
High Performance ParalleX (HPX) is an 
experimental parallel and distributed runtime 
system that implements the ParalleX execution 
model [1] on conventional SMP clusters. The 
traditional Communicating Sequential Processes 
(CSP) is replaced with asynchronous fine- and 
medium-grained parallelism in HPX. 
 
HPX is implemented as a modular framework with 
four primary modules: the HPX Thread Manager, 
the Active Global Address Space (AGAS), Local 
Control Objects (LCOs) and the Parcel Transport 
Layer. Exploring dynamic optimization of these 
modules on conventional architectures will provide 
designs for future hardware architectures. The 
Performance Monitor supplies performance 
counters for the modules and hardware counters 
through an interface to PAPI. 
 
Our objective is to determine if adaptive 
management of scheduling policies can be used 
dynamically to improve task management among 
hardware threads on a node. Once metrics have 
been determined, we will pursue applying them to 
dynamically change parameters of the thread 
scheduling policy for improved performance and 
efficiency of scaling-impaired parallel applications. 
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We conduct performance studies of various HPX 
thread scheduling policies using a task scheduling 
micro-benchmark, HTTS, the Unbalanced Tree 
Search (UTS) benchmark [2], and Octopus [3], an 
adaptive mesh refinement (AMR) application, on a 
variety of platforms to determine metrics which will 
aid in improving scheduling policies.  Thread 
scheduling policies shown in Figure 2 use work 
stealing. Studies also use the global scheduler (a 
single work queue) and the static scheduler  (one 
queue per OS thread, no stealing). Platforms used 
are Xeon E5 2690 (plots 1-4 & 6), Sandybridge, 
and Xeon Phi (plot 5). 
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Figure 1: HPX Architecture   
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Plots (1-4) illustrate strong scaling on one node for 
the three benchmarks. All data from Octopus was 
taken from the solver portion of the AMR 
application. The average thread length for UTS 
and Octopus runs are calculated using 
performance counters. We run HTTS  with a 
workload comparable to those calculated. The 
overhead plot above shows an example of  
measurements derived from HPX performance 
counters.  
 
The Priority ABP scheduler does not work for the 
UTS benchmark, which has f ine-grained 
workloads, and performs poorly with similar 
workloads for the micro-benchmark.  
 
Performance counters for these data sets were 
evaluated. HPX counters did show correlation to 
the decrease in scaling. Hardware counters had 
little correlation to the behaviors. Counters 
collected were aggregates for all OS threads for 
each run. Further studies should be made 
periodically measuring counters for each OS 
thread.  
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