
HPX – A Task Based Programming Model in a Global
Address Space

Hartmut Kaiser1

hkaiser@cct.lsu.edu
Thomas Heller2

thomas.heller@cs.fau.de
Bryce Adelstein-Lelbach1

blelbach@cct.lsu.edu

Adrian Serio1

aserio@cct.lsu.edu
Dietmar Fey2

dietmar.fey@cs.fau.de
1Center for Computation and

Technology,
Louisiana State University,

Louisiana, U.S.A.

2Computer Science 3,
Computer Architectures,

Friedrich-Alexander-University,
Erlangen, Germany

ABSTRACT
The significant increase in complexity of Exascale platforms due to
energy-constrained, billion-way parallelism, with major changes to
processor and memory architecture, requires new energy-efficient
and resilient programming techniques that are portable across mul-
tiple future generations of machines. We believe that guarantee-
ing adequate scalability, programmability, performance portability,
resilience, and energy efficiency requires a fundamentally new ap-
proach, combined with a transition path for existing scientific ap-
plications, to fully explore the rewards of todays and tomorrows
systems. We present HPX – a parallel runtime system which ex-
tends the C++11/14 standard to facilitate distributed operations,
enable fine-grained constraint based parallelism, and support run-
time adaptive resource management. This provides a widely ac-
cepted API enabling programmability, composability and perfor-
mance portability of user applications. By employing a global ad-
dress space, we seamlessly augment the standard to apply to a dis-
tributed case. We present HPX’s architecture, design decisions,
and results selected from a diverse set of application runs showing
superior performance, scalability, and efficiency over conventional
practice.

Keywords
High Performance Computing, Parallel Runtime Systems, Exas-
cale, Programming Models, Global Address Space

1. INTRODUCTION
Todays programming models, languages, and related technologies
that have sustained High Performance Computing (HPC) appli-
cation software development for the past decade are facing ma-
jor problems when it comes to programmability and performance
portability of future systems. The significant increase in complex-
ity of new platforms due to energy constrains, increasing paral-
lelism and major changes to processor and memory architecture,
requires advanced programming techniques that are portable across
multiple future generations of machines [1].

A fundamentally new approach is required to address these chal-
lenges. This approach must emphasize the following attributes:
Scalability – enable applications to strongly scale to Exascale levels
of parallelism; Programmability – clearly reduce the burden we are
placing on high performance programmers; Performance Portabil-
ity – eliminate or significantly minimize requirements for porting
to future platforms; Resilience – properly manage fault detection
and recovery at all components of the software stack; Energy Ef-
ficiency – maximally exploit dynamic energy saving opportunities,
leveraging the tradeoffs between energy efficiency, resilience, and
performance.

The biggest disruption in the path to Exascale will occur at the
intra-node level, due to severe memory and power constraints per
core, many-fold increase in the degree of intra-node parallelism,
and to the vast degrees of performance and functional heterogene-
ity across cores. These challenges clearly point to radically new ap-
proaches to intra-node runtime systems. Functions expected from
novel, self-aware, resilient runtime systems are the autonomic, run-
time-dynamic management of resources, dynamic load balancing,
intrinsic latency hiding mechanisms, management of data move-
ment and locality, active power management, and detection and
recovery from faults [1]. At the same time, the demand for homo-
geneous programming interfaces which simplify code development
and abstract hardware specifics additionally requires computer sci-
entist to rethink the way inter-node parallelism is exposed to the
programmers.

Advanced runtime systems that support new programming models
and languages which make billion-way parallelism manageable are
needed. We believe that a combination a global address space to-



gether with task based parallelism let’s us rethink parallelization
and focus on programmability instead of message passing. We
extend the notion of a Partitioned Global Address Space (PGAS)
by an active component which results in a Active Global Address
Space. This extensions allows us to transparently migrate Objects
in the Global Address between different nodes in our Supercom-
puter. This allows us to support efficient and dynamic communi-
cation, synchronization, scheduling, task placement and data mi-
gration, as well as the autonomic management of resources, iden-
tifying and reacting to load imbalances and the intermittent loss of
resources – all of which are major research challenges to be ad-
dressed.

