NM

STATE

UNIVERSITY

STE||AR

stellar.cct.lsu.edu

Introduction

High Performance ParalleX (HPX) is an
experimental parallel and distributed runtime
system that implements the ParalleX execution
model [1] on conventional SMP clusters. The
traditional Communicating Sequential Processes
(CSP) is replaced with asynchronous fine- and
medium-grained parallelism in HPX.

HPX is implemented as a modular framework with
four primary modules: the HPX Thread Manager,
the Active Global Address Space (AGAS), Local
Control Objects (LCOs) and the Parcel Transport
Layer. Exploring dynamic optimization of these
modules on conventional architectures will provide
designs for future hardware architectures. The
Performance Monitor supplies performance
counters for the modules and hardware counters
through an interface to PAPI.

Our objective is to determine if adaptive
management of scheduling policies can be used
dynamically to improve task management among
hardware threads on a node. Once metrics have
been determined, we will pursue applying them to
dynamically change parameters of the thread
scheduling policy for improved performance and
efficiency of scaling-impaired parallel applications.

Process Local Memory
Manager Management

\/ Performance
B ——
Counters

Parcel Port / AGAS Address
Translation
00

LCOs

Performance Monitor |=—

- Action : é
Manager |

Parcel] Thread Thread
Handler Manager Pool

Figure 1: HPX Architecture

Patricia Grubel’l, Jeanine Cook'?, Hartmut Kaiser3#

TNMSU, Electrical and Computer Engineering, 2Sandia National Laboratories

Thread Schedulers

Priority Local Scheduler (default)
* One FIFO Queue per OS Thread

r - - == - - "—-— - ="-" =-" - =-— =-— L e e

OS Thread OS Thread . OS Thread OS Thread

NUMA association

[T T T

NUMA association

L - e e e e _ —_ —_ =

— > puTI work _ J_L work scheduling
------ » primary work stealing -

L — e —m e — —_ —_— —_ —_ =

-------- = secondary work stealing

Priority ABP Scheduler (priority _abp)
* One Double Ended Lock Free Queue per OS Thread

OS Thread OS Thread

NUMA associated

work pull

“/ work scheduling
------ > primary work stealing from high priority and numa associated queues

Figure 2: Work Stealing Thread Schedulers

Performance Study

We conduct performance studies of various HPX
thread scheduling policies using a task scheduling
micro-benchmark, HTTS, the Unbalanced Tree
Search (UTS) benchmark [2], and Octopus [3], an
adaptive mesh refinement (AMR) application, on a
variety of platforms to determine metrics which will
aid in improving scheduling policies. Thread
scheduling policies shown in Figure 2 use work
stealing. Studies also use the global scheduler (a
single work queue) and the static scheduler (one
queue per OS thread, no stealing). Platforms used
are Xeon E5 2690 (plots 1-4 & 6), Sandybridge,
and Xeon Phi (plot 5).

(1)

(2)

(3)

(4)

(9)

-
N

—_
o

Speed Up (Normalized to Core 1) Speed Up (Normalized to Core 1) Speed Up (Normalized to Core 1)

Speed Up (Normalized to Core 1)

Speed Up (Normalized to Thread 1)

3Center for Computation and Technology, 4LSU Department of Computer Science

Octopus (6 LOR) average thread ~ 100 psec
\ \

o

D

| —— priority_abp

—— priority_local

——— global
—A— static

1A

N

2

0

AT

0

16

2 4 6 8 10 12 14
Cores (One OS Thread per Core)

HTTS 100 usec workload

14

12—

10

| —&— priority local

—&— priority abp

global

| +;tatc//

0 12 14

3.5

Cores (One 0S Thread per core)

UTS average thread ~ 10 usec

3.0

25—+

2.0

—— priority_local

1.5

—— global
—a— static

1.0

0.5

0.0

N
o

0 2 4 6 8 10 12 14
Cores (One OS Thread per Core)

16

RN RN —_ —_ —_
o N £ » (o]
|

-— —i— priority local
| —&— priority abp

HTTS 10 ysec workload

global

| —&— static

et —]
/'/-% Ty

o N A O

TN

60

50

40

30

20

0 2 12 14

Cores (One OS Thread per core)

HTTS 300 usec workload Xeon Phi

A

e _\
/ T~

/
// —— priority local

/ —A— static
\ S —

0 20 40 80 100 120 140 160 180 200 220 240

OS Threads (balanced bind option)

Performance Studies Towards Adaptive Thread Scheduling
i

/\

L5SL)

CENTER FOR COMPUTATION
& TECHNOLOGY

Sandia
National
Laboratories

Octopus (6 LOR) Overhead per Task

W priority_local
14 W priority_abp

ik

M static
10 11 12 13 14 15

Cores (One OS Thread per Core)

Results

Plots (1-4) illustrate strong scaling on one node for
the three benchmarks. All data from Octopus was
taken from the solver portion of the AMR
application. The average thread length for UTS
and Octopus runs are calculated using
performance counters. We run HTTS with a
workload comparable to those calculated. The
overhead plot above shows an example of
measurements derived from HPX performance
counters.

12

1

(o] o

(6)

»

N

N

Overhead / HPX-threads Retired 1 Core (usec)
o

The Priority ABP scheduler does not work for the
UTS benchmark, which has fine-grained
workloads, and performs poorly with similar
workloads for the micro-benchmark.

Performance counters for these data sets were
evaluated. HPX counters did show correlation to
the decrease in scaling. Hardware counters had
little correlation to the behaviors. Counters
collected were aggregates for all OS threads for
each run. Further studies should be made
periodically measuring counters for each OS
thread.

Acknowledgement

Vinay Amatya, Bryce Lelbach,Thomas Heller
XSEDE allocation 130032
NSF Grant CCF-111798 & Sandia Graduate Fellowship

Bibliography

[1] H. Kaiser, M. Brodowicz, and T. Sterling, “ParalleX: An Advanced
Parallel Execution Model for Scaling-Impaired Applications,” in Proceedings
of the 38t International Conference on Parallel Processing, ICPP '09, pp.
394-401, 20009.

{2] Stephen Olivier, Jun Huan, Jinze Liu, Jan Prins, James Dinan, P.
Sadayappan, and Chau-Wen Tseng. “UTS: An Unbalance Tree Search
benchmark.” In Proceedings of the 19th international conference on

Languages and compilers for parallel computing (LCPC'06), 2006.
[3] github.com/STEIAR-GROUP/octopus

