if we know the answer, we return the value
 if (n < 2) return n;
 // asynchronously calculate one of the sub-terms
 future<uint64_t> f = async(launch::async, annotated_function(unwrapp

ing(&fibonacci2), "fibonacci2 asynchronous"), n-2);
 // synchronously calculate the other sub-term
 apex::profiler *p = apex::start("fibonacci2 synchronous");
 uint64_t r = fibonacci2(n-1);
 apex::stop(p);
 // wait for the future and calculate the result
 return f.get() + r;

}

Next, we will execute the fibonacci2 method with the annotated function:

11/14/2017 APEX-SC17-Tutorial

https://hpx-jupyter.cct.lsu.edu/user/sbrandt/nbconvert/html/share/APEX-SC17-Tutorial.ipynb?download=false 4/18

In []: .expr
apex::reset(0L);
cout << fibonacci2(22) << endl;
apex::dump(true);

That's better, but not quite right. Note carefully that the fibonacci2 synchronous events are double-counting -- the
synchronous timer for (n) includes the time spent computing both (n-1) and (n-2). Let's see what happens with
the example that uses a serial cutoff:

In []: const int threshold = 10;

uint64_t fibonacci_serial(uint64_t n)
{
 if (n < 2) return n;
 uint64_t f1 = fibonacci_serial(n-2);
 uint64_t f2 = fibonacci_serial(n-1);
 return f1 + f2;

}

future<uint64_t> fibonacci3(uint64_t n)
{
 if(n < 2) return make_ready_future(n);
 if(n < threshold) return make_ready_future(fibonacci_serial(n));

 future<uint64_t> f = async(launch::async, annotated_function(unwrapp
ing(&fibonacci3), "fibonacci3"), n-2);
 future<uint64_t> r = fibonacci3(n-1);

 return dataflow(
 [](future<uint64_t> f1, future<uint64_t> f2) {
 return f1.get() + f2.get();
 },
 f, r);

}

In []: .expr
apex::reset(false);
cout << fibonacci3(22).get() << endl;
apex::dump(true);

Note that the timers are only around the calls where 10 > n >= 22. We are now under-counting, because the
synchronous executions aren't measured. If we were interested in a careful evaluation of the serial execution, we
would include a third function with a timer that is called once. That function would then recursively call
fibonacci_serial. Feel free to implement that version as an exercise.

.

What if we want to compare the different methods? We can put them all into one compilation unit, and execute
them in the same cell for a clearer comparison:

11/14/2017 APEX-SC17-Tutorial

https://hpx-jupyter.cct.lsu.edu/user/sbrandt/nbconvert/html/share/APEX-SC17-Tutorial.ipynb?download=false 5/18

In []: .expr
apex::reset(0L);
cout << fibonacci(22) << endl;
cout << fibonacci2(22) << endl;
cout << fibonacci3(22).get() << endl;
apex::dump(true);

Well, there is some useful data in there - but we need to do some aggregation. We could add them up, or we
could wrap the top level calls with a timer and get the wall clock time for each approach:

In []: .expr
apex::reset(0L);
apex::profiler *p1 = apex::start("Version 1");
cout << fibonacci(22) << endl;
apex::stop(p1);
apex::profiler *p2 = apex::start("Version 2");
cout << fibonacci2(22) << endl;
apex::stop(p2);
apex::profiler *p3 = apex::start("Version 3");
cout << fibonacci3(22).get() << endl;
apex::stop(p3);
apex::dump(true);

Heat Equation Example

11/14/2017 APEX-SC17-Tutorial

https://hpx-jupyter.cct.lsu.edu/user/sbrandt/nbconvert/html/share/APEX-SC17-Tutorial.ipynb?download=false 6/18

In []: #include <hpx/include/parallel_algorithm.hpp>
#include <boost/range/irange.hpp>
#include <boost/format.hpp>

#include <cstddef>
#include <cstdint>
#include <iostream>
#include <memory>
#include <utility>
#include <vector>
#include <stdexcept>
#include <string>