This paper outlines HPX as a potential solution to efficiently utlize
billion-way parallelism using a global address space. We will begin
our discussion in Sec. 2 where we will demonstrate that the con-
cepts of our execution model are aligned with the current trends in
state-of-the-art programming models without succumbing to each
technology’s shortcomings. We will discuss the governing design
principles of HPX in Sec. 3. In Sec. 4, we will present results from
several experiments that we have conducted and thereby substanti-
ate our claim of viability. Finally we will conclude, in Sec. 5, with
brief summary and the focus of our future work.

2. THE STATE OF THE ART
The latest research in the field of parallel programming models
points to the efficient utilization of intra-node parallelism with the
ability to exploit the underlying communication infrastructure us-
ing fine grain task based approaches to deal with concurrency [1, 2,
3, 4, 5].

In recent years, programming models targeting lightweight tasks
are more and more commonplace. HPX is no exception to this
trend. Task based parallel programming models can be placed
into one of several different categories: Library solutions- exam-
ples of those are Intel TBB [6], Microsoft PPL [7], Qthreads [2],
StarPU [8], and many others; Language extensions- examples here
are Intel Cilk Plus [9], or OpenMP 3.0 [10]; and Experimental pro-
gramming languages- most notable examples are Chapel [11], In-
tel ISPC [12], or X10 [13].

While all of the current solutions expose parallelism to the user in
different ways, they all seem to converge on a continuation style
programming model. Some of them use a futures-based program-
ming model, while others use data-flow processing of depending
tasks with an implicit or explicit DAG representation of the control
flow. While the majority of the task based programming models fo-
cus on dealing with node level parallelism, HPX presents a solution
for homogeneous execution of remote and local operations.

When looking at library solutions for task-based programming, we
are mainly looking at C/C++. While other languages such as Java
and Haskell provide similar libraries, they play a secondary role in
the field of High Performance Computing. Fortran, for example,
has only one widely available solution, OpenMP 3.0. However, it
is trivial to call Fortran kernels from C/C++ or to create Fortran lan-
guage bindings for the use library. Examples of pure C solutions are
StarPU and Qthreads. They both provide interfaces for starting and
waiting on lightweight tasks as well as creating task dependencies.
While Qthreads provides suspendable user level threads, StarPU is
built upon Codelets which, by definition, run to completion with-
out suspension. Each of these strategies, Codelets and User-Level-
Threads, have their advantages. HPX is a C++ library and tries to

stay fully inside the C++ memory model and its execution scheme.
For this reason, it follows the same route as Qthreads to allow for
more flexibility and for easier support for synchronization mecha-
nisms. For C++, one of the existing solutions is Intel TBB, which
like StarPU, works in a codelet-style execution of tasks. What these
libraries have in common is that they provide a high performance
solution to task-based parallelism with all requirements one could
think about for dealing with intra-node level parallelism. What they
clearly lack is a uniform API and a solution for dealing with dis-
tributed parallel computing. This is one of the key advantages HPX
has over these solutions: A programming API which conforms to
the C++11 and the upcoming C++14 standards [14, 15, 16] but is
augmented and extended to support remote operations.

Hand in hand with the library-based solutions are the pragma-based
language extensions for C, C++ and Fortran: They provide an effi-
cient and effective way for programmers to express intra-node par-
allelism. While OpenMP has supported tasks since V3.0, it lacks
support for continuation-based programming and task dependen-
cies, focusing instead on fork-join parallelism. Task dependencies
were introduced in OpenMP 4.0. This hole is filled by OmPSs [17],
which serves as an experiment in integrating inter-task dependen-
cies using a pragma-based approach. One advantage of pragma-
based solutions over libraries is their excellent support for acceler-
ators. This effort was spearheaded by OpenACC [18] and is now
part of the OpenMP 4.0 specification. Libraries for accelerators, as
of now, have to fall back to language extensions like C++AMP [19],
CUDA [20] or program directly in low level OpenCL [21].

