HPX

The C++ Standards Library for Concurrency and Parallelism

Hartmut Kaiser (hkaiser@cct.lsu.edu)




11/13/2017

e Application Problems

60s 80s 100 s 120s

thread 8
thread 9
thread 10
thread 11
thread 12
thread 13
thread 14
thread 15
thread 16
thread 17
thread 18
thread 19
thread 20
thread 21
thread 22
thread 23
thread 24
thread 25

=
o
©
B
Q
o
o
bl
~
=
Q
o
Q
(@)
~
S
>
~
@
P~
o
=
s
B
<
<
=
o
I
+
n
+
+
(@)
<
>
o
jog|

(=]
=)
0
o
=
<]
—
=
(o]
!
(]
ol

@ STE||AR GROUP




11/13/2017

HPX — A General Purpose Runtime
System

- The C++ Standards Library for Concurrency and Parallelism

- Exposes a coherent and uniform, C++ standards-conforming API for ease
of programming parallel, distributed, and heterogeneous applications.

- Enables to write fully asynchronous code using hundreds of millions of threads.
* Provides unified syntax and semantics for local and remote operations.
* Enables seamless data parallelism orthogonally to task-based parallelism

- HPX represents an innovative mixture of
- A global system-wide address space (AGAS - Active Global Address Space)
* Fine grain parallelism and lightweight synchronization
* Combined with implicit, work queue based, message driven computation
* Support for hardware accelerators

el
(@)
(ay]
B
O
g
Qv
=
o
]
O
g
Q
(@)
~
e
E”}
2
<
~
o)
or=
—
gl
=~
o]
=
=}
<
+~
0]
+
+
O
>
=

=
=i
w0
.
—
5}
—
—
<
~
<
al

@ STE||AR GROUP



11/13/2017

HPX — A C++ Standard Library

- Widely portable
 Platforms: x86/64, Xeon/Phi, ARM 32/64, Power, BlueGene/Q
* Operating systems: Linux, Windows, Android, OS/X

- Well integrated with compiler’s C++ Standard libraries

- Enables writing applications which out-perform and out-scale existing
applications based on OpenMP/MPI
* http://stellar-group.org/libraries/hpx
- https://github.com/STEIIAR-GROUP/hpx/

- Is published under Boost license and has an open, active, and thriving
developer community.

e
=]
(&
B
Q
=]
o
.
~
=
O
g
Q

@)
~

3
E”}
~
o]
~

g

=

—

e
~
<

el
g
(o]

+—

N
+
+

©

>
=

=
=i
w0
o=
—
[}
—
—
<
~
<
al

- Can be used as a platform for research and experimentation

@ STE||AR GROUP


http://stellar-group.org/libraries/hpx
https://github.com/STEllAR-GROUP/hpx/

11/13/2017

HPX — A C++ Standard Library

C++1y Concurrency/Parallelism APIs

Local Control Objects
(LCOs)

Performance Counter -
Framework

Parcel Transport Layer

Threading Subsystem

e

0))
(@b]
o
()
:
@)
am
~
(eb]
-
o
o)
=
=
>
()
'o_p—:
(@)
A

Active Global Address
Space (AGAS)

el
=]
o
>
(]
=]
o
=
~
=
Q
g
o
o
~
RS
?}
Z,
C‘:
~
o
ore
—
el
~
&
el
g
o
+~
R
+
_t
o
>
é

=
=i
w0
.
—
5}
—
—
<
~
<
al

@ STE||AR GROUP




11/13/2017

Programming Model

- Focus on the logical composition of data processing, rather than the physical
orchestration of parallel computation

- Provide useful abstractions that shield programmer from low-level details of
parallel and distributed processing

- Centered around data dependencies not communication patterns

- Make data dependencies explicit to system thus allows for auto-magic
parallelization

- Basis for various types of higher level parallelism, such as iterative, fork-join,
continuation-style, asynchronous, data-parallelism

- Enable runtime-based adaptivity while applying application-defined policies

e
=]
(&
B
Q
=]
o
.
~
=
O
g
Q

@)
~

3
E”}
~
o]
~

g

=

—

e
~
<

el
g
(o]

+—

N
+
+

©

>
=

=
=i
w0
o=
—
[}
—
—
<
~
<
al

@ STE||AR GROUP



11/13/2017

Programming Model

- The consequent application of the Concept of Futures
- Make data dependencies explicit and visible to the runtime

- Implicit and explicit asynchrony
- Transparently hide communication and other latencies
- Makes over-subscription manageable
« Uniform API for local and remote operation
+ Local operation: create new thread
- Remote operation: send parcel (active message), create thread on behalf of sender

- Work-stealing scheduler
* Inherently multi-threaded environment
« Supports millions of concurrently active threads, minimal thread overhead
- Enables transparent load balancing of work across all execution resources inside a locality

e
=]
(&
B
Q
=]
o
.
~
=
O
g
Q

@)
~

3
E”}
~
o]
~

g

=

—

e
~
<

el
g
(o]

+—

N

+

+

©

>
=

=
=i
w0
.
—
5}
—
—
<
~
<
al

- API 1s fully conforming with C++11/C++17 and ongoing standardization efforts

@ STE||AR GROUP




=
—
=)
N
~
an)
—
~
—
—

HPX — The API

- As close as possible to C++11/14/17 standard library, where appropriate, for instance

* std::thread hpx::thread
- std:'mutex hpx:mutex E
- std::future hpx:future (including N4538, ‘Concurrency TS’) %
- std::async hpx::async (including N3632) :
- std::bind hpx::bind S
* std::function hpx::function é
- std::‘tuple hpx::tuple ji
- std::any hpx::any (N3508) E
- std::cout hpx::cout §
- std::for_each(par, ...), etc. hpx::parallel::for_each (C++17) i
- std::experimental:‘task_block hpx::parallel::task_block (Parallelism TS 2) :
A
am

Parallelism

@ STE||AR GROUP



11/13/2017

Control Model:
How i1s parallelism achieved?

- Explicit parallelism:
* Low-level: thread
- Middle-level: async(), dataflow(), future::then()

- Higher-level constructs

- Parallel algorithms (parallel::for_each and friends, fork-join parallelism for
homogeneous tasks)

- Asynchronous algorithms (alleviates bad effect of fork/join)
- Task-block (fork-join parallelism of heterogeneous tasks)
+ Asynchronous task-blocks

- Continuation-style parallelism based on composing futures (task-based
parallelism)

- Data-parallelism on accelerator architectures (vector-ops, GPUs)
« Same code used for CPU and accelerators

e
=]
(&
>
Q
=]
o
o
~
=
O
g
Q

@)
~

3
E”}
o
<
~

Q

=

—

e
~
<

=
g
<

-5

R
+
+

©

>
=

=
=i
w0
.
—
5}
—
—
<
~
<
al

@ STE||AR GROUP



Parallel Algorithms (C++17)

adjacent difference

CoOpy
count if
fill n

find if
generate
inner product

iz partitioned
max element
mizmatch

partial sort
reduce

remove if
replace if
rotate_copy

Zet _intersection
stable partition
uninitialized copy

unigue

adjacent find

copy if

equal

find

find if not
generate n

inplace merge

iz sorted

merge

mowve
partial sort copy
remove

replace

reverse

search

get symmetric difference
stable sort
uninitialized copy n

unigue copy

all of

copy n
exclusive scan
find end

for each
includes

iz _heap

iz sorted until
min element
none of
partition
remove copy
replace copy
reverse copy
search n

Zet union

swap ranges
uninitialized fill

any of

count

fill

find first of

for each n

inclusgive =Scan

iz _heap until
lexicographical compare
minmax element

nth element
partition copy
remove copy if
replace copy if
rotate
set_difference

Zart

transform
uninitialized fill n

@ STE||AR GROUP

el
=]
(&
>
(]
=]
Qo
.
~
=
Q
g
Q
&)
S
(e
IS
>
~
o]
~
Q
=
—
el
<
<
=
g
(o]
-5
R
+
+
@)
1

&

Parallelism




STREAM Benchmark

@ STE||AR GROUP



Dot-product: Vectorization

@ STE||AR GROUP



11/13/2017

Control Model:
How 1s synchronization expressed?

- Low-level (thread-level) synchronization: mutex,
condition_variable, etc.

- Replace (global) barriers with finer-grain synchronization
(synchronize of a ‘as-need-basis’)

* Wait only for immediately necessary dependencies, forward progress as much
as possible

- Many APIs hand out a future representing the result
- Parallel and sequential composition of futures (future::then(), when_all(), etc.)

* Orchestration of parallelism through launching and synchronizing with
asynchronous tasks

e
=]
(&
B
Q
=]
o
.
~
=
O
g
Q

@)
~

3
E”}
~
o]
~

g

=

—

e
~
<

el
g
(o]

+—

N
+
+

©

>
=

=
=i
w0
o=
—
[}
—
—
<
~
<
al

- Synchronization primitives: barrier, latch, semaphore, channel,
* Synchronize using futures

@ STE||AR GROUP



[E=
—
©)
N
=~
@9
—
~
—
—

Synchonization with Futures

- A future 1s an object representing a result which has not been calculated yet

Locality 1 i
_ » Enables transparent synchronization <
Future object Locality 2 with producer :
Suspend <S¥ T Execute . . . . S
e Future: = Hides notion of dealing with threads %
thread (I - >
o e = Makes asynchrony manageable £
Execute / - L= thread 3
another = Allows for composition of several g
A Result is being asynchronous operations 2
Resume / returned ) ) ? ~
R » (Turns concurrency into parallelism) ©
X
=

@ STE||AR GROUP




What is a (the) Future?

- Many ways to get hold of a future, simplest way is to use (std) async:

@ STE||AR GROUP



11/13/2017

Data Model

- AGAS essential underpinning for all data management
* Foundation for syntactic semantic equivalence of local and remote operations

- Full spectrum of C++ data structures are available
- Either as distributed data structures or for SPMD style computation

- Explicit data partitioning, manually orchestrated boundary exchange
- Using existing synchronization primitives (for instance channels)

- Use of distributed data structures, like partitioned_vector
+ Use of parallel algorithms

- Use of co-array like layer (FORTRAN users like that)

- Load balancing: migration
« Move objects around in between nodes without stopping the application

e
=]
(&
B
Q
=]
o
.
~
=
O
g
Q

@)
~

3
E”}
~
o]
~

g

=

—

e
~
<

el
g
(o]

+—

N

+

+

©

>
=

=
=i
w0
o=
—
[}
—
—
<
~
<
al

@ STE||AR GROUP




wisT[o[[eLe
LTOG/ET/TT JEIERtE]

pue AOUDLINOUC ) 10J »m.a@:aa:@ paepuels ++) V - XdH

D
pr—yf
o,
S
«
%
€a
—
o
S
o




11/13/2017

Extending Parallel Algorithms

CREYED
= || BT =

el
=]
(&
>
(]
=]
Qo
.
~
=
Q
g
Q
&)
S
(e
IS
'
~
o]
~
Q
=
—
el
<
<
=
g
(o]
-5
R
+
+
@)
1

&

P
=i
w0

o=

—
D

—

—
<
!
<

A

Sean Parent: C++ Seasoning, Going Native 2013

@ STE||AR GROUP



Extending Parallel Algorithms

- New algorithm: gather

Sean Parent: C++ Seasoning, Going Native 2013

@ STE||AR GROUP



Extending Parallel Algorithms

- New algorithm: gather_async

@ STE||AR GROUP



Extending Parallel Algorithms (await)