///

void print_time_results(
 std::uint32_t num_localities
 , std::uint64_t num_os_threads
 , std::uint64_t elapsed
 , std::uint64_t nx
 , std::uint64_t np
 , std::uint64_t nt
 , bool header
)

{
 if (header)

11/14/2017 APEX-SC17-Tutorial

https://hpx-jupyter.cct.lsu.edu/user/sbrandt/nbconvert/html/share/APEX-SC17-Tutorial.ipynb?download=false 7/18

 std::cout << "Localities,OS_Threads,Execution_Time_sec,"
 "Points_per_Partition,Partitions,Time_Steps\n"
 << std::flush;

 std::string const locs_str = boost::str(boost::format("%u,") % num
_localities);
 std::string const threads_str = boost::str(boost::format("%lu,") %
num_os_threads);
 std::string const nx_str = boost::str(boost::format("%lu,") % nx);
 std::string const np_str = boost::str(boost::format("%lu,") % np);
 std::string const nt_str = boost::str(boost::format("%lu ") % nt);

 std::cout << (boost::format("%-6s %-6s %.14g, %-21s %-21s %-21s\n
")
 % locs_str % threads_str % (elapsed / 1e9) %nx_str % np_st

r
 % nt_str) << std::flush;

}

///

void print_time_results(
 std::uint64_t num_os_threads
 , std::uint64_t elapsed
 , std::uint64_t nx
 , std::uint64_t np
 , std::uint64_t nt
 , bool header
)

{
 if (header)
 std::cout << "OS_Threads,Execution_Time_sec,"
 "Points_per_Partition,Partitions,Time_Steps\n"
 << std::flush;

 std::string const threads_str = boost::str(boost::format("%lu,") %
num_os_threads);
 std::string const nx_str = boost::str(boost::format("%lu,") % nx);
 std::string const np_str = boost::str(boost::format("%lu,") % np);
 std::string const nt_str = boost::str(boost::format("%lu ") % nt);

 std::cout << (boost::format("%-21s %.14g, %-21s %-21s %-21s\n")
 % threads_str % (elapsed / 1e9) %nx_str % np_str
 % nt_str) << std::flush;

}

void print_time_results(
 std::uint64_t num_os_threads
 , std::uint64_t elapsed
 , std::uint64_t nx
 , std::uint64_t nt
 , bool header
)

{
 if (header)
 std::cout << "OS_Threads,Execution_Time_sec,"
 "Grid_Points,Time_Steps\n"

11/14/2017 APEX-SC17-Tutorial

https://hpx-jupyter.cct.lsu.edu/user/sbrandt/nbconvert/html/share/APEX-SC17-Tutorial.ipynb?download=false 8/18

 << std::flush;

 std::string const threads_str = boost::str(boost::format("%lu,") %
num_os_threads);
 std::string const nx_str = boost::str(boost::format("%lu,") % nx);
 std::string const nt_str = boost::str(boost::format("%lu ") % nt);

 std::cout << (boost::format("%-21s %10.12s, %-21s %-21s\n")
 % threads_str % (elapsed / 1e9) %nx_str % nt_str) << std::

flush;
}

///

// Command-line variables
bool header = true; // print csv heading
double k = 0.5; // heat transfer coefficient
double dt = 1.; // time step
double dx = 1.; // grid spacing

inline std::size_t idx(std::size_t i, int dir, std::size_t size)
{
 if(i == 0 && dir == -1)
 return size-1;
 if(i == size-1 && dir == +1)
 return 0;