In addition to language extensions, an ongoing effort to develop
new programming languages is emerging, aiming at better support
for parallel programming. Some parallel programming languages
like OpenCL or Intel Cilk Plus [9] are focusing on node level paral-
lelism. While OpenCL focuses on abstracting hardware differences
for all kinds of parallelism, Intel Cilk Plus supports a fork-join
style of parallelism. In addition, there are programming languages
which explicitly support distributed computing, like UPC [22] or
Fortress [23] but lack of support for intra-node level parallelism.
Current research, however, is developing support for both, inter and
intra-node level parallelism based on a global partitioned address
space (PGAS [24]). The most prominent examples are Chapel [11]
and X10 [13] which represent the PGAS languages. HCMPI [25]
shows similarities with the HPX programming model by offering
interfaces for asynchronous distributed computing, either based on
distributed data driven futures or explicit message passing in an
MPI [26] compatible manner. The main difference between HPX
and the above solutions is that HPX invented no new syntax or se-
mantics. Instead, HPX implemented the syntax and semantics as
defined by C++11, providing it with a homogeneous API that re-
lies on a widely accepted programming interface.

Many applications must overcome the scaling limitations imposed
by current programming practices by embracing an entirely new
way of coordinating parallel execution. Fortunately, this does not
mean that we must abandon all of our legacy code. HPX can use
MPI as a highly efficient portable communication platform and at
the same time serve as a back-end for OpenMP, OpenCL, or even
Chapel while maintaining or even improving execution times. This
opens a migration path for legacy codes to a new programming
model which will allow old and new code to coexist in the same
application.



3. HPX – A GENERAL PURPOSE PARAL-
LEL RUNTIME SYSTEM

HPX is a general purpose C++ runtime system for parallel and dis-
tributed applications of any scale. We will describe it in this section
in more detail.

With the general availability of Petascale clusters and the advent
of heterogeneous machines equipped with special accelerator cards
such as the Intel Xeon Phi or GPGPUs, computer scientists face
the difficult task of improving application scalability beyond what
is possible with conventional techniques and programming models
today. In addition, the need for highly adaptive runtime algorithms
and for applications handling highly inhomogeneous data further
impedes our ability to efficiently write code which performs and
scales well. In this paper, we refer to the main factors that prevent
scaling as the SLOW factors: a) Starvation, i.e. current concurrent
work is insufficient to maintain high utilization of all resources, b)
Latencies, i.e. the delays intrinsic to accessing remote resources
and services deferring their responses, c) Overheads, i.e. the work
required for the management of parallel actions and resources on
the critical execution path which is not necessary in a sequential
variant, and d) Waiting for Contention resolution, which is caused
by the delays due to oversubscribed shared resources.

We posit that in order to tackle the challenges of SLOW, a com-
pletely new execution model is required. This model must over-
come the limitations of how applications are written today and
make the full parallelization capabilities of contemporary and emerg-
ing heterogeneous hardware available to the application program-
mer in a simple and homogeneous way. We have designed HPX to
implement such an execution model.

HPX represents an innovative mixture of a global system-wide
address space, fine grain parallelism, and lightweight synchro-
nization combined with implicit, work queue based, message
driven computation, full semantic equivalence of local and re-
mote execution, and explicit support for hardware accelerators
through percolation.

Our initial results with implementing different types of applications
using HPX have been exceedingly promising. Sec. 4 will contain a
discussion of results of selected benchmarks.

3.1 HPX Design Principles
HPX is a novel combination of well-known ideas with new unique
overarching concepts [27, 28, 29]. It aims to resolve the prob-
lems related to scalability, resiliency, power efficiency, and runtime
adaptive resource management that will be of growing importance
as HPC architectures evolve from Peta- to Exascale. It departs from
today’s prevalent programming models with the goal of mitigating
their respective limitations, such as implicit and explicit global bar-
riers, coarse grain parallelism, and lack of overlap between com-
putation and communication (or the high complexity of its imple-
mentation). HPX exposes a coherent programming model, unifying
all different types of parallelism in HPC systems. HPX is the first
open source software runtime system implementing the concepts of
the ParalleX execution model [27, 30, 31] on conventional systems
including Linux clusters, Windows, Macintosh, Android, XeonPhi,
and the Bluegene/Q. HPX is built using existing ideas and concepts,
each known for decades as outlined below, however we believe that

the combination of those ideas and their strict application forming
overarching design principles is what makes HPX unique.