- New algorithm: gather_async

@ STE||AR GROUP



wisT[o[[eLe
LTOG/ET/TT JEIERtE]

pue AOUDLINOUC ) 10J »m.a@:aa:@ paepuels ++) V - XdH

().
=
-
)
D
o
<+
-
D
>
D
o




erging White Dwarfs

@ STE||AR GROUP

Orbits: 4.13005

Primary Star  Donor Star
Density Density

3e+3 Max 2etl Max
g " le-3 Refine

le=3-Refine
e le-5

= .niéteq.“”w”

le-7

e
=]
(&
>;
Q
=]
Qo
.
~
=
O
g
Q

&)
~

3
bl
<
=

Qo

=

—

e
<
<

=
g
<

+—

N
+
+

©

>
=

11/13/2017

Parallelism




@ STE||AR GROUP

DB: X.0.silo
Cycle: 0

100
10
|

R
01

Max: 2.006e+04
Min: 1.000=-15

Time:1e-98

el
=]
(&
>
(]
=]
Qo
.
~
=
Q
g
Q
&)
S
(e
IS
>
~
o]
~
Q
=
—
el
<
<
=
g
(o]
-5
R
+
+
@)
1

&

P
=i
w0

o=

—
D

—

—
<
!
<

A




Adaptive Mesh Refinement

Speedup and Parallel Efficieny of OctoTiger

(single node, 7 Levels of Refinement, 1641 sub-grids)

80 ~ 1

~
o

0.8

D
o

a1
o

0.6

i
o

0.4

w
o

—i-Speedup (1 HT)
—&—Speedup (2 HT)
—a—Speedup (4 HT)

N
o

0.2

Speedup (relative to 1 core)
Parallel Efficiency (relative to 1 core)

")
=]
(ay]
>
Q
=]
Qv
=~
~
o]
o
=]
Q

<
g

“=
.
)
~
<
~

Q0

o=

—

o)
=~
o]

nS)
=}
<

+

N
+
+

O

<
'

=

10 -
——Parallel Efficiency (1 HT) k>

0 0 e
0 10 20 30 40 50 60 70 5
Number of Cores Cori IT (NERSC) =

@ STE||AR GROUP




Adaptive Mesh Refinement

Thousands

Sub-grids per second

700

600

500

400

300

200

100

Number of Sub-grids Processed per Second

0

100,000

200,000

Number of Cores
300,000 400,000 500,000 600,000

—e—10 LoR
=e—11LoR
=e—12 LoR
—e—13 LoR
—o—14 LoR

4000 6000 8000
Number of Nodes

10000

@ STE||AR GROUP

Cori II (NERSC)

")
=]
(ay]
>
Q
=]
Qv
=~
~
o]
o
=]
Q

<
g

“=
.
)
~
<
~

Q0

o=

—

o)
=~
o]

nS)
=}
<

+

N
+
+

O

<
'

=

P
=i
w0

o=

=
D

—

—
<
!

g




The Solution to the Application Problem

Os

thread 8

thread 9

thread 10
thread 11
thread 12
thread 13
thread 14
thread 15
thread 16
thread 17
thread 18
thread 19
thread 20
thread 21
thread 22
thread 23
thread 24
thread 25

20s

40 s

60s

80s

100 s

120 s

thread 8

thread 9

thread 10
thread 11
thread 12
thread 13
thread 14
thread 15
thread 16
thread 17
thread 18
thread 19

@ STE||AR GROUP

thread 20
thread 21
thread 22
thread 23
thread 24
thread 25

11/13/2017

e
=]
(&
>;
Q
=]
Qo
.
~
=
O
g
Q

&)
~

3
bl
<
=

Qo

=

—

e
<
<

=
g
<

+—

N
+
+

©

>
=

Parallelism




11/13/2017

The Solution to the Application Problem

e
o
©
B
Q
o
o
bl
~
=
Q
o
Q

(@)
~

S
>
~
@
P~

o

=

s

B
<
<

=
o
I

+

n
+
+

o

<

>

o

jog|

=]
=
0
-
=]
)]
=
=
(o]
!
(]
ol

@ STE||AR GROUP



ﬁl [ CENTER FOR COMPUTATION
- & TECHNOLOGY

@ STE||AR GROUP

HPX - A C++ Standard Library for Concurrency and

Parallelism

AY

11/13/2017




11/14/2017 HPX_Training

HPX + Cling + Jupyter
This tutorial works in a special Jupyter notebook that can be used in one of two ways:

. From this website: https://hpx-jupyter.cct.Isu.edu (https://hpx-jupyter.cct.Isu.edu)

. From the docker image: stevenrbrandt/fedora-hpx-cling

. Normally, each cell should contain declarations, e.g. definitions of functions, variables, or #include
statements.

|“‘#inc|ude using namespace std; "

. If you wish to process an expression, e.g. cout << "hello world\n" you can put .expr at the
front of the cell.

|“‘.expr cout << "hello, world\n";"*

. Sometimes you will want to test a cell because you are uncertain whether it might cause a segfault or
some other error that will kill your kernel. Othertimes, you might want to test a definition without
permanently adding it to the current namespace. You can do this by prefixing your cell with . test.
Whatever is calculated in a test cell will be thrown away after evaluation and will not kill your kernel.

".test.expr int foo[5]; foo[10] = 1;

## Docker Instructions
. Frist, install Docker on your local resource
. Second, start Docker, e.g. sudo service docker start
. Third, run the fedora-hpx-cling container, e.g.

“dockerpullstevenrbrandt/ fedora — hpx — cling docker run -it -p 8000:8000
stevenrbrandt/fedora-hpx-cling™™

After you do this, docker will respond with something like

|‘http://0.0.0.0:8000/?token=5d1eb8a4797851910de481985a5402fdc3be80280023bac5‘

Paste that URL into your browser, and you will be able to interact with the notebook.

. Fourth, play with the existing ipynb files or create new ones.

. Fifth, save your work! This is an important step. If you simply quit the container, everything you did will
be lost. To save your work, first find your docker image using docker ps.

"% docker ps CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES 4f806b5f4fh3
stevenrbrandt/fedora-hpx-cling "/bin/sh -c 'jupyter " 11 minutes ago Up 11 minutes 0.0.0.0:8000-
>8000/tcp dreamy_turing™™"

Once you have it (in this case, it's 4f806b5f4fb3), you can use docker cp to transfer files to or from
your image.

dockercpd f806b5 f4fb3 : /home/jup/H P Xy, zample. ipynb. docker cp
HPX_by example.ipynb 4f806b5f4fb3:/home/jup ™

In [1]: #include <hpx/hpx.hpp>
OQut[1]:

https://hpx-jupyter.cct.Isu.edu/user/sbrandt/nbconvert/html/share/HPX_Training.ipynb?download=false

1/10


https://hpx-jupyter.cct.lsu.edu/

11/14/2017 HPX_Training

In [2]: using namespace std;
using namespace hpx;

Out[2]:

What is a (the) Future?

Many ways to get hold of a future, simplest way is to use (std) async:

In [3]: int universal answer() { return 42; }
void deep thought()

{
future<int> promised answer = async(&universal answer);
// do other things for 7.5 million years
cout << promised answer.get() << endl; // prints 42

}
Out[3]:

If we want to do something other than a declaration, use the ".expr" prefix.

In [4]: .expr deep thought()
42
Out[4]:

Compositional Facilities

In [5]: future<string> make string()
{
future<int> f1l = async([]()->int { return 123; });
future<string> f2 = fl.then(
[]1(future<int> f) -> string

{
return to_string(f.get()); // here .get() won't block
1)

return f2;

Out[5]:

In [6]: .expr cout << make string().get() << endl;
123
Out[6]:

https://hpx-jupyter.cct.Isu.edu/user/sbrandt/nbconvert/html/share/HPX_Training.ipynb?download=false

2/10



11/14/2017 HPX_Training

In [7]: int do work(hpx::lcos::future<hpx::util::tuple<hpx::lcos::future<int>,
hpx::lcos::future<std::basic string<char> > > >& w) {
// extract the value of the first argument.
return hpx::util::get<0>(w.get()).get();
}

future<int> test when all()

{
future<int> futurel = async([](
future<string> future2 = async(

});

)->int { return 125; });
[10)

->string { return string("hi");

]
auto all f = when all(futurel, future2);

future<int> result = all f.then(
[IJ(auto f)->int {
return do work(f);
});

return result;

}
Outl[7]:

In [8]: .test.expr cout << test when all().get() << endl;
125

Test

Out[8]:

Parallel Algorithms

HPX allows you to write loop parallel algorithms in a generic fashion, applying to specify the way in which
parallelism is achieved (i.e. threads, distributed, cuda, etc.) through polcies.

In [9]: #include <hpx/include/parallel for each.hpp>
#include <hpx/parallel/algorithms/transform.hpp>
#include <boost/iterator/counting iterator.hpp>

Out[9]:

In [10]: vector<int>v ={1, 2, 3, 4, 5, 6 };
Out[10]:

Transform

Here we demonstrate the transformation of a vector, and the various mechnanisms by which it can performed in
parallel.

https://hpx-jupyter.cct.Isu.edu/user/sbrandt/nbconvert/html/share/HPX_Training.ipynb?download=false 3/10



11/14/2017

In [11]:

Out[11]:

In [12]:

Out[12]:

In [13]:

Out[13]:

In [14]:

Out[14]:

HPX_Training

.expr
// This parallel tranformation of vector v
// 1s done using thread parallelism. An
// implicit barrier is present at the end.
parallel::transform (
parallel::execution::par,
begin(v), end(v), begin(v),
[1(int 1) -> int

{
return i+l;
1}
for(int i : v) cout << i << ",";
2,3,4,5,6,7,
.expr

// This parallel tranformation of vector v
// 1s done using thread parallelism. There
// 1s no implicit barrier. Instead, the
// transform returns a future.
auto f = parallel::transform (
parallel::par (parallel::execution::task),
begin(v), end(v), begin(v),
[1(int 1) -> int
{
return i+1;
3
// work here. ..
// wait for the future to be ready.
f.wait();

for(int i : v) cout << i << ",";

3,4,5,6,7,8,

#include <hpx/include/parallel fill.hpp>
#include <hpx/include/compute. hpp>
#include <hpx/include/parallel executors.hpp>

auto host targets = hpx::compute::host::get local targets();
typedef hpx::compute::host::block executor<> executor type;
executor_type exec(host targets);

https://hpx-jupyter.cct.Isu.edu/user/sbrandt/nbconvert/html/share/HPX_Training.ipynb?download=false

4/10



11/14/2017 HPX_Training

In [15]: .expr
// Print out a list of the localities, i.e. hosts
// that can potentially be involved in this calculation.
// This notebook will probably show 1, alas.
for(auto host : host targets)
cout << host.get locality() << endl;

{0000000100000000, 0OONOOLONOOENNO0}
Out[15]:

Other Algorithms

There are a great many algorithms. Here we demonstrate a handful of them.

