
High Performance ParalleX (HPX) is an
experimental parallel and distributed runtime
system that implements the ParalleX execution
model [1] on conventional SMP clusters. The
traditional Communicating Sequential Processes
(CSP) is replaced with asynchronous fine- and
medium-grained parallelism in HPX.

HPX is implemented as a modular framework with
four primary modules: the HPX Thread Manager,
the Active Global Address Space (AGAS), Local
Control Objects (LCOs) and the Parcel Transport
Layer. Exploring dynamic optimization of these
modules on conventional architectures will provide
designs for future hardware architectures. The
Performance Monitor supplies performance
counters for the modules and hardware counters
through an interface to PAPI.

Our objective is to determine if adaptive
management of scheduling policies can be used
dynamically to improve task management among
hardware threads on a node. Once metrics have
been determined, we will pursue applying them to
dynamically change parameters of the thread
scheduling policy for improved performance and
efficiency of scaling-impaired parallel applications.

Performance Study

Results

Figure 2: Work Stealing Thread Schedulers

Bibliography

We conduct performance studies of various HPX
thread scheduling policies using a task scheduling
micro-benchmark, HTTS, the Unbalanced Tree
Search (UTS) benchmark [2], and Octopus [3], an
adaptive mesh refinement (AMR) application, on a
variety of platforms to determine metrics which will
aid in improving scheduling policies. Thread
scheduling policies shown in Figure 2 use work
stealing. Studies also use the global scheduler (a
single work queue) and the static scheduler (one
queue per OS thread, no stealing). Platforms used
are Xeon E5 2690 (plots 1-4 & 6), Sandybridge,
and Xeon Phi (plot 5).

[1] H. Kaiser, M. Brodowicz, and T. Sterling, “ParalleX: An Advanced
Parallel Execution Model for Scaling-Impaired Applications,” in Proceedings
of the 38th International Conference on Parallel Processing, ICPP '09, pp.
394-401, 2009.
{2] Stephen Olivier, Jun Huan, Jinze Liu, Jan Prins, James Dinan, P.
Sadayappan, and Chau-Wen Tseng. “UTS: An Unbalance Tree Search
benchmark.” In Proceedings of the 19th international conference on
Languages and compilers for parallel computing (LCPC'06), 2006.
[3] github.com/STEllAR-GROUP/octopus

Introduction

Acknowledgement
Vinay Amatya, Bryce Lelbach,Thomas Heller
XSEDE allocation 130032
NSF Grant CCF-111798 & Sandia Graduate Fellowship

Performance Studies Towards Adaptive Thread Scheduling
Patricia Grubel1, Jeanine Cook1,2, Hartmut Kaiser3,4

1NMSU, Electrical and Computer Engineering, 2Sandia National Laboratories
3Center for Computation and Technology, 4LSU Department of Computer Science

Figure 1: HPX Architecture

Thread Schedulers

Priority ABP Scheduler (priority_abp)
● One Double Ended Lock Free Queue per OS Thread

primary work stealing from high priority and numa associated queues

work scheduling

work pull

OS ThreadOS ThreadOS Thread OS ThreadOS ThreadOS ThreadOS ThreadOS ThreadOS Thread OS ThreadOS ThreadOS ThreadOS ThreadOS ThreadOS ThreadOS ThreadOS Thread OS ThreadOS ThreadOS ThreadOS ThreadOS ThreadOS ThreadOS ThreadOS Thread

NUMA associated NUMA associated

Plots (1-4) illustrate strong scaling on one node for
the three benchmarks. All data from Octopus was
taken from the solver portion of the AMR
application. The average thread length for UTS
and Octopus runs are calculated using
performance counters. We run HTTS with a
workload comparable to those calculated. The
overhead plot above shows an example of
measurements derived from HPX performance
counters.

The Priority ABP scheduler does not work for the
UTS benchmark, which has f ine-grained
workloads, and performs poorly with similar
workloads for the micro-benchmark.

Performance counters for these data sets were
evaluated. HPX counters did show correlation to
the decrease in scaling. Hardware counters had
little correlation to the behaviors. Counters
collected were aggregates for all OS threads for
each run. Further studies should be made
periodically measuring counters for each OS
thread.

(1)

(2)

(3)

(4)

(5)

(6)

Priority Local Scheduler (default)

OS ThreadOS Thread

NUMA association

OS ThreadOS Thread

NUMA association

OS ThreadOS Thread

NUMA association

OS ThreadOS Thread

NUMA association

primary work stealing

pull work
work scheduling

secondary work stealing

● One FIFO Queue per OS Thread

0 2 4 6 8 10 12 14 16

0

2

4

6

8

10

12
Octopus (6 LOR) average thread ~ 100 μsec

priority_local

priority_abp

global

static

Cores (One OS Thread per Core)

S
p

e
e

d
 U

p
 (

N
o

rm
a

li
z
e

d
 t
o

 C
o

re
 1

)

0 2 4 6 8 10 12 14 16

0

2

4

6

8

10

12

14

16
HTTS 100 μsec workload

priority local

priority abp

global

static

Cores (One OS Thread per core)

S
p

e
e

d
 U

p
 (

N
o

rm
a

li
z
e

d
 t
o

 C
o

re
 1

)

0 2 4 6 8 10 12 14 16

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
UTS average thread ~ 10 μsec

priority_local

global

static

Cores (One OS Thread per Core)

S
p

e
e

d
 U

p
 (

N
o

rm
a

li
z
e

d
 t
o

 C
o

re
 1

)

0 2 4 6 8 10 12 14 16

0

2

4

6

8

10

12

14

16

18

20
HTTS 10 μsec workload

priority local

priority abp

global

static

Cores (One OS Thread per core)

S
p

e
e

d
 U

p
 (

N
o

rm
a

li
z
e

d
 t
o

 C
o

re
 1

)

0 20 40 60 80 100 120 140 160 180 200 220 240

0

10

20

30

40

50

60
HTTS 300 μsec workload Xeon Phi

priority local

static

OS Threads (balanced bind option)

S
p

e
e

d
 U

p
 (

N
o

rm
a

li
z
e

d
 t
o

 T
h

re
a

d
 1

)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

2

4

6

8

10

12

14

16
Octopus (6 LOR) Overhead per Task

priority_local

priority_abp

global

static

Cores (One OS Thread per Core)O
v
e

rh
e

a
d

 /
 H

P
X

-t
h

re
a

d
s
 R

e
ti
re

d
 1

 C
o

re
 (

μ
s
e

c
)

Thread
Manager

Thread
Pool

LCOs

AGAS	
 Address
Translation

Action
Manager

Interconnect

Parcel	

Handler

Parcel	
 Port

Process	

Manager

Local	
 Memory	

Management Performance	
 Monitor

Performance	

Counters

…