Focus on Latency Hiding instead of Latency Avoidance
It is impossible to design a system exposing zero latencies. In an
effort to come as close as possible to this goal many optimizations
are targeted towards minimizing latencies. Examples for this can
be seen everywhere, for instance low latency network technologies
like InfiniBand [32], complex memory hierarchies in all modern
processors, the constant optimization of existing MPI implemen-
tations to reduce network latencies, or the data transfer latencies
intrinsic to the way we use GPGPUs today. It is important to note,
that existing latencies are often tightly related to some resource
having to wait for the operation to be completed. This idle time
could be used instead to do useful work, which would allow the
application to hide the latencies from the user. Modern systems
already employ similar techniques (pipelined instruction execution
in the processor cores, asynchronous input/output operations, and
many more). We propose to go further than what has been accom-
plished today and make latency hiding an intrinsic concept of the
operation of the whole system stack.

Embrace Fine-grained Parallelism instead of Heavyweight Threads
If we plan to hide latencies even for very short operations, such as
fetching the contents of a memory cell from main memory (if it
is not already cached), we need to have very light-weight threads
with extremely short context switching times, optimally executable
within one cycle. Granted, for mainstream architectures this is
not possible today (even if there are special machines supporting
this mode of operation, such as the Cray XMT [33]). For con-
ventional systems however, the smaller the overhead of a context
switch and the finer the granularity of the threading system, the
better will be the overall system utilization and its efficiency. For
today’s architectures we already see a flurry of libraries provid-
ing exactly this type of functionality (even if not directly targetting
HPC): non-preemptive, work queue based parallelization solutions,
such as Intel Threading Building Blocks (TBB, [6]), Microsoft Par-
allel Patterns Library (PPL, [7]), Cilk [34], and many others. The
possibility to suspend a task if some preconditions for its execu-
tion are not met (such as waiting for I/O or the result of a different
task) – while seamlessly switching to any other task which can con-
tinue in the meantime – and to reschedule the initial work after the
required result has been calculated, makes the implementation of
latency hiding almost trivial.

Rediscover Constraint Based Synchronization to replace Global
Barriers
Most code written today is riddled with implicit (and explicit) global
barriers. i.e. the synchronization of the control flow between sev-
eral (very often all) threads (when using OpenMP [35, 36]) or pro-
cesses (MPI [26]). For instance, an implicit global barrier is in-
serted after each loop parallelized using OpenMP as the system
synchronizes the threads used to execute the different parallel iter-
ations. In MPI, almost each of the communication steps imposes an
explicit barrier onto the execution flow as (often all) nodes have to
be synchronized. Each of those barriers acts as an eye of the nee-
dle the overall execution is forced to be squeezed through. Even
minimal fluctuations in the execution times of the parallel threads
(processes) causes them to wait. Additionally, often only one of
the executing threads is doing the actual reduce operation, which
further impedes parallelism. A closer analysis of a couple of key
algorithms used in scientific applications reveals that these global



barriers are not always necessary. In many cases, it is sufficient
to synchronize a small subset of the executing tasks. In general,
any operation could proceed as soon as the preconditions for its
execution are met. For example, there is no need to wait for all iter-
ations of a (parallel) loop to finish before continuing the calculation
of other things. The computation can continue after only those it-
erations are done which were producing the required results for a
particular next operation. This type of computing was described in
the 1970s, based on the theory of static and dynamic data-flow [37,
38]. There are certain attempts today to get back to those ideas and
to incorporate them with modern architectures. For instance, a lot
of work is being done in the area of constructing data-flow oriented
execution trees. Our results show that employing data-flow tech-
niques in combination with the other ideas, considerably improves
scalability for many problems.