In [16]: .expr
std::vector<float> vd;
for(int i=0;i<10;i++) vd.push back(1l.f);
parallel::fill(parallel::execution::par.on(exec),vd.begin(),vd.end(),
0.0f);

Out[16]:

In [17]: #include <hpx/parallel/algorithms/reverse. hpp>
Out[17]:

In [18]: .expr
std::vector<float> vd;
for(int i=0;i<10;i++) vd.push back(1l.f*i);
parallel::reverse(parallel::par,vd.begin(),vd.end());

for(int val : vd) cout << val << ;
9876543210
Out[18]:

In [19]: #include <hpx/include/parallel minmax.hpp>
Out[19]:

In [20]: .expr
std: :vector<float> vd;
for(int i=0;i<10;i++) vd.push back(1l.f*rand());
auto ptr = parallel::max _element(parallel::par,vd,std::less<float>());
for(float val : vd) cout << val << " ";
cout << endl << *ptr << endl;

8.02369e+08 1.63599e+09 1.60543e+09 3.22506e+08 4.34983e+08 1.87237e+0
9 2.04466e+09 1.82667e+09 1.27975e+09 1.95976e+09
2.04466e+09

Out[20]:

https://hpx-jupyter.cct.Isu.edu/user/sbrandt/nbconvert/html/share/HPX_Training.ipynb?download=false 5/10



11/14/2017 HPX_Training

In [21]: #include <hpx/traits/is executor.hpp>
#include <hpx/include/parallel executors.hpp>

Out[21]:

In [22]: int count async = 0;
struct test async executor

{
typedef hpx::parallel::parallel execution tag execution category;
template <typename F, typename ... Ts>
static hpx::future<typename hpx::util::result of<F&&(Ts&&...)>::ty
pe>
async _execute(F && f, Ts &&... ts)
{
++count _async;
return hpx::async(hpx::launch::async, std::forward<F>(f),
std::forward<Ts>(ts)...);
}
b

Out[22]:

In [23]: // Note that the exact way to specify this trait for an executor is in
flux
// and the code here is tied to the specific version of HPX on the tes
t machine.
namespace hpx { namespace traits
{
template<>
struct is two way executor<test async executor>
: std::true_type
{}
3

Out[23]:

In [24]: .test.expr

// This parallel tranformation of vector v

// 1s done using using distributed parallelism.

test async executor e;

parallel::transform (
parallel::execution::par.on(e),
begin(v), end(v), begin(v),
[1(int 1) -> int

{
return i+l;
H;
cout << "count=" << count async << endl;
count=3
Test

Out[24]:

https://hpx-jupyter.cct.Isu.edu/user/sbrandt/nbconvert/html/share/HPX_Training.ipynb?download=false 6/10



11/14/2017 HPX_Training

Let’s Parallelize It - Adding Real Asynchrony

Here we take a step back. Instead of using a pre-designed parallel operation on a vector, we instead introduce
task-level parallelism to an existing program.

Calculate Fibonacci numbers in parallel (1st attempt)

In [25]: uint64 t fibonacci(uint64 t n)
{
// if we know the answer, we return the value
if (n < 2) return n;
// asynchronously calculate one of the sub-terms
future<uint64 t> f = async(launch::async, &fibonacci, n-2);
// synchronously calculate the other sub-term
uint64 t r = fibonacci(n-1);
// wait for the future and calculate the result
return f.get() + r;

Out[25]:

In [26]: .expr cout << fibonacci(10) << endl;
55
Out[26]:

Let’s Parallelize It — Introducing Control of Grain
Size

Parallel calculation, switching to serial execution below given threshold

https://hpx-jupyter.cct.Isu.edu/user/sbrandt/nbconvert/html/share/HPX_Training.ipynb?download=false 7/10



11/14/2017 HPX_Training
In [27]: const int threshold = 20;

uint64 t fibonacci serial(uint64 t n)
{
if (n < 2) return n;
uint64 t f1 = fibonacci serial(n-2);
uint64 t f2 = fibonacci serial(n-1);
return fl1 + f2;
}

uint64 t fibonacci2(uint64 t n)
{

if (n < 2) return n;

if (n < threshold) return fibonacci serial(n);

// asynchronously calculate one of the sub-terms
future<uint64 t> f = async(launch::async, &fibonacci2, n-2);
// synchronously calculate the other sub-term

uinté4 t r = fibonacci2(n-1);

// wait for the future and calculate the result

return f.get() + r;

Out[27]:

In [28]: .expr cout << fibonacci2(22) << endl;
17711
Out[28]:

Let’s Parallelize It - Apply Futurization

Parallel way, futurize algorithm to remove suspension points

In [29]: future<uint64 t> fibonacci3(uint64 t n)

{
if(n < 2) return make ready future(n);
if(n < threshold) return make ready future(fibonacci serial(n));
future<uint64 t> f = async(launch::async, &fibonacci3, n-2);
future<uint64 t> r = fibonacci3(n-1);
return dataflow(
[1(future<uint64 t> f1l, future<uint64 t> f2) {
return fl.get() + f2.get();
T
f, r);
}

Out[29]:

https://hpx-jupyter.cct.Isu.edu/user/sbrandt/nbconvert/html/share/HPX_Training.ipynb?download=false 8/10



11/14/2017 HPX_Training

In [30]: .expr cout << fibonacci3(22).get() << endl;
17711
Out[30]:

Let’s Parallelize It - Unwrap Argument Futures

In [31]: #include <hpx/util/unwrapped.hpp>
using hpx::util::unwrapping;

future<uint64 t> fibonacci4(uint64 t n)

{
if(n < 2) return make ready future(n);
if(n < threshold) return make ready future(fibonacci serial(n));

future<uint64 t> f
future<uint64 t> r

async(launch::async, &fibonacci4, n-2);
fibonacci4(n-1);

return dataflow(

unwrapping([](uint64 t f1, uint64 t f2) {
return fl+f2;

1
f

y T
Out[31]:

In [32]: .expr cout << fibonacci4(22).get() << endl;
17711
Out[32]:

Excercise: Parallelize a sort
Test what you've learned. See if you can speed up the quicksort program below by find a place to:

1. parallelize the code with async
2. use parallel transforms

In [33]: #include <unistd.h>
#include <stdlib. h>
#include <iostream>
#include <vector>
#include <functional>
using namespace std;
function<void(vector<int>&)> mygsort = [](vector<int>& v)->void {};

Out[33]:

https://hpx-jupyter.cct.Isu.edu/user/sbrandt/nbconvert/html/share/HPX_Training.ipynb?download=false 9/10



11/14/2017

Discussion

HPX_Training

We want to define the mygsort function repeatedly, and call it recursively. This is hard to do in C++. So we define
it as a std::function<>. There is a slight awkwardness to this. If you want to call mygsort() with an async function,
you have to do it like this:

auto f

Not like this

auto f

In [42]:

out[42]:

hpx::async([&arg] (){ myqgsort(arg); });

hpx::async(myqsort,arg);

.test.expr
myqsort = [](vector<int>& v)->void {
if(v.size()<2) return;
vector<int> pre, eq, post;
int pivot = v[rand() % v.size()];
for(int val : v) {
if(val < pivot) pre.push back(val);
else if(pivot < val) post.push back(val);
else eq.push back(val);
}
myqsort(pre);
mygsort(post);
//for(int i=0;i<eq.size();i++) v[i+pre.size()] = eq[i];
parallel::transform(parallel::par,
eq.begin(), eq.end(), v.begin()+pre.size(),[]1(int i) { return i;
});
for(int i=0;i<post.size();i++) v[i+pre.size()+eq.size()] = post[il];
for(int i=0;i<pre.size();i++) v[i] = prelil];
}s
vector<int> vv{20};
for(int i=0;1i<20;i++) vv.push back(rand() % 100);
for(int val : vv) cout << val << " ";
cout << endl;
myqsort(vv);
for(int val : vv) cout << val << " ";
cout << endl;

20 26 32 84 5 66 50 81 7 5 53 69 45 84 94 59 21 80 96 17 6
556 7 17 20 21 26 32 45 50 53 59 66 69 80 81 84 84 94 96

Test

https://hpx-jupyter.cct.Isu.edu/user/sbrandt/nbconvert/html/share/HPX_Training.ipynb?download=false

10/10



11/14/2017

WaveToy

The Wave Equation

This problem file sets up a very simple physical system, a wave propagating in one dimension. It is a nice
example because it requires several loops in sequence and presents an opportunity to practice creating and
using HPX parallel algorithms.

In [1]:

Out[1]:

#include
#include
#include
#include
#include

Basic Variables

We are going to evolve two variables, phi and psi on a grid described by IV, dx, and x(. The system of
equations we will solve is

8t¢ = Ca:cw
8t'¢ = caﬂc¢

In [2]:

Out[2]:

<hpx/hpx. hpp>

<vector>
<hpx/include/parallel for each.hpp>
<hpx/parallel/algorithms/transform. hpp>
<boost/iterator/counting iterator.hpp>

const int N = 300;
std::vector<double> phi(N),psi(N);
const double dx = 0.01, x0 = -1.5;

https://hpx-jupyter.cct.Isu.edu/user/sbrandt/nbconvert/html/share/WaveToy.ipynb?download=false

1/6



11/14/2017 WaveToy

In [3]: #include <fstream>
#include <sstream>
#include <iostream>
#include <vector>
#include <content. hpp>

/**
* The following function plots an array of vectors
* of doubles in a single overlapping plot.

*/
void plot vector(std::vector<std::vector<double>> v,std::string iname)
{
// Store the data in a text file
const char *fname = "data.txt";

std::ofstream o(fname);
for(int n=0;n<v.size();n++) {
const std::vector<double>& vv = v[n];
for(int i=0;i<vv.size();i++) {
if(i > 0) o << ' ';
0 << 1;
}
0 << std::endl;
for(int i=0;i<vv.size();i++) {
if(i >0) o << ' ';
0 << vv[i];
}

0 << std::endl;

}

o.close();

// Create a python script to run matplotlib
std::ostringstream cmd;

cmd << "import matplotlib\n";

cmd << "matplotlib.use('Agg')\n";

cmd << "import numpy as np\n";

cmd << "import matplotlib.pyplot as plt\n";
cmd << "f = np.genfromtxt('" << fname << "')\n";
cmd << "plt.figure()\n";

cmd << "for n in range(0,f.shape[0],2):\n";
cnd << " plt.plot(f[n,:],f[n+l,:]1)\n";

cmd << "plt.savefig('" << iname << ".png')\n";
cmd << "exit(0)\n";

std::ofstream o2("p.py");

02 << cmd.str();

02.close();

system("python3 p.py");

// Create the html. The pid is added to prevent caching.

// Note that the pid changes with every cell with the

// current implementation of HPX/cling.

std::ostringstream html;

html << "<img src='" << iname <<
and() << "'>";

std::string htmls = html.str();

create content(htmls.c str());

.png?pid=" << getpid() << << r

}

https://hpx-jupyter.cct.Isu.edu/user/sbrandt/nbconvert/html/share/WaveToy.ipynb?download=false 2/6



11/14/2017 WaveToy

Out[3]:

In [4]: .expr
// What follows is a random test of the plot function.
std: :vector<double> v1 = {1,2,3,4,3.5,2,9,9};
std: :vector<double> v2 = {5,6,7,8,8.5,7.4,2,4};
std::vector<std::vector<double>> plots;
plots.push back(vl);
plots.push back(v2);
plot vector(plots,"test");

Out[4]:

In [8]: // This version of plot vector plots a single vector only.
void plot vector(const std::vector<double>& v) {
std: :vector<std: :vector<double>> vv;
vv.push back(v);
plot vector(vv,"vec");

}
Out[8]:

https://hpx-jupyter.cct.Isu.edu/user/sbrandt/nbconvert/html/share/WaveToy.ipynb?download=false 3/6



11/14/2017

In [9]:

Out[9]:

In [10]:

Out[10]:

In [11]:

Out[11]:

WaveToy

// Apply boundary conditions. In this case, we are using periodic boun
dary
// conditions, i.e. if we move N-2 points to the right we come back to
where we were.
void boundary(std::vector<double>& vv) {
const int n = vv.size();
vw[0O] = vv[n-2];
vw[n-1] = vv[1l];

// The following are auxiliary variables which are required by our Run
ge-Kutta

// time integration scheme.

std::vector<double> phi2(N), psi2(N), phi3(N), psi3(N);
std::vector<double> k1 phi(N), k1 psi(N), k2 phi(N), k2 psi(N), k3 phi
(N), k3 psi(N);

#include <hpx/include/parallel for each.hpp>
#include <hpx/parallel/algorithms/transform.hpp>
#include <boost/iterator/counting iterator.hpp>

The Wave Equation Evolution Code

The sequence of loops below will perform an evolution of the wave equation, essentially, a sine wave that
propagates unchanged to the right. The important thing is not understanding the physics, but in parallelizing the
loops and recognizing the dependencies between them.