 HPX_ASSERT((i + dir) < size);

 return i + dir;
}

///

// Our partition data type
struct partition_data
{
public:
 partition_data(std::size_t size)
 : data_(new double[size]), size_(size)
 {}

 partition_data(std::size_t size, double initial_value)
 : data_(new double[size]),
 size_(size)
 {
 double base_value = double(initial_value * size);
 for (std::size_t i = 0; i != size; ++i)
 data_[i] = base_value + double(i);
 }

 partition_data(partition_data && other)
 : data_(std::move(other.data_))
 , size_(other.size_)
 {}

 double& operator[](std::size_t idx) { return data_[idx]; }

11/14/2017 APEX-SC17-Tutorial

https://hpx-jupyter.cct.lsu.edu/user/sbrandt/nbconvert/html/share/APEX-SC17-Tutorial.ipynb?download=false 9/18

 double operator[](std::size_t idx) const { return data_[idx]; }

 std::size_t size() const { return size_; }

private:
 std::unique_ptr<double[]> data_;
 std::size_t size_;

};

std::ostream& operator<<(std::ostream& os, partition_data const& c)
{
 os << "{";
 for (std::size_t i = 0; i != c.size(); ++i)
 {
 if (i != 0)
 os << ", ";
 os << c[i];
 }
 os << "}";
 return os;

}

///

struct stepper
{
 // Our data for one time step
 typedef hpx::shared_future<partition_data> partition;
 typedef std::vector<partition> space;

 // Our operator
 static double heat(double left, double middle, double right)
 {
 return middle + (k*dt/(dx*dx)) * (left - 2*middle + right);
 }

 // The partitioned operator, it invokes the heat operator above on
all
 // elements of a partition.
 static partition_data heat_part(partition_data const& left,
 partition_data const& middle, partition_data const& right)
 {
 apex_wrapper profiler("partition_data::heat_part", 0L);
 std::size_t size = middle.size();
 partition_data next(size);

 next[0] = heat(left[size-1], middle[0], middle[1]);

 for(std::size_t i = 1; i != size-1; ++i)
 {
 next[i] = heat(middle[i-1], middle[i], middle[i+1]);
 }

 next[size-1] = heat(middle[size-2], middle[size-1], right[0]);

 return next;
 }

11/14/2017 APEX-SC17-Tutorial

https://hpx-jupyter.cct.lsu.edu/user/sbrandt/nbconvert/html/share/APEX-SC17-Tutorial.ipynb?download=false 10/18

 // do all the work on 'np' partitions, 'nx' data points each, for
'nt'
 // time steps, limit depth of dependency tree to 'nd'
 hpx::future<space> do_work(std::size_t np, std::size_t nx, std::si

ze_t nt,
 std::uint64_t nd)
 {
 using hpx::dataflow;
 using hpx::util::unwrapping;

 // U[t][i] is the state of position i at time t.
 std::vector<space> U(2);
 for (space& s: U)
 s.resize(np);

 // Initial conditions: f(0, i) = i
 std::size_t b = 0;
 auto range = boost::irange(b, np);
 using hpx::parallel::execution::par;
 hpx::parallel::for_each(par, std::begin(range), std::end(range

),
 [&U, nx](std::size_t i)
 {
 U[0][i] = hpx::make_ready_future(partition_data(nx, do

uble(i)));
 }
);

 // limit depth of dependency tree
 hpx::lcos::local::sliding_semaphore sem(nd);

 auto Op = hpx::util::annotated_function(unwrapping(&stepper::h
eat_part),
 "stepper::heat_part");

 // Actual time step loop
 for (std::size_t t = 0; t != nt; ++t)
 {
 space const& current = U[t % 2];
 space& next = U[(t + 1) % 2];

 for (std::size_t i = 0; i != np; ++i)
 {
 next[i] = dataflow(
 Op, current[idx(i, -1, np)], current[i], current[i

dx(i, +1, np)]);
 }

 // every nd time steps, attach additional continuation whi
ch will
 // trigger the semaphore once computation has reached this
point
 if ((t % nd) == 0)
 {
 next[0].then(
 [&sem, t](partition &&)

11/14/2017 APEX-SC17-Tutorial

https://hpx-jupyter.cct.lsu.edu/user/sbrandt/nbconvert/html/share/APEX-SC17-Tutorial.ipynb?download=false 11/18

 {
 // inform semaphore about new lower limit
 sem.signal(t);
 });
 }

 // suspend if the tree has become too deep, the continuati
on above
 // will resume this thread once the computation has caught
up
 sem.wait(t);
 }

 // Return the solution at time-step 'nt'.
 return hpx::when_all(U[nt % 2]);
 }

};

///

/*
 std::uint64_t np{10}; // Number of partitions.
 std::uint64_t nx{10}; // Number of grid points. (local x dimensi

on of each partition)
 std::uint64_t nt{45}; // Number of steps.
 std::uint64_t nd{10}; // Max depth of dep tree.