Adaptive Locality Control instead of Static Data Distribution
While this principle seems to be a given for single desktop or lap-
top computers, it is everything but ubiquitous on modern super-
computers, which are usually built from a large number of sepa-
rate nodes (i.e. Beowulf clusters), tightly interconnected by a high
bandwidth, low latency network. Today’s prevalent programming
model for those is MPI which does not directly help with proper
data distribution and data placement, leaving it to the programmer
to decompose the data to all of the nodes the application is running
on. There are a couple of specialized languages and programming
environments based on PGAS designed to overcome this limita-
tion, such as Chapel, X10, UPC, or Fortress. However all sys-
tems based on PGAS rely on static data distribution. This works
fine as long as such a static data distribution does not result in in-
homogeneous workload distributions or other resource utilization
imbalances. In a distributed system these imbalances can be miti-
gated by migrating part of the application data to different localities
(nodes). The only framework supporting (limited) migration today
is Charm++ [39]. The first attempts towards solving related prob-
lems go back decades as well, a good example is the Linda coor-
dination language [40]. Nevertheless, none of the other mentioned
systems support fully dynamic migration of arbitrary data today,
which forces the users to either rely on static data distribution and
live with the related performance hits or to implement everything
themselves, which is very tedious and difficult. We believe that the
only viable way to flexibly support dynamic and adaptive locality
control is to provide a global, uniform address space to the applica-
tions, even on distributed systems. This should be combined with
a flexible introspection system allowing the uniform gathering of a
variety of performance information which feeds into policy based,
decision engines which dynamically control data placement at run-
time.

Prefer Moving Work to the Data over Moving Data to the Work
For best performance, it seems obvious to minimize the amount of
bytes transferred from one part of the system to another. This is true
on all levels. At the lowest level we try to take advantage of proces-
sor memory caches, thus minimizing memory latencies. Similarly,
we try to amortize the data transfer time to and from GPGPUs as
much as possible. At high levels we try to minimize data trans-
fer between different nodes of a cluster or between different virtual
machines on the cloud. Our experience (well, it’s almost common
wisdom) shows that the amount of bytes necessary to encode a cer-
tain operation is very often much smaller than the amount of bytes
encoding the data the operation is performed upon. Nevertheless
we still often transfer the data to a particular place where we ex-
ecute the operation just to bring the data back to where it came

from afterwards. As an example, let us look at the way we usually
write our applications for clusters using MPI. This programming
model is all about data transfer between nodes. MPI is the preva-
lent programming model for clusters, it is fairly straightforward to
understand and to use. Therefore, we often write the applications
in a way accommodating this model, centered around data transfer.
These applications usually work well for smaller problem sizes and
for regular data structures. The larger the amount of data we have
to churn and the more irregular the problem domain becomes, the
worse are the overall machine utilization and the (strong) scaling
characteristics. While it is not impossible to implement more dy-
namic, data driven, and asynchronous applications using MPI, it is
overly difficult to do so. At the same time, if we look at applica-
tions preferring to execute the code close to the locality where the
data was placed, i.e. utilizing active messages (for instance based
on Charm++), we see better asynchrony, simpler application codes,
and improved scaling.

Favor Message Driven Computation over Message Passing
Today’s prevalently used programming model on parallel (multi-
node) systems is MPI. It is based on message passing (as the name
implies), which means that the receiver has to be aware of a mes-
sage about to come in. Both codes, the sender and the receiver,
have to synchronize in order to perform the communication step.
Even the newer, asynchronous interfaces require the explicit cod-
ing of the algorithms around the required communication scheme.
As a result, any nontrivial MPI application spends a considerable
amount of time waiting for incoming messages, thus causing star-
vation and latencies to impede full resource utilization. The more
complex and the more dynamic the data structures and algorithms
become, the larger are the adverse effects. The community has dis-
covered message-driven and (data-driven) methods of implement-
ing algorithms a long time ago, and systems such as Charm++ al-
ready have integrated active messages, demonstrating the validity
of the concept. Message driven computation allows one to send
messages without the need for the receiver to actively wait for
them. Any incoming message is handled asynchronously and trig-
gers the encoded action by passing along arguments and – possi-
bly – continuations. HPX combines this scheme with work queue
based scheduling as described above, which allows almost com-
plete overlap of communication with useful work, reducing effec-
tive latencies to a minimum.