As an example, the first loop is already parallelized with for_each. Note: You should be able to find a place to use
parallel::execution::task

https://hpx-jupyter.cct.Isu.edu/user/sbrandt/nbconvert/html/share/WaveToy.ipynb?download=false

4/6



11/14/2017

In [15]:

WaveToy

.expr
std::vector<std::vector<double>> plots;
double t = 0.0,t end = 1.0;

double t every = t end/10;

double t plot = 0;

double dt = dx/2.0;

const double w = 1;
const double pi = 4.0*atan2(1.0,1.0);
const double k = 2.0*pi/(dx*(N-2));

w/k;
1.0;
c*k*A/w; // == 1.0

const double c
const double A
const double B

// Initialize the physical variables
/*

https://hpx-jupyter.cct.Isu.edu/user/sbrandt/nbconvert/html/share/WaveToy.ipynb?download=false

5/6



11/14/2017 WaveToy
for(int 1=0;i<N;i++) {
// psi = A*cos(k*x + w*t)
// phi = B*cos(k*x + w*t)
// d(phi)/dt = c*d(psi)/dx
// w¥B*sin(k*x + w*t) = c*k*A*sin(k*x + w*t)
// B = -c*k*A/w
// d(psi)/dt = c*d(phi)/dx
// wW¥A*sin(k*x + w*t) = c*k*B*sin(k*x + w*t)
double x = x0 + i*dx;
phi[i] B*sin(k*x);
psi[i] A*sin(k*x);

}

*/

hpx::parallel::for each(
hpx::parallel::par,
boost::counting iterator<int>(0),
boost::counting iterator<int>(N),
[&1( int 1) {

double x = x0 + i*dx;
phi[i] = B*sin(k*x);
psi[i] = A*sin(k*x);

});
while(t < t end) {

for(int i=1;i<N-1;i++) {
kl phi[i] c*(psi[i+1]-psil[i-11)/(2*dx);
kl psi[i] = c*(phi[i+1]-phi[i-1])/(2*dx);

}

for(int i=1;i<N-1;i++) {
phi2[i] phi[i] + (1./3.)*dt*kl phi[il];
psi2[i] psi[i] + (1./3.)*dt*kl psi[il;

}

// the boundary routines can be parallelized also

boundary(phi2);

boundary(psi2);

for(int i=1;i<N-1;i++) {
k2 phi[i] = c*(psi2[i+1]-psi2[i-11)/(2*dx);
k2 psi[i] = c*(phi2[i+1]-phi2[i-1]1)/(2*dx);

}

for(int i=1;i<N-1;i++) {
phi3[i] = phi[i] + (2./3.)*dt*kl phi[i];
psi3[i] psi[i] + (2./3.)*dt*kl psi[il];

}

boundary(phi3);

boundary(psi3);

for(int i=1;i<N-1;i++) {
k3 phi[i] c*(psi3[i+1]-psi3[i-11)/(2*dx);
k3 psi[il] c*(phi3[i+1]-phi3[i-11)/(2*dx);

}

for(int i=1;i<N-1;i++) {
phi[i] phi[i] + 0.5*dt*(k2 phi[i]+k3 phi[i]);
psil[il] psi[i] + 0.5*dt*(k2 psi[i]+k3 phi[i]);

}

boundary(phi);

boundary(psi);

t += dt;

t plot += dt;

if(t plot >= t every) {

https://hpx-jupyter.cct.Isu.edu/user/sbrandt/nbconvert/html/share/WaveToy.ipynb?download=false 6/6



Performance Analysis of HPX

in Jupyter Notebooks using APEX

Kevin Huck
khuck@cs.uoregon.edu

http://github.com/khuck/xpress-apex
Download slides from: http://tau.uoregon.edu/SC17-HPX-APEX.pdf

O

UNIVERSITY OF OREGON




Install Docker image from USB

* |nstall Docker (if necessary)

* Insert USB key, open a terminal, navigate to key
directory and:

* (sudo) docker load -i fedora-hpx-cling
* (sudo) docker pull stevenrbrandt/fedora-hpx-cling

* (sudo) docker run -it -p 8000:8000 stevenrbrandt/
fedora-hpx-cling

e “sudo” may be necessary on some machines

Interactive HPC: Using C++ and HPX inside Jupyterhub to Write Performant Portable Parallel Code (APEX)



* Introduction to APEX — Autonomic Performance
Environment for eXascale

* Motivation, overview, API
* Integration with HPX

e Building HPX with APEX
 APEX event listeners

 Postmortem analysis of HPX applications
— Gnuplot/Python visualizations of APEX data
— OTF2 output to Vampir
— Profile output to TAU

Interactive HPC: Using C++ and HPX inside Jupyterhub to Write Performant Portable Parallel Code (APEX)



APEX Measurement : Motivation

* Originally designed as a performance measurement library
for distributed, asynchronous tasking models/runtimes

— i.e. HPX, but there are others

* Why another measurement library?
— “not invented here” mentality? Reinventing the wheel? No.

* New challenges:
— Lightweight measurement (tasks <1ms)
— High concurrency (both OS threads and tasks in flight)
— Distinction between OS and runtime (HPX) thread context

— Lack of a traditional call stack
e Task dependency chain instead

— Runtime controlled task switching
— Dynamic runtime control

Interactive HPC: Using C++ and HPX inside Jupyterhub to Write Performant Portable Parallel Code (APEX)



APEX Runtime Adaptation : Motivation

* Controlling concurrency
— Energy efficiency
— Performance
* Parametric variability
— Granularity for this machine / dataset?

* Load Balancing
— When to perform AGAS migration?
* Parallel Algorithms (for_each...)
— Separate what from how

e Address the “SLOW(ER)” performance model

Interactive HPC: Using C++ and HPX inside Jupyterhub to Write Performant Portable Parallel Code (APEX)



Introduction to APEX

* Performance awareness and performance adaptation

* Top down and bottom up performance mapping / feedback

— Make node-wide resource utilization data and analysis, energy
consumption, and health information available in real time

— Associate performance state with policy for feedback control
APEX introspection
— OS: track system resources, utilization, job contention, overhead

— Runtime (HPX): track threads, queues, concurrency, remote
operations, parcels, memory management

— Application timer / counter observation
Post-mortem performance analysis
— “secondary” goal, but has been useful

Integrated with HPX performance counters

Interactive HPC: Using C++ and HPX inside Jupyterhub to Write Performant Portable Parallel Code (APEX)



APEX architecture

APEX Introspection

S
&
R\

Application a
APEX State

Triggered

APEX Policy Engine

-

~
System Info

(/proc, getrusage,
LM Sensors, etc.)

Interactive HPC: Using C++ and HPX inside Jupyterhub to Write Performant Portable Parallel Code (APEX)



APEX Introspection

* APEX collects data through “inspectors”

— Synchronous uses an event APl and event “listeners”
* |nitialize, terminate, new thread — added to HPX runtime
* Timer start, stop, yield*, resume™ - added to HPX task scheduler
e Sampled value (counters from HPX)

e Custom events (meta-events)

— Asynchonous do not rely on events, but occur periodically
* APEX exploits access to performance data from lower

stack components

— “Health” data through other interfaces (/proc/stat, cpuinfo,
meminfo, net/dev, self/status, Im_sensors, power*, etc.)

Interactive HPC: Using C++ and HPX inside Jupyterhub to Write Performant Portable Parallel Code (APEX)



APEX Measurement API (subset)

Starting Timers:

apex::profiler* apex::start(const string &name,
void** data ptr = OLL);

apex::profiler* apex::start(const uintod t
address, void** data ptr = OLL);

apex::profiler* apex::resume (const string name,

void** context = OLL);
apex::profiler* apex::resume (const uinto4d t
address, void** context = OLL);

Stopping Timers:

vold apex::stop(apex::profiler* p);
vold apex::yield(apex::profiler* p);
Sampling a counter:

volid apex::sample value (const string name,
double wvalue) ;

Interactive HPC: Using C++ and HPX inside Jupyterhub to Write Performant Portable Parallel Code (APEX)



* Note about yield, resume — exist for accurate
counting of “number of calls” in the face of pre-
emption (usually handled by HPX scheduler):

Timer Start Timer Stop Call count is
Command Command increased by:
apex::start() apex::stop() 1
apex::start() apex::yield() 0
apex::resume() apex::yield() 0
apex::resume() apex::stop() 0

Interactive HPC: Using C++ and HPX inside Jupyterhub to Write Performant Portable Parallel Code (APEX)



APEX Measurement APl example

volid foo(int x) {
// sample the argument, for example
apex: :sample counter(“foo(x)"”, x);
// start a timer
apex: :profiler* p = apex::start(&foo);
/* do some work in function foo */

// stop the current timer to wait on some asynchronous subtask
apex: :yield(p) ;

/* wait on result from “subtask” */

result = some future.get();

// “resume” the APEX timer

p = apex::start(&foo) ;

/* do some more work in function foo */

// stop the timer
apex: :stop(p) ;

Interactive HPC: Using C++ and HPX inside Jupyterhub to Write Performant Portable Parallel Code (APEX)



HPX and APEX - Integration

* In HPX, all tasks scheduled by the thread scheduler
are “automatically” timed — with some caveats

 HPX registered actions are automatically timed
o All threads/tasks are timed, attribution is the
required user intervention

— Asynchronous functions, direct actions are correctly
attributed if wrapped with an
hpx::util::annotated function object.

— See notebook examples for details

Interactive HPC: Using C++ and HPX inside Jupyterhub to Write Performant Portable Parallel Code (APEX)



Annotation examples:

// Forward declaration of the action

uint64 t fibonacci a(uint64 _t n);

// This is to generate the required bollerplate we need for the remote
// invocation to work.

HPX PLAIN ACTION(fibonacci_a, fibonacci action);

/* eas */f

future<uint64 t> nl = async(fib, locality id, n ~ 1);

using namespace hpx::util;
future<uint64 t> f = async(launch::async,
annotated function(unwrapping(&fibonacci3), "fibonacci3"), n-2);

O

UNIVERSITY
OF OREGON

Interactive HPC: Using C++ and HPX inside Jupyterhub to Write Performant Portable Parallel Code (APEX)




APEX Event Listeners

Profiling listener

Start event: input name/address, get timestamp, return profiler handle

Stop event: get timestamp, put profiler object in a queue for back-end
processing, return

Sample event: put the name & value in the queue

Asynchronous consumer thread: process profiler objects and samples to build
statistical profile (in HPX, processed/scheduled as a thread/task)

Optional: screen/CSV output, build task scatterplot, build taskgraph, etc.