*/
void do_1d_solve(std::uint64_t np, std::uint64_t nx,
 std::uint64_t nt, std::uint64_t nd, bool results)

{
 header = false;

 // Create the stepper object
 stepper step;

 // Measure execution time.
 std::uint64_t t = hpx::util::high_resolution_clock::now();

 // Execute nt time steps on nx grid points and print the final sol
ution.
 hpx::future<stepper::space> result = step.do_work(np, nx, nt, nd);

 stepper::space solution = result.get();
 hpx::wait_all(solution);

 std::uint64_t elapsed = hpx::util::high_resolution_clock::now() -
t;

 // Print the final solution
 if (results)
 {
 for (std::size_t i = 0; i != np; ++i)
 std::cout << "U[" << i << "] = " << solution[i].get() << s

td::endl;
 }

 std::uint64_t const os_thread_count = hpx::get_os_thread_count();

11/14/2017 APEX-SC17-Tutorial

https://hpx-jupyter.cct.lsu.edu/user/sbrandt/nbconvert/html/share/APEX-SC17-Tutorial.ipynb?download=false 12/18

In []: .expr
apex::reset(0L);
do_1d_solve(100, 100, 450, 100, false);
apex::dump(true);

Heat Equation with an APEX policy

 print_time_results(os_thread_count, elapsed, nx, np, nt, header);

 return;
}

11/14/2017 APEX-SC17-Tutorial

https://hpx-jupyter.cct.lsu.edu/user/sbrandt/nbconvert/html/share/APEX-SC17-Tutorial.ipynb?download=false 13/18

In []: #include <hpx/hpx_init.hpp>
#include <hpx/hpx.hpp>

#include <hpx/include/parallel_algorithm.hpp>
#include <hpx/include/performance_counters.hpp>

#include <boost/range/irange.hpp>
#include <boost/format.hpp>

#include <algorithm>
#include <cstddef>
#include <cstdint>
#include <iostream>
#include <limits>
#include <memory>
#include <string>
#include <utility>
#include <vector>

#include <apex_api.hpp>

#include <boost/shared_array.hpp>

using hpx::naming::id_type;
using hpx::performance_counters::get_counter;
using hpx::performance_counters::stubs::performance_counter;
using hpx::performance_counters::counter_value;
using hpx::performance_counters::status_is_valid;

static bool counters_initialized = false;
static std::string counter_name = "/threads{locality#0/total}/idle-rat
e";
static apex_event_type end_iteration_event = APEX_CUSTOM_EVENT_1;
static hpx::naming::id_type counter_id;

void setup_counters() {
 try {
 id_type id = get_counter(counter_name);
 // We need to explicitly start all counters before we can use
them. For

11/14/2017 APEX-SC17-Tutorial

https://hpx-jupyter.cct.lsu.edu/user/sbrandt/nbconvert/html/share/APEX-SC17-Tutorial.ipynb?download=false 14/18

 // certain counters this could be a no-op, in which case start
will return
 // 'false'.
 performance_counter::start(hpx::launch::sync, id);
 std::cout << "Counter " << counter_name << " initialized " <<

id << std::endl;
 counter_value value = performance_counter::get_value(hpx::laun

ch::sync, id);
 std::cout << "Counter value " << value.get_value<std::int64_t>

() << std::endl;
 counter_id = id;
 end_iteration_event = apex::register_custom_event("Repartitio

n");
 counters_initialized = true;
 }
 catch(hpx::exception const& e) {
 std::cerr << "1d_stencil_4_repart: caught exception: "
 << e.what() << std::endl;
 counter_id = hpx::naming::invalid_id;
 return;
 }