3.2 The Architecture of HPX
HPX is a runtime system. This means that any application using it
will be directly linked with its libraries. While an operating system
is active for the whole time a machine is running, a runtime sys-
tem is started whenever the application is launched and it will be
shut down whenever the application is terminated. A runtime sys-
tem’s task is to improve certain overall runtime characteristics of
the application, like performance, energy efficiency, or scalability,
etc. At the same time, the runtime system relies on and expands
services provided by the operating system. The resulting architec-
ture of HPX is shown in Fig. 1. It consists of five subsystems, all of
which encapsulate a particular subset of the exposed functionality.

3.2.1 The Parcel Subsystem
All network communication in HPX is built on top of the parcel
subsystem. It implements a form of active messages [41] called
parcels. Parcels encapsulate remote method calls. A parcel con-
tains the global address of an object to act on (the destination), a
reference to one of the object’s methods, the arguments to call the



LCOs
Threading 
Subsystem

Parcel
Subsystem

AGAS

Instrumentation
Adaptation

Application

Operating System

Other
Localities

Figure 1: The modular structure of HPX implementation. HPX con-
sists of the following subsystems: AGAS (Active Global Address Space),
Parcel port and Parcel handlers, HPX-threads and thread manager,
LCOs (Local Control Objects), and Performance Counters for the in-
strumentation of system and user code.

method with, and an optional continuation. Parcels are transmit-
ted asynchronously. Data is communicated in the form of argu-
ments bound to the parcel. A parcel can be conceptually viewed as
a bound function. In HPX, the entities that communicate parcels
are called localities. A locality represents a set of hardware re-
sources with bounded, finite latencies (for example, a single socket
in a large SMP machine, or a compute node). Each locality asyn-
chronously receives inbound parcels and transmits outbound parcels.

3.2.2 The Active Global Address Space (AGAS)
The primary role of AGAS is to implement a global address space
that spans all localities an application is currently running on. The
target of a parcel is a global address assigned by AGAS, called a
Global Identifier (GID). GIDs are mapped by AGAS to a tuple of
meta-data that can be used to dynamically locate an object in the
system. Unlike systems such as X10, Chapel, or UPC, which are
based on PGAS, AGAS is a dynamic and adaptive address space
which evolves over the lifetime of an application, similar to systems
such as DEGAS [42] and Charm++. AGAS is the foundation for
dynamic locality control as objects can be moved to other localities
without changing their global address.

3.2.3 The Threading Subsystem
When a parcel is received by the parcel-port, it is converted into
an HPX-thread, which is then scheduled, executed and recycled by
the threading subsystem.In the HPX threading subsystem, M HPX-
threads are mapped onto N kernel threads (OS-threads), typically
one OS-thread per available processing unit (core). This threading
model enables fine-grained parallelization, with the goal of using
millions of threads per second on each core. Context switches be-
tween HPX-threads do not require a kernel call, reducing the over-
head of HPX-thread execution and suspension. The threading sub-
system uses a work-queue based execution strategy, utilizing work
stealing to facilitate intra-locality load balancing. HPX-threads are
scheduled cooperatively; they are never preempted by the sched-
uler. However they may voluntarily suspend themselves when they
must wait for data required to continue execution, I/O operations,
or synchronization.

3.2.4 Local Control Objects (LCOs)

LCOs provide a means of controlling parallelization and synchro-
nization in HPX applications, and implement latency hiding. Any
object that may create a new HPX-thread or reactivate a suspended
HPX-thread exposes the functionality of an LCO. Support for event-
driven HPX-threading, protection of shared resources, and organi-
zation of execution flow are provided by LCOs. LCOs are designed
to replace global barriers with constraint-based synchronization, al-
lowing for each thread to proceed as far in its execution as possible
without active blocking or waiting. Some of the more prominent
LCOs provided by HPX are described below.