TAU Listener (postmortem analysis)

Synchronously passes all measurement events to TAU to build an offline profile

* OTF2 Listener (postmortem analysis)

Synchronously passes all measurement events to libotf2 for trace analysis

e Concurrency listener (postmortem analysis)
— Start event: push timer ID on stack
— Stop event: pop timer ID off stack
— Asynchronous consumer thread: periodically log current timer for each thread,

output report at termination

Interactive HPC: Using C++ and HPX inside Jupyterhub to Write Performant Portable Parallel Code (APEX)



APEX Policy Listener

e Policies are rules that decide on outcomes based on
observed state

— Triggered policies are invoked by introspection APl events

— Periodic policies are run periodically on asynchronous thread
* Polices are registered with the Policy Engine

— Applications, runtimes, and/or OS register callback functions

e Callback functions define the policy rules
— “If x <y then...”

* Enables runtime adaptation using introspection data
— Feedback and control mechanism
— Engages actuators across stack layers

— Could also be used to involve online auto-tuning support*
» Active Harmony http://www.dyninst.org/harmony

Interactive HPC: Using C++ and HPX inside Jupyterhub to Write Performant Portable Parallel Code (APEX)



APEX Policy API (subset)

apex event type
apex::register custom event (const
string &name) ;

apex::custom event (apex event type, void*
event data);

apex tuning session handle
apex::setup custom tuning(std::functio
n<double (void)> metric,
apex event type event type, 1nt
num 1nputs, long** inputs, long* mins,
long* maxs, long* steps);

Interactive HPC: Using C++ and HPX inside Jupyterhub to Write Performant Portable Parallel Code (APEX)



APEX Policy APl example

See last example in notebook:

apex::register custom event () In
setup counters()

apex::get profile() (as potential
exercilse) In get counter value ()

apex::setup custom tuning() In
do 1d solve repart ()

Interactive HPC: Using C++ and HPX inside Jupyterhub to Write Performant Portable Parallel Code (APEX)



Building HPX with APEX

S cmake <usual HPX settings>...
-DHPX_WITH_APEX=TRUE \
-DAPEX_WITH_ACTIVEHARMONY=TRUE/FALSE \
-DAPEX_WITH_PAPI=TRUE/FALSE \
-DAPEX_WITH_MSR=TRUE/FALSE \
DAPEX_WITH OTF2=TRUE/FALSE \

S make (as usual) i.e. “make —j 8 core examples tests”

Interactive HPC: Using C++ and HPX inside Jupyterhub to Write Performant Portable Parallel Code (APEX)



APEX environment variables

APEX_DISABLE : 0

APEX_SUSPEND : 0
APEX_PAPI_SUSPEND : 0
APEX_PROCESS_ASYNC_STATE : 1
APEX_TAU : 0

APEX_POLICY : 1
APEX_MEASURE_CONCURRENCY : 0
APEX_MEASURE_CONCURRENCY_PERIOD : 1000000
APEX_SCREEN_OUTPUT : 1
APEX_PROFILE_OUTPUT : 0
APEX_CSV_OUTPUT : 0
APEX_TASKGRAPH_OUTPUT : 0
APEX_PROC_CPUINFO : 0
APEX_PROC_MEMINFO : 0
APEX_PROC_NET_DEV : 0
APEX_PROC_SELF STATUS: 0
APEX_PROC_SELF_10: 0
APEX_PROC_STAT : 1
APEX_PROC_PERIOD : 1000000

Interactive HPC: Using C++ and HPX inside Jupyterhub to Write Performant Portable Parallel Code (APEX)

APEX_THROTTLE_CONCURRENCY : 0
APEX_THROTTLING_MAX_THREADS : 4
APEX_THROTTLING_MIN_THREADS : 1
APEX_THROTTLE_ENERGY : 0
APEX_THROTTLE_ENERGY_PERIOD : 1000000
APEX_THROTTLING_MAX_WATTS : 300
APEX_THROTTLING_MIN_WATTS : 150
APEX_PTHREAD_WRAPPER_STACK_SIZE : 0
APEX_OMPT_REQUIRED_EVENTS_ONLY : 0
APEX_OMPT_HIGH_OVERHEAD_EVENTS : 0
APEX_PIN_APEX_THREADS : 1
APEX_TASK_SCATTERPLOT : 1
APEX_POLICY_DRAIN_TIMEOUT : 1000
APEX_PAPI_METRICS :

APEX_PLUGINS :

APEX_PLUGINS_PATH : ./

APEX_OTF2:0
APEX_OTF2_ARCHIVE_PATH : OTF2_archive
APEX_OTF2_ARCHIVE_NAME : APEX

O

UNIVERSITY
OF OREGON




Note about environment variables...

 Some batch submission systems do not pass
environment variables to the application without
considerable effort

 APEX will read environment variables from SPWD/
apex.conf file

* All variables also have API calls for getting/setting

— Note: some are only effective at startup because they
change/set the APEX configuration
e i.e. APEX_DISABLE, APEX_TAU, APEX_PAPI_METRICS, ...

Interactive HPC: Using C++ and HPX inside Jupyterhub to Write Performant Portable Parallel Code (APEX)



Post-mortem output examples

Interactive HPC: Using C++ and HPX inside Jupyterhub to Write Performant Portable Parallel Code (APEX) 21



Example Screen Output

Elapsed time: 2.40514 seconds

Cores detected: 4

Worker Threads observed: 5
Available CPU time: 9.62057 seconds

Timer : #calls | mean | total | % total
someThread (void¥*) : 2 1.39e+00 2.79e+00 28.965

foo(int) : 131072 2.00e-05 2.63e+00 27.306

bar (int, apex::profiler**, void*¥*) : 131072 9.69%9e-06 1.27e+00 13.198

someUntimedThread (void*) : 2 1.12e+00 2.24e+00 23.271

main : 1 1.40e+00 1.40e+00 14.548

APEX MAIN : 1 2.41e+00 2.41e+00 100.000

Total timers : 262,150

To enable:
export APEX_S CREEN_OUT PUT=1

or, call apex::dump (bool reset);

O

UNIVERSITY
OF OREGON

Interactive HPC: Using C++ and HPX inside Jupyterhub to Write Performant Portable Parallel Code (APEX)




Concurrency View (before fix)

60000
50000 |
40000 |
30000 |

20000 |

Total Threads Executing

10000 |

0 150 300 450 600 750 900 1050 1200
Time (sample period)

+ 200000

150000

100000

| 50000

0

Power (Watts)

Interactive HPC: Using C++ and HPX inside Jupyterhub to Write Performant Portable Parallel Code (APEX)



Concurrency View (after fix)

i | 200000
60000 |

%
5 50000 150000
o 2
W 40000 | ©
g 100000 =
S 30000 | S
- o)
|_ -
Tg To enable:
|_

export APEX MEASURE CONCURRENCY=1
export APEX MEASURE CONCURRENCY PERIOD=100000

0 I A B B 0
0 150 300 450 600 750
Time (sample period)

Interactive HPC: Using C++ and HPX inside Jupyterhub to Write Performant Portable Parallel Code (APEX)



OTF2 View in Vampir

[ ) (] X\ Trace View - [storage/users/khuck/src/operation_gordon_bell/OTF2_archive/APEX.otf2 * - Vampir
File Edit Chart Filter Window Help
; m il = = = Ee =
=ExRELBOTERLS @ 2N[B "*’WI [
Timeline Function Summary
0s 15s 30 S 45s 60 s 90 s All Processes, Accumulated Exclusive Time per Function
_______ H (2l 1,000 s 750 s 500 s 250 s Os
thread 18 [N ,,,”""”"“"”!! T T NN O A O AN DO e ] ] ] | send_hydro_bou...ry_action_type [}
thread 10 ([ S 100 OO A0 00 1,149736 5 step_action_type
thr..20 ¢ IR ""“””'!l I 0TS0 0 RN 1 R A T T NN [ES7:962°E R end_gravity b...ry_action_type
thread 21 Il SN O 0 AN T T b T 206289 solve_gravity_action_type
thr..22 IO '“' ""'!ll"lmlm QAL 000 AW T O LT 175.751 s NI check_for_refin...ent_action_type | |
PN | O [N [ 1 T T O 0 T T T 1221946 5 [ | form_tree_action_type
ORI | 01 LA T (7 A T (e BN LR TN T 97.606 5[] get_child_client action_type
PN (1 T |7 78 1 1 T DAL T T T ST T 56.891 5[] output_action_type
26 8T 910N OO0 0 T 44862 5 [§ compare_analytic_scton_type
thr..27 |l o 32.592s %send_hydro_children_action_type
v 25 [ W o TSN Y00 SR A 24428 5 ] ge nieces action type
OSSN i MANIANL AT 0l IR T EO 23872 5[ send,_gravit.e..s.action.ype
YT (MO T 1T 4 T T T T T T T 21913 5[] send_gravity_m...es_action type §
thread 31 [N ) "":Iﬂ! TS T T BRI N T (e o 10 i -
thr... 32 ||||m_ TN o A I S © Function Summary X | 9
w33 [N '!l Imm-m_-mnmnmmmnlr
ST | (NN o708 AT A RN T 0 L (g Property Value
o35 TIFAAIF !lmw-"m mmmmmmmmnlmn_ || {oisplay Functon Summary
‘ ; . | Filter All Processes
All Processes, Exclusive Time per Function X - -

90 %

80 %

70 %

[0 -

50 %

40 % g
30 % -/t
20 % :-|ff--
10 %

0%

Function Group

Accumulated Exclusive Time 44.862149 s

Percentage

USER

25.5435%

To enable:
export APEX OTF2=1

O

Interactive HPC: Using C++ and HPX inside Jupyterhub to Write Performant Portable Parallel Code (APEX)

UNIVERSITY
OF OREGON



Profile View in TAU ParaProf

Metric: TIME
Value: Exclusive

Std. Dev. 1
Mean | el el W
Max | sl [owl WE
Min | bl 1§
node 0 | __Li]]
node 1 | sl el W
node 2 | el Tl [
node 3 | el [l Wl
node 4 | el Tl W0
node 5 | el el 0
node 6 | el ol §§
node 7 | el el W
node 8 £ T
node 9 [ 10 enable: = el i
node 10 [ [ el el W
node 11 0 €Xport APEX PROFILE OUTPUT=]1 i Wl Wl
node 12 [ . — - ~ el
node 13 [ O B
node 14
et & export APEX TAU=1 =
and run with “tau exec”

Interactive HPC: Using C++ and HPX inside Jupyterhub to Write Performant Portable Parallel Code (APEX)



Task Scatterplot Analysis (prototype)

bar()
A T T T I. T I-I T T T T T IWP
®
10°} |
To enable:
export APEX TASK SCATTERPLOT=1 ]
v
v
10%} |
v v
o b v vv = v
Y b °.. o® oo ° g 101'vv'v' v" "' vY Yy 'vv vy ,"v; v |
i 00‘.. s & ':. °.0 ® o° oo 3 i! ". x “ v' Y ‘;ilvvlv
A v
v
10'} : = vy "
° e o [} ° v Vv v ’ v ¥ V' b4
oo * v v Yvv
) - DA ) e . o . v d ¥ v vV v v
[ v
.‘ ° S .O {‘ o 2 .‘o .\0. ®e v §y v e s
o o, : e & % ° 4 ¥ : {'
@ ® 0 v
° 3 ° 107 1
° - ¥ o
) ; ¥ v,
10 4 v v W v v
Y o YV PE VvV vy Ve, % Y
v v Vv "v 'ﬁ'
1.|2 1.I4 1:6 1:8 2.IO 2.2 2.4 1.|2 1.I4 1:6 118 2.|0 2.2 2.4
seconds from program start seconds from program start