}

double get_counter_value() {
 if (!counters_initialized) {
 std::cerr << "get_counter_value(): ERROR: counter was not init

ialized"
 << std::endl;
 return false;
 }
 try {
 counter_value value1 =
 performance_counter::get_value(hpx::launch::sync, counter_

id, true);
 std::int64_t counter_value = value1.get_value<std::int64_t>();

 std::cout << "counter_value " << counter_value << std::endl;
 return (double)(counter_value);
 }
 catch(hpx::exception const& e) {
 std::cout << "get_counter_value(): caught exception: " << e.wh

at()
 << std::endl;
 return (std::numeric_limits<double>::max)();
 }

}

///

// Our partition data type
struct partition_data2
{
public:
 partition_data2(std::size_t size)
 : data_(new double[size]), size_(size)
 {}

11/14/2017 APEX-SC17-Tutorial

https://hpx-jupyter.cct.lsu.edu/user/sbrandt/nbconvert/html/share/APEX-SC17-Tutorial.ipynb?download=false 15/18

 partition_data2(std::size_t size, double initial_value)
 : data_(new double[size]),
 size_(size)
 {
 double base_value = double(initial_value * size);
 for (std::size_t i = 0; i != size; ++i)
 data_[i] = base_value + double(i);
 }

 partition_data2(std::size_t size, const double * other)
 : data_(new double[size]),
 size_(size)
 {
 for(std::size_t i = 0; i != size; ++i) {
 data_[i] = other[i];
 }
 }

 partition_data2(partition_data2 && other)
 : data_(std::move(other.data_))
 , size_(other.size_)
 {}

 double& operator[](std::size_t idx) { return data_[idx]; }
 double operator[](std::size_t idx) const { return data_[idx]; }

 void copy_into_array(double * a) const
 {
 for(std::size_t i = 0; i != size(); ++i) {
 a[i] = data_[i];
 }
 }

 std::size_t size() const { return size_; }

private:
 std::unique_ptr<double[]> data_;
 std::size_t size_;

};

std::ostream& operator<<(std::ostream& os, partition_data2 const& c)
{
 os << "{";
 for (std::size_t i = 0; i != c.size(); ++i)
 {
 if (i != 0)
 os << ", ";
 os << c[i];
 }
 os << "}";
 return os;

}

///

11/14/2017 APEX-SC17-Tutorial

https://hpx-jupyter.cct.lsu.edu/user/sbrandt/nbconvert/html/share/APEX-SC17-Tutorial.ipynb?download=false 16/18

struct stepper2
{
 // Our data for one time step
 typedef hpx::shared_future<partition_data2> partition;
 typedef std::vector<partition> space;

 // Our operator
 static inline double heat(double left, double middle, double right

)
 {
 return middle + (k*dt/dx*dx) * (left - 2*middle + right);
 }

 // The partitioned operator, it invokes the heat operator above on
all
 // elements of a partition.
 static partition_data2 heat_part(partition_data2 const& left,
 partition_data2 const& middle, partition_data2 const& right)
 {
 std::size_t size = middle.size();
 partition_data2 next(size);

 if(size == 1) {
 next[0] = heat(left[0], middle[0], right[0]);
 return next;
 }

 next[0] = heat(left[size-1], middle[0], middle[1]);

 for(std::size_t i = 1; i < size-1; ++i)
 {
 next[i] = heat(middle[i-1], middle[i], middle[i+1]);
 }

 next[size-1] = heat(middle[size-2], middle[size-1], right[0]);

 return next;
 }

 // do all the work on 'np' partitions, 'nx' data points each, for
'nt'
 // time steps
 hpx::future<space> do_work(std::size_t np, std::size_t nx, std::si

ze_t nt,
 boost::shared_array<double> data)
 {
 using hpx::dataflow;
 using hpx::util::unwrapping;

 // U[t][i] is the state of position i at time t.
 std::vector<space> U(2);
 for (space& s: U)
 s.resize(np);

 if (!data) {
 // Initial conditions: f(0, i) = i
 std::size_t b = 0;

