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Introduction

High Performance ParalleX (HPX) is an
experimental parallel and distributed runtime
system that implements the ParalleX execution
model [1] on conventional SMP clusters. The
traditional Communicating Sequential Processes
(CSP) is replaced with asynchronous fine- and
medium-grained parallelism in HPX.

HPX is implemented as a modular framework with
four primary modules: the HPX Thread Manager,
the Active Global Address Space (AGAS), Local
Control Objects (LCOs) and the Parcel Transport
Layer. Exploring dynamic optimization of these
modules on conventional architectures will provide
designs for future hardware architectures. The
Performance Monitor supplies performance
counters for the modules and hardware counters
through an interface to PAPI.

Our objective is to determine if adaptive
management of scheduling policies can be used
dynamically to improve task management among
hardware threads on a node. Once metrics have
been determined, we will pursue applying them to
dynamically change parameters of the thread
scheduling policy for improved performance and
efficiency of scaling-impaired parallel applications.
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Figure 1: HPX Architecture
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Thread Schedulers

Priority Local Scheduler (default)
* One FIFO Queue per OS Thread
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Figure 2: Work Stealing Thread Schedulers

Performance Study

We conduct performance studies of various HPX
thread scheduling policies using a task scheduling
micro-benchmark, HTTS, the Unbalanced Tree
Search (UTS) benchmark [2], and Octopus [3], an
adaptive mesh refinement (AMR) application, on a
variety of platforms to determine metrics which will
aid in improving scheduling policies. Thread
scheduling policies shown in Figure 2 use work
stealing. Studies also use the global scheduler (a
single work queue) and the static scheduler (one
queue per OS thread, no stealing). Platforms used
are Xeon E5 2690 (plots 1-4 & 6), Sandybridge,
and Xeon Phi (plot 5).
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Results

Plots (1-4) illustrate strong scaling on one node for
the three benchmarks. All data from Octopus was
taken from the solver portion of the AMR
application. The average thread length for UTS
and Octopus runs are calculated using
performance counters. We run HTTS  with a
workload comparable to those calculated. The
overhead plot above shows an example of
measurements derived from HPX performance
counters.
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The Priority ABP scheduler does not work for the
UTS benchmark, which has fine-grained
workloads, and performs poorly with similar
workloads for the micro-benchmark.

Performance counters for these data sets were
evaluated. HPX counters did show correlation to
the decrease in scaling. Hardware counters had
little correlation to the behaviors. Counters
collected were aggregates for all OS threads for
each run. Further studies should be made
periodically measuring counters for each OS
thread.
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