O

UNIVERSITY
OF OREGON

Interactive HPC: Using C++ and HPX inside Jupyterhub to Write Performant Portable Parallel Code (APEX)




Taskgraph View (prototype)

To enable:
export APEX_TASKGRAPH_OUT PUT=1

count: 176

count: |

Interactive HPC: Using C++ and HPX inside Jupyterhub to Write Performant Portable Parallel Code (APEX)



HPX + APEX Policy Examples

Interactive HPC: Using C++ and HPX inside Jupyterhub to Write Performant Portable Parallel Code (APEX) 29



Example : HPX+APEX

Heat diffusion

1d_stencil

o 140
1D stencil code
Data array z
v 80

partitioned into £ ., _—
chunks a0
20
1 node with 0

. 1 2 3 45 6 7 8 9 1011121314151617 18 192021222324

No hyperthreadlng Number of Worker Threads

Performance increases to a point with increasing
worker threads, then decreases

Interactive HPC: Using C++ and HPX inside Jupyterhub to Write Performant Portable Parallel Code (APEX)



Concurrency & Performance

* Region of
maximum
performance 2 100
correlates with E
thread queue ‘Z‘Z
length runtime :

performance counter

1d_stencil

123456 7 8 9101112131415161718192021222324
Number of Worker Threads

— Represents # tasks currently waiting to execute

Could do introspection on this to control

concurrency throttling policy (see next example)

Interactive HPC: Using C++ and HPX inside Jupyterhub to Write Performant Portable Parallel Code (APEX)

Thread queue length



1d_stencil 4 Baseline

e 48 worker
threads (with

100,000,000 elements, 1000 partitions

50 300 hyperthreading,
s - on Edison)
-l : * Actual
o wl 7 - I | concurrency
o LM || & muchlower
5 oo/l fLE y, | f | *  — Implementation
SR | Hl: f N is memory
SHEEE e d 1Dl & Bl | bound
5 i iml ‘ f | | | * Large variation in
0 - 0 concurrency over
ime power
threac(l)t%aepr — 138 secs -l-ime
_ primary_namespace_service_action ..
Where p”magﬂ'éir:ﬂii‘é??Zecff:‘féﬁ‘tiﬁévv'v‘ie&ae‘?ﬁg Event-generated _ Tasks waitin g on
calculation o — metrics prior tasks to
takes place complete

Interactive HPC: Using C++ and HPX inside Jupyterhub to Write Performant Portable Parallel Code (APEX)



1d stencil w/optimal # of Threads

(]
100,000,000 elements, 1000 partitions
12 300
o
10 m o m =
8 L - - L | - - - -
>
(@] - - - .
& 5
(&)
& o
o
O
- 0
ime power
thread cap 61 secs
other
primary_namespace_service_action ([

primary_namespace_bulk_service_action
hpx::lcos::local::dataflow::execute
do_work_action

partition_data

12 worker
threads on
Edison

Greater

proportion of

threads kept

busy

— Less
interference
between active
threads and

threads waiting
for memory

Much faster

— 61 sec. vs 138
sec.

Interactive HPC: Using C++ and HPX inside Jupyterhub to Write Performant Portable Parallel Code (APEX)



1d stencil Adaptation with APEX

* |nitially 32
worker threads

20

16 |

] |« ActiveHarmony
Tl searches for
: _ minimal thread
gueue length

* Quickly
A I I A B B B B B B B B B B B B
converges on

other
hpx::lcos::local::dataflow::execute
apex_policy_handler 1 2
APEX MAIN THREAD mmss

Concurrency

Interactive HPC: Using C++ and HPX inside Jupyterhub to Write Performant Portable Parallel Code (APEX)



Adapting Block Size

* |s 1000 partitions of 100000 cells the best
partitioning?
 Parametric studies say “no”.

* Can we modify the example to repartition as
necessary to find better performance?

Interactive HPC: Using C++ and HPX inside Jupyterhub to Write Performant Portable Parallel Code (APEX)



1d stencil: adapting block size

12 LIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

00)

Concurrency

N

Time

grain_size parameter — {1+
other

hpx_main
hpx::lcos::local::dataflow::execute

50

40

30

20

10

Grain Size Parameter Value

Interactive HPC: Using C++ and HPX inside Jupyterhub to Write Performant Portable Parallel Code (APEX)



Support Acknowledgements

Support for this work was provided through Scientific Discovery through
Advanced Computing (SciDAC) program funded by U.S. Department of Energy,
Office of Science, Advanced Scientific Computing Research (and Basic Energy
Sciences/Biological and Environmental Research/High Energy Physics/Fusion
Energy Sciences/Nuclear Physics) under award numbers DE-SC0008638, DE-
SC0008704, DE- FG02-11ER26050 and DE-SC0006925.

This research used resources of the National Energy Research Scientific
Computing Center, a DOE Office of Science User Facility supported by the
Office of Science of the U.S. Department of Energy under Contract No. DE-
AC02-05CH11231.

This material is (will be?) based upon work supported by the National Science
Foundation Graduate Research Fellowship under Grant No. 1737803.

The authors acknowledge that the Talapas HPC cluster and the High
Performance Computing Research Core Facility at The University of Oregon
have contributed to the research results reported within this paper.

Lsu O

{SSTE"ARGROUP UNIVERSITY

OF OREGON

\\\.\1-
S 3
N7
£ ® Cl
[a) =3
<
Z
=)
2

g entific Discovery
\\5 through
505 Advanced Computing

Interactive HPC: Using C++ and HPX inside Jupyterhub to Write Performant Portable Parallel Code (APEX)



11/14/2017 APEX-SC17-Tutorial

HPX + Cling + Jupyter
This tutorial works in a special Jupyter notebook that can be used in one of two ways:

. From this website: https://hpx-jupyter.cct.Isu.edu (https://hpx-jupyter.cct.Isu.edu)

. From the docker image: stevenrbrandt/fedora-hpx-cling

. Normally, each cell should contain declarations, e.g. definitions of functions, variables, or #include
statements.

|“‘#inc|ude using namespace std; " |
. If you wish to process an expression, e.g. cout << "hello world\n" you can put .expr at the
front of the cell.
|“‘.expr cout << "hello, world\n";"* |
. Sometimes you will want to test a cell because you are uncertain whether it might cause a segfault or
some other error that will kill your kernel. Othertimes, you might want to test a definition without
permanently adding it to the current namespace. You can do this by prefixing your cell with . test.
Whatever is calculated in a test cell will be thrown away after evaluation and will not kill your kernel.
".test.expr int foo[5]; foo[10] = 1;
## Docker Instructions
. Frist, install Docker on your local resource
. Second, start Docker, e.g. sudo service docker start
. Third, run the fedora-hpx-cling container, e.g.

“dockerpullstevenrbrandt/ fedora — hpx — cling docker run -it -p 8000:8000
stevenrbrandt/fedora-hpx-cling™™

After you do this, docker will respond with something like
|‘http://0.0.0.0:8000/?token=5d1eb8a4797851910de481985a5402fdc3be80280023bac5‘

Paste that URL into your browser, and you will be able to interact with the notebook.
. Fourth, play with the existing ipynb files or create new ones.
. Fifth, save your work! This is an important step. If you simply quit the container, everything you did will
be lost. To save your work, first find your docker image using docker ps.
"% docker ps CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES 4f806b5f4fh3
stevenrbrandt/fedora-hpx-cling "/bin/sh -c 'jupyter " 11 minutes ago Up 11 minutes 0.0.0.0:8000-
>8000/tcp dreamy_turing™™"

Once you have it (in this case, it's 4f806b5f4fb3), you can use docker cp to transfer files to or from
your image.

dockercpd f806b5 f4fb3 : /home/jup/H P Xy, zample. ipynb. docker cp

HPX_by example.ipynb 4f806b5f4fb3:/home/jup ™

https://hpx-jupyter.cct.Isu.edu/user/sbrandt/nbconvert/htmi/share/APEX-SC17-Tutorial.ipynb?download=false 1/18


https://hpx-jupyter.cct.lsu.edu/

11/14/2017 APEX-SC17-Tutorial

Measuring HPX performance

HPX is integraged with APEX, "An Autonomic Performance Environment for eXascale". APEX serves two
primary roles in HPX - to measure the HPX runtime and applicaiton tasks, and to use introspection of those
measurements to control behavior.

Measurement

APEX provides an API for measuring actions within a runtime. The API includes methods for timer start/stop, as
well as sampled counter values. APEX is designed to be integrated into a runtime, library and/or application and
provide performance introspection for the purpose of runtime adaptation. While APEX can provide rudimentary
post-mortem performance analysis measurement, there are many other performance measurement tools that
perform that task much better (such as TAU http://tau.uoregon.edu (http://tau.uoregon.edu)). That said, APEX
includes an event listener that integrates with the TAU measurement system, so APEX events can be forwarded
to TAU and collected in a TAU profile and/or trace to be used for post-mortem performance anlaysis. That
process is not covered in this tutorial, but for more information, see http://github.com/khuck/xpress-apex
(http://github.com/khuck/xpress-apex).

Runtime Adaptation

APEX provides a mechanism for dynamic runtime feedback and control, either for autotuning or adaptation to
changing environment. The infrastruture that provides the adaptation in APEX is the Policy Engine, which
executes policies either periodically or triggered by events. The policies have access to the performance state as
observed by the APEX introspection APIl. APEX is integrated with Active Harmony
(http://www.dyninst.org/harmony (http://www.dyninst.org/harmony)) to provide dynamic search for autotuning.

Fibonacci example - what's the performance?

Using the first fibonacci implementation from the HPX introduction, let's examine the performance. To get a
simple text report of performance from HPX in a regular program, you would set the APEX_ SCREEN_OUTPUT
environment variable to a postitive number (i.e. "1"). In the Jupyter notebook, we will use the
apex::dump(bool reset); method instead. Because the HPX environment is continuously running in the
Jupyter kernel, we also need to reset the timers before executing our test.

First, include the HPX header for our example, and declare some useful namespaces.

In [ ]: #include <hpx/hpx.hpp>
using namespace std;
using namespace hpx;

Next, we will define the first implementation of the fibonacci algorithm from the previous presentation.

https://hpx-jupyter.cct.Isu.edu/user/sbrandt/nbconvert/htmi/share/APEX-SC17-Tutorial.ipynb?download=false 2/18


http://tau.uoregon.edu/
http://github.com/khuck/xpress-apex
http://www.dyninst.org/harmony

11/14/2017

In [ ]:

u

{

APEX-SC17-Tutorial
inte4 t fibonacci(uint64 t n)

// if we know the answer, we return the value

if (n < 2) return n;

// asynchronously calculate one of the sub-terms
future<uint64 t> f = async(launch::async, &fibonacci, n-2);
// synchronously calculate the other sub-term

uinte4 t r = fibonacci(n-1);

// wait for the future and calculate the result

return f.get() + r;

And we will execute that definition:

In [ ]: .expr
apex::reset(0L);
cout << fibonacci(22) << endl;
apex::dump(true);

We get some useful information, but what is task object: :apply? That is the HPX runtime executing
asynchronous tasks. To get a useful label for that function (and distinguish the different task types), we will use
hpx::util::annotated function. Note carefully that we will add the hpx::util namespace, and also that we
will change the name to fibonacci2, to distinguish from the previous definition (that still exists in this compilation
unit). We will use that renaming pattern throughout this tutorial.