11/14/2017 APEX-SC17-Tutorial

https://hpx-jupyter.cct.lsu.edu/user/sbrandt/nbconvert/html/share/APEX-SC17-Tutorial.ipynb?download=false 17/18

 auto range = boost::irange(b, np);
 using hpx::parallel::execution::par;
 hpx::parallel::for_each(
 par, std::begin(range), std::end(range),
 [&U, nx](std::size_t i)
 {
 U[0][i] = hpx::make_ready_future(
 partition_data2(nx, double(i)));
 }
);
 }
 else {
 // Initialize from existing data
 std::size_t b = 0;
 auto range = boost::irange(b, np);
 using hpx::parallel::execution::par;
 hpx::parallel::for_each(
 par, std::begin(range), std::end(range),
 [&U, nx, data](std::size_t i)
 {
 U[0][i] = hpx::make_ready_future(
 partition_data2(nx, data.get()+(i*nx)));
 }
);
 }

 auto Op = hpx::util::annotated_function(unwrapping(&stepper2
::heat_part),
 "stepper2::heat_part"

);

 // Actual time step loop
 for (std::size_t t = 0; t != nt; ++t)
 {
 space const& current = U[t % 2];
 space& next = U[(t + 1) % 2];

 for (std::size_t i = 0; i != np; ++i)
 {
 next[i] = dataflow(
 hpx::launch::async, Op,
 current[idx(i, -1, np)], current[i], current[i

dx(i, +1, np)]
);
 }
 }

 // Return the solution at time-step 'nt'.
 return hpx::when_all(U[nt % 2]);
 }

};

///

/*
 std::uint64_t np{10}; // Number of partitions.
 std::uint64_t nx{10}; // Number of grid points. (local x dimensi

11/14/2017 APEX-SC17-Tutorial

https://hpx-jupyter.cct.lsu.edu/user/sbrandt/nbconvert/html/share/APEX-SC17-Tutorial.ipynb?download=false 18/18

on of each partition)
 std::uint64_t nt{45}; // Number of steps.
 std::uint64_t nr{10}; // Number of runs to tune

*/
void do_1d_solve_repart(std::uint64_t nx,
 std::uint64_t nt, std::uint64_t nr, bool results)

{
 setup_counters();

 /* Number of partitions dynamically determined */
 header = false;

 std::uint64_t const os_thread_count = hpx::get_os_thread_count();

 // Find divisors of nx
 std::vector<std::uint64_t> divisors;
 // Start with os_thread_count so we have at least as many
 // partitions as we have HPX threads.
 for(std::uint64_t i = os_thread_count; i < std::sqrt(nx); ++i) {
 if(nx % i == 0) {
 divisors.push_back(i);
 divisors.push_back(nx/i);
 }
 }
 // This is not necessarily correct (sqrt(x) does not always evenly
divide x)
 // and leads to partition size = 1 which we want to avoid
 //divisors.push_back(static_cast<std::uint64_t>(std::sqrt(nx)));
 std::sort(divisors.begin(), divisors.end());

 if(divisors.size() == 0) {
 std::cerr << "ERROR: No possible divisors for " << nx
 << " data elements with at least " << os_thread_count
 << " partitions and at least two elements per partition."
 << std::endl;
 return hpx::finalize();
 }

 //std::cerr << "Divisors: ";
 //for(std::uint64_t d : divisors) {
 // std::cerr << d << " ";
 //}
 //std::cerr << std::endl;

 // Set up APEX tuning
 // The tunable parameter -- how many partitions to divide data int

o
 long np_index = 1;
 long * tune_params[1] = { 0L };
 long num_params = 1;
 long mins[1] = { 0 };
 long maxs[1] = { (long)divisors.size() };
 long steps[1] = { 1 };
 tune_params[0] = &np_index;
 apex::setup_custom_tuning(get_counter_value, end_iteration_event,

num_params,
 tune_params, mins, maxs, steps);