(markdown padding for proper formatting)

In [ 1: using namespace hpx::util;

In [ ]: uint64 t fibonacci2(uint64 t n)

{

// if we know the answer, we return the value

if (n < 2) return n;

// asynchronously calculate one of the sub-terms

future<uint64 t> f = async(launch::async, annotated function(unwrapp

ing(&fibonacci2), "fibonacci2 asynchronous"), n-2);

// synchronously calculate the other sub-term
apex::profiler *p = apex::start("fibonacci2 synchronous");
uint64 t r = fibonacci2(n-1);

apex::stop(p);

// wait for the future and calculate the result

return f.get() + r;

Next, we will execute the fibonacci2 method with the annotated function:

https://hpx-jupyter.cct.Isu.edu/user/sbrandt/nbconvert/htmi/share/APEX-SC17-Tutorial.ipynb?download=false

3/18



11/14/2017

In [ ]:

APEX-SC17-Tutorial

.expr
apex::reset(0OL);

cout << fibonacci2(22) << endl;
apex: :dump(true);

That's better, but not quite right. Note carefully that the fibonacci2 synchronous events are double-counting -- the
synchronous timer for (n) includes the time spent computing both (n-1) and (n-2). Let's see what happens with
the example that uses a serial cutoff:

In [ ]:

In [ ]:

const int threshold = 10;

uint64 t fibonacci serial(uint64 t n)
{
if (n < 2) return n;
uint64 t fl1 = fibonacci serial(n-2);
uint64 t f2 = fibonacci serial(n-1);
return fl1 + f2;
}

future<uint64 t> fibonacci3(uint64 t n)
{
if(n < 2) return make ready future(n);
if(n < threshold) return make ready future(fibonacci serial(n));

future<uint64 t> f = async(launch::async, annotated function(unwrapp
ing(&fibonacci3), "fibonacci3"), n-2);
future<uint64 t> r = fibonacci3(n-1);

return dataflow(
[1(future<uint64 t> f1l, future<uint64 t> f2) {
return fl.get() + f2.get();

.expr
apex::reset(false);

cout << fibonacci3(22).get() << endl;
apex: :dump(true);

Note that the timers are only around the calls where 10 > n >= 22. We are now under-counting, because the
synchronous executions aren't measured. If we were interested in a careful evaluation of the serial execution, we
would include a third function with a timer that is called once. That function would then recursively call
fibonacci_serial. Feel free to implement that version as an exercise.

What if we want to compare the different methods? We can put them all into one compilation unit, and execute
them in the same cell for a clearer comparison:

https://hpx-jupyter.cct.Isu.edu/user/sbrandt/nbconvert/htmi/share/APEX-SC17-Tutorial.ipynb?download=false 4/18



11/14/2017 APEX-SC17-Tutorial

In [ ]: .expr
apex::reset(0L);
cout << fibonacci(22) << endl;
cout << fibonacci2(22) << endl;
cout << fibonacci3(22).get() << endl;
apex: :dump(true);

Well, there is some useful data in there - but we need to do some aggregation. We could add them up, or we
could wrap the top level calls with a timer and get the wall clock time for each approach:

In [ ]: .expr
apex::reset(0OL);
apex::profiler *pl = apex::start("Version 1");
cout << fibonacci(22) << endl;
apex::stop(pl);
apex::profiler *p2 = apex::start("Version 2");
cout << fibonacci2(22) << endl;
apex::stop(p2);
apex::profiler *p3 = apex::start("Version 3");
cout << fibonacci3(22).get() << endl;
apex::stop(p3);
apex::dump(true);

Heat Equation Example

https://hpx-jupyter.cct.Isu.edu/user/sbrandt/nbconvert/htmi/share/APEX-SC17-Tutorial.ipynb?download=false 5/18



11/14/2017 APEX-SC17-Tutorial

In [ ]: #include <hpx/include/parallel algorithm.hpp>
#include <boost/range/irange.hpp>
#include <boost/format. hpp>

#include <cstddef>
#include <cstdint>
#include <iostream>
#include <memory>
#include <utility>
#include <vector>
#include <stdexcept>
#include <string>

L1177777777777777777777777777777777777777777777777777777777777777777/77

void print time results(
std::uint32 t num localities
std::uint64 t num os threads
std::uint64 t elapsed
std::uint64 t nx
std::uint64 t np
std::uint64 t nt

bool header

)

if (header)

~ 0~ 0~ ~ ~ ~

https://hpx-jupyter.cct.Isu.edu/user/sbrandt/nbconvert/htmi/share/APEX-SC17-Tutorial.ipynb?download=false 6/18



11/14/2017

std::cout <<

APEX-SC17-Tutorial

"Localities,0S Threads,Execution Time sec,"

"Points per Partition,Partitions,Time Steps\n"
<< std::flush;

std::string const locs str = boost::str(boost::format("%u,") % num
~localities);
std::string const threads str = boost::str(boost::format("slu,") %
num_os threads);
std::string const nx str = boost::str(boost::format("%lu,") % nx);
std::string const np str = boost::str(boost::format("%sLl ”) % np);
std::string const nt str = boost::str(boost::format("%sLl ) % nt);
std::cout << ( boost::format("%-6s %-6s %.14Q, %-21s %-21s %-21s\n
II)
% locs str % threads str % (elapsed / 1e9) %nx _str % np_st
r
% nt str) << std::flush;
}

L11177777777777777777777777777777777777777777777777777777777777777/77/77

void print time results(

std::uint64 t num os threads
, std::uint64 t elapsed
, std::uint64 t nx
, std::uint64 t np
, std::uint64 t nt
, bool header
)
{
if (header)
std::cout << "0S Threads,Execution Time sec,"”
"Points per Partition,Partitions,Time Steps\n"
<< std::flush;
std::string const threads str = boost::str(boost::format("%lu,") %
num_os threads);
std::string const nx str = boost::str(boost: format("°1u,“) % NX);
std::string const np str = boost::str(boost::format("slu,") % np);
std::string const nt str = boost::str(boost::format("slu ") % nt);
std::cout << ( boost::format("%-21s %.14g, %-21s %-21s %-21s\n")
% threads str % (elapsed / 1e9) %nx str % np str
% nt str) << std::flush;
}

void print time results(

std::uint64 t num os threads
, std::uint64 t elapsed
, std::uint64 t nx
, std::uint64 t nt
, bool header

)

if (header)
std::cout <<

"0S Threads,Execution Time sec,"

"Grid Points,Time Steps\n"

https://hpx-jupyter.cct.Isu.edu/user/sbrandt/nbconvert/htmi/share/APEX-SC17-Tutorial.ipynb?download=false

7/18



11/14/2017 APEX-SC17-Tutorial
<< std::flush;

std::string const threads str = boost::str(boost::format("%lu,") %
num os threads);

std::string const nx str = boost::str(boost::format("%lu,") % nx);

std::string const nt str = boost::str(boost::format("%lu ") % nt);

std::cout << ( boost::format("%-21s %10.12s, %-21s %-21s\n")
% threads str % (elapsed / 1e9) %nx str % nt str) << std::
flush;
}

L1117777777777777777777777777777777777777777777777777777777777777/77/77

// Command-line variables
bool header = true; // print csv heading

double k = 0.5; // heat transfer coefficient
double dt = 1.; // time step
double dx = 1.; // grid spacing
inline std::size t idx(std::size t i, int dir, std::size t size)
{
if(i == 0 && dir == -1)
return size-1;
if(i == size-1 && dir == +1)
return 0;
HPX ASSERT((i + dir) < size);
return i + dir;
}

L1117777777777777777777777777777777777777777777777777777777777777//7777

// Our partition data type
struct partition data
{
public:
partition data(std::size t size)
: data_ (new double[size]), size (size)

{}

partition data(std::size t size, double initial value)
: data (new double[size]),
size (size)

{
double base value = double(initial value * size);
for (std::size t i = 0; i != size; ++i)
data [i] = base value + double(i);
}

partition data(partition data && other)
: data (std::move(other.data ))
, Size (other.size )

{}
double& operator[](std::size t idx) { return data [idx]; }

https://hpx-jupyter.cct.Isu.edu/user/sbrandt/nbconvert/htmi/share/APEX-SC17-Tutorial.ipynb?download=false 8/18



11/14/2017 APEX-SC17-Tutorial
double operator[](std::size t idx) const { return data [idx]; }

std::size t size() const { return size ; }
private:

std::unique ptr<double[]> data ;
std::size t size ;

b
std::ostream& operator<<(std::ostream& os, partition data const& c)
{
OS << II{II;
for (std::size t i =0; i != c.size(); ++1)
{
if (i !'=0)
OS << II’ II;
0s << c[i];
}
OS << II}II;
return os;
}

L111777777777777777777777777777777777777777777777777777/77777777777/77/7

struct stepper

{
// Our data for one time step
typedef hpx::shared future<partition data> partition;
typedef std::vector<partition> space;

// Our operator
static double heat(double left, double middle, double right)
{

}

return middle + (k*dt/(dx*dx)) * (left - 2*middle + right);

// The partitioned operator, it invokes the heat operator above on
all

// elements of a partition.
static partition data heat part(partition data const& left,
partition data const& middle, partition data const& right)

{
apex wrapper profiler("partition data::heat part", OL);
std::size t size = middle.size();
partition data next(size);
next[0] = heat(left[size-1], middle[0], middle[1l]);
for(std::size t i = 1; i != size-1; ++1i)
{

next[i] = heat(middle[i-1], middle[i], middle[i+1]);

}
next[size-1] = heat(middle[size-2], middle[size-1], right[0]);
return next;

}

https://hpx-jupyter.cct.Isu.edu/user/sbrandt/nbconvert/htmi/share/APEX-SC17-Tutorial.ipynb?download=false 9/18



11/14/2017 APEX-SC17-Tutorial

// do all the work on 'np' partitions, 'nx' data points each, for
Intl
// time steps, limit depth of dependency tree to 'nd'
hpx::future<space> do work(std::size t np, std::size t nx, std::si
ze t nt,
std::uint64 t nd)

{
using hpx::dataflow;
using hpx::util::unwrapping;
// U[t][i] is the state of position i at time t.
std::vector<space> U(2);
for (space& s: U)
s.resize(np);
// Initial conditions: f(0, 1) = 1
std::size t b = 0;
auto range = boost::irange(b, np);
using hpx::parallel::execution::par;
hpx::parallel::for each(par, std::begin(range), std::end(range
),
[&U, nx](std::size t i)
{
U[O][1i] = hpx::make ready future(partition data(nx, do
uble(i)));
}
);
// limit depth of dependency tree
hpx::1lcos::local::sliding semaphore sem(nd);
auto Op = hpx::util::annotated function(unwrapping(&stepper::h
eat part),

"stepper::heat part");

// Actual time step loop
for (std::size t t = 0; t != nt; ++t)
{

space const& current = U[t % 2];
space& next = U[(t + 1) % 2];

for (std::size t i = 0; i != np; ++i)
{
next[i] = dataflow(
Op, current[idx(i, -1, np)], current[i], current[i
dx(i, +1, np)l);
}

// every nd time steps, attach additional continuation whi
ch will

// trigger the semaphore once computation has reached this
point

if ((t % nd) == 0)

{

next[0].then(
[&sem, t](partition &&)

https://hpx-jupyter.cct.Isu.edu/user/sbrandt/nbconvert/htmi/share/APEX-SC17-Tutorial.ipynb?download=false 10/18



11/14/2017

APEX-SC17-Tutorial

{
// inform semaphore about new lower limit
sem.signal(t);
1)
}
// suspend if the tree has become too deep, the continuati
on above
// will resume this thread once the computation has caught
up
sem.wait(t);
}

};

// Return the solution at time-step 'nt'.
return hpx::when all(U[nt % 2]);

L111777777777777777777777777777777777777777777777777777777777777777777

/*

std::uint64 t np{10}; // Number of partitions.
std::uint64 t nx{10}; // Number of grid points. (local x dimensi

on of each partition)

*/

std::uint64_t nt{45}; // Number of steps.
std::uint64 t nd{10}; // Max depth of dep tree.

void do 1d solve(std::uint64 t np, std::uint64 t nx,

std::uint64 t nt, std::uint64 t nd, bool results)

{

header = false;

// Create the stepper object

stepper step;

// Measure execution time.

std::uint64 t t = hpx::util::high resolution clock::now();

// Execute nt time steps on nx grid points and print the final sol
ution.

hpx::future<stepper::space> result = step.do work(np, nx, nt, nd);

stepper::space solution = result.get();

hpx::wait all(solution);

std::uint64 t elapsed = hpx::util::high resolution clock::now() -
t;

// Print the final solution

if (results)

{

for (std::size t i = 0; i != np; ++i)
std::cout << "U[" << 1 << "] =" << solution[i].get() << s

td: :endl;

}

std::uint64 t const os thread count = hpx::get os thread count();

https://hpx-jupyter.cct.Isu.edu/user/sbrandt/nbconvert/htmi/share/APEX-SC17-Tutorial.ipynb?download=false 11/18



11/14/2017 APEX-SC17-Tutorial
print time results(os thread count, elapsed, nx, np, nt, header);

return;

In [ ]1: .expr
apex::reset(0OL);
do 1d solve(100, 100, 450, 100, false);
apex::dump(true);

Heat Equation with an APEX policy

https://hpx-jupyter.cct.Isu.edu/user/sbrandt/nbconvert/htmi/share/APEX-SC17-Tutorial.ipynb?download=false 12/18



11/14/2017

In [ ]: #include
#include

#include
#include

#include
#include

#include
#include
#include
#include
#include
#include
#include
#include
#include

#include

#include <boost/shared array.hpp>

using hpx:
using hpx:
using hpx:
using hpx:
using hpx:

APEX-SC17-Tutorial

<hpx/hpx _init.hpp>
<hpx/hpx. hpp>

<hpx/include/parallel algorithm.hpp>
<hpx/include/performance counters.hpp>

<boost/range/irange. hpp>

<boost/format. hpp>

<algorithm>
<cstddef>
<cstdint>
<iostream>
<limits>
<memory>
<string>
<utility>
<vector>

<apex_api.hpp>

:naming::id type;

:performance counters:
:performance counters:
:performance counters:
:performance counters:

:get counter;
:stubs::performance counter;
:counter value;
:status is valid;

static bool counters initialized = false;
static std::string counter name = "/threads{locality#0/total}/idle-rat

ell;

static apex event type end iteration event = APEX CUSTOM EVENT 1;
static hpx::naming::id type counter id;

void setu
try {

p_counters() {

id type id = get counter(counter name);
// We need to explicitly start all counters before we can use

them. Fo

r

https://hpx-jupyter.cct.Isu.edu/user/sbrandt/nbconvert/htmi/share/APEX-SC17-Tutorial.ipynb?download=false 13/18



11/14/2017 APEX-SC17-Tutorial

// certain counters this could be a no-op, in which case start
will return
// 'false'.
performance counter::start(hpx::launch::sync, id);
std::cout << "Counter " << counter name << " initialized " <<
id << std::endl;
counter value value = performance counter::get value(hpx::laun
ch::sync, id);
std::cout << "Counter value " << value.get value<std::int64 t>
() << std::endl;
counter id = id;
end iteration event = apex::register custom event("Repartitio
n");
counters initialized = true;
}
catch(hpx::exception const& e) {
std::cerr << "1d stencil 4 repart: caught exception:
<< e.what() << std::endl;
counter id = hpx::naming::invalid id;
return;

}

double get counter value() {
if (!counters initialized) {
std::cerr << "get counter value(): ERROR: counter was not init

ialized"
<< std::endl;
return false;
}
try {
counter value valuel =
performance counter::get value(hpx::launch::sync, counter
id, true);
std::int64 t counter value = valuel.get value<std::int64 t>();
std::cout << "counter value " << counter value << std::endl;
return (double) (counter value);
}

catch(hpx::exception const& e) {

std::cout << "get counter value(): caught exception: " << e.wh
at()
<< std::endl;
return (std::numeric_ limits<double>::max)();
}
}

L111777777777777777777777777777777777777777777777777777/7777777777//7777

// Our partition data type
struct partition data2
{
public:
partition data2(std::size t size)
: data (new double[size]), size (size)

{}

https://hpx-jupyter.cct.Isu.edu/user/sbrandt/nbconvert/htmi/share/APEX-SC17-Tutorial.ipynb?download=false 14/18



11/14/2017 APEX-SC17-Tutorial

partition data2(std::size t size, double initial value)
: data_ (new double[size]),
size (size)

{
double base value = double(initial value * size);
for (std::size t i =0; i != size; ++1)
data [i] = base value + double(i);
}

partition data2(std::size t size, const double * other)
: data_ (new double[size]),
size (size)

for(std::size t i = 0; i != size; ++i) {
data [i] = other[i];
}
}

partition data2(partition data2 && other)
: data (std::move(other.data ))
, Size (other.size )

{}

double& operator[](std::size t idx) { return data [idx]; }
double operator[](std::size t idx) const { return data [idx]; }

void copy into array(double * a) const
{
for(std::size t i = 0; i != size(); ++1i) {
a[i] = data [i];
}
}

std::size t size() const { return size ; }
private:

std::unique ptr<double[]> data ;
std::size t size ;

b
std::ostream& operator<<(std::ostream& os, partition data2 const& c)
{
OS << n II;
for (std::size t i =0; i != c.size(); ++1)
{
if (i !'=0)
OS << n , n ;
0s << c[i];
}
OS << n n ;
return os;
}

L111777777777777777777777777777777777777777777777777777/7777777777//7777

https://hpx-jupyter.cct.Isu.edu/user/sbrandt/nbconvert/htmi/share/APEX-SC17-Tutorial.ipynb?download=false

15/18



11/14/2017 APEX-SC17-Tutorial
struct stepper2

{
// Our data for one time step
typedef hpx::shared future<partition data2> partition;
typedef std::vector<partition> space;

// Our operator
static inline double heat(double left, double middle, double right

{
}

return middle + (k*dt/dx*dx) * (left - 2*middle + right);

// The partitioned operator, it invokes the heat operator above on
all

// elements of a partition.
static partition data2 heat part(partition data2 const& left,
partition data2 const& middle, partition data2 const& right)

{
std::size t size = middle.size();
partition data2 next(size);
if(size == 1) {
next[0] = heat(left[0], middle[0], right[0]);
return next;
}
next[0] = heat(left[size-1], middle[0], middle[1l]);
for(std::size t i = 1; i < size-1; ++i)
{
next[i] = heat(middle[i-1], middle[i], middle[i+1]);
}
next[size-1] = heat(middle[size-2], middle[size-1], right[0]);
return next;
}

// do all the work on 'np' partitions, 'nx' data points each, for
Intl
// time steps
hpx::future<space> do work(std::size t np, std::size t nx, std::si
ze t nt,
boost::shared array<double> data)
{
using hpx::dataflow;
using hpx::util::unwrapping;

// U[t][i] is the state of position i at time t.
std::vector<space> U(2);
for (space& s: U)

s.resize(np);

if ('data) {
// Initial conditions: f(0, i) = 1
std::size t b = 0;

https://hpx-jupyter.cct.Isu.edu/user/sbrandt/nbconvert/htmi/share/APEX-SC17-Tutorial.ipynb?download=false 16/18



11/14/2017

APEX-SC17-Tutorial

auto range = boost::irange(b, np);
using hpx::parallel::execution::par;

hpx:

);
}

else {

:parallel::for each(
par, std::begin(range), std::end(range),
[&U, nx](std::size t i)
{
U[O][i] = hpx::make ready future(
partition data2(nx, double(i)));

// Initialize from existing data

std:

:size t b = 0;

auto range = boost::irange(b, np);
using hpx::parallel::execution::par;

hpx:

);
}

auto Op
::heat part),

);

:parallel::for each(
par, std::begin(range), std::end(range),
[&U, nx, datal(std::size t i)
{
U[O][i] = hpx::make ready future(
partition data2(nx, data.get()+(i*nx)));

hpx::util::annotated function(unwrapping(&stepper2

"stepper2::heat part"

// Actual time step loop
for (std::size t t = 0; t != nt; ++t)

{

space const& current = U[t % 2];
% 2

space& next = U[(t + 1)

for
{

1;
(std::size t 1 = 0; i !'= np; ++1i)
next[i] = dataflow(

hpx::launch::async, Op,
current[idx(i, -1, np)], current[i], current[i

// Return the solution at time-step 'nt'.
return hpx::when all(U[nt % 2]);

};

L1117777777777777777777777777777777777777777777777777777777777777/7777

/*

std::uint64_t np{10}; // Number of partitions.
std::uint64_t nx{10}; // Number of grid points. (local x dimensi

https://hpx-jupyter.cct.Isu.edu/user/sbrandt/nbconvert/htmi/share/APEX-SC17-Tutorial.ipynb?download=false 17/18



11/14/2017 APEX-SC17-Tutorial

on of each partition)
std::uint64 t nt{45}; // Number of steps.
std::uinté64 t nr{10}; // Number of runs to tune
*/
void do 1d solve repart(std::uint64 t nx,
std::uint64 t nt, std::uint64 t nr, bool results)

{
setup counters();
/* Number of partitions dynamically determined x/
header = false;
std::uint64 t const os thread count = hpx::get os thread count();
// Find divisors of nx
std::vector<std::uint64 t> divisors;
// Start with os thread count so we have at least as many
// partitions as we have HPX threads.
for(std::uint64 t i = os thread count; i < std::sqrt(nx); ++i) {
if(nx % i == 0) {
divisors.push back(i);
divisors.push back(nx/1i);
}
}
// This is not necessarily correct (sqrt(x) does not always evenly
divide x)
// and leads to partition size = 1 which we want to avoid
//divisors.push back(static cast<std::uint64 t>(std::sqrt(nx)));
std::sort(divisors.begin(), divisors.end());
if(divisors.size() == 0) {
std::cerr << "ERROR: No possible divisors for " << nx
<< " data elements with at least " << os thread count
<< " partitions and at least two elements per partition."
<< std::endl;
return hpx::finalize();
}
//std::cerr << "Divisors: "“;
//for(std::uint64 t d : divisors) {
// std::cerr << d << " ";
//}
//std::cerr << std::endl;
// Set up APEX tuning
// The tunable parameter -- how many partitions to divide data int
0

long np index = 1;

long * tune params[1l] = { OL };

long num params = 1;

long mins[1l] = { 0 };

long maxs[1] { (long)divisors.size() };

long steps[1] {11},

tune params[Q] = &np index;

apex::setup custom tuning(get counter value, end iteration event,
num_params,

tune params, mins, maxs, steps);

https://hpx-jupyter.cct.Isu.edu/user/sbrandt/nbconvert/htmi/share/APEX-SC17-Tutorial.ipynb?download=false 18/18