• Futures [43, 44, 45] are proxies for results that are not yet known,
possibly because they have not yet been computed. A future
synchronizes access to the result value associated with it by
suspending HPX-threads requesting the value if the data is not
available at the time of the request. When the result becomes
available, the future reactivates all suspended HPX-threads wait-
ing for it.

• Dataflow objects [38, 46, 47] provide a powerful mechanism for
managing data dependencies without the use of global barriers.
A dataflow LCO waits for a set of futures to become ready and
triggers a predefined function passing along all values encapsu-
lated by the input futures.

• Traditional concurrency control mechanisms such as various types
of mutexes [48], counting semaphores, spinlocks, condition vari-
ables and barriers are also exposed as LCOs in HPX.

• Suspended threads fulfill the criteria of being an LCO as well:
once triggered they cause a thread (themselves) to be resumed

3.2.5 Instrumentation and Adaptivity
HPX implements a performance counter framework which pro-
vides an intrusive way of instrumenting the environment in which
an HPX application is running, exposing metrics from hardware,
the OS, HPX runtime services, and applications. The data provided
by performance counters facilitate the development of heuristic al-
gorithms that use runtime introspection to make smarter decisions
facilitating runtime adaptive resource management. Additionally,
performance counters are a powerful debugging and optimization
tool. A performance counter is a first class object (has a global
address) associated with a symbolic name which exposes an uni-
form interface for collecting arbitrary performance data on demand
throughout the system. Also, external instrumentation utilities can
connect to a running HPX application through the parcel transport
layer, query performance counters, and then disconnect.

3.3 The HPX API – Strictly Conforming to
the C++ Standard

The design of the API exposed by HPX is aligned as much as
possible with the latest C++11 Standard [14], the (draft) C++14
Standard [15], and related proposals to the standardization commit-
tee [16, 49, 50]. HPX implements all interfaces defined by the C++
Standard related to multi-threading (such as future, thread,
mutex, or async) in a fully conforming way. These interfaces
were accepted for ISO standardization after a wide community based
discussion and since then have proven to be effective tools for man-
aging asynchrony. HPX seeks to extend these concepts, interfaces,
and ideas embodied in the C++11 threading system to distributed
and data-flow programming use cases. Nevertheless, we made ev-
ery possible effort to keep all of the implementation of HPX fully



conforming to C++, which ensures a high degree of code porta-
bility, and – as will be shown below – enables a high degree of
performance portability of HPX applications as well.

HPX’s API aligns very well with the asynchronous nature of the
implemented execution model. Any operation which possibly in-
volves network access is exposed as an asynchronous function in-
vocation returning an instance of a future. This future rep-
resents the result of the operation and can be used to either syn-
chronize with it or to attach a continuation which will be auto-
matically executed once the future becomes ready. Any excep-
tions thrown during the (possibly remote) function execution are
dispatched back to the future which enables proper error han-
dling.

The full function invocation API of HPX is presented in Table 1.
This API exposes three conceptually different ways of executing
a function, locally on the same physical locality as the invocation
site or remotely on a different locality. As shown in this table, the
HPX function invocation capabilities are based upon – and extend
beyond – what is possible in C++ and the C++ Standards library
today.

• Synchronous function execution: this is the most natural way
of invoking a C++ function. The caller ’waits’ for the function
to return, possibly providing the result of the function execu-
tion. In HPX, synchronously executing an action suspends the
current thread relinquishing the processing unit for other avail-
able work. Once the function is executed, the current thread is
rescheduled.

• Asynchronous function execution: asynchronous invocation of
a function means that it will be scheduled as a new HPX-thread
(either locally or on another locality). The call to async will
return almost immediately providing a new future instance
which represents the result of the function execution. Asyn-
chronous function execution is the fundamental way of orches-
trating asynchronous parallelism in HPX.

• Fire&Forget function execution: this is similar to asynchronous
execution except that the caller has no means of synchroniz-
ing with the result of the operation. The call to apply simply
schedules a local (or remote) HPX-thread which runs to com-
pletion at its own pace. Any result returned from that function
(or any exception thrown) is being ignored. This leads to less
communication by not having to notify the caller.

All three forms of action execution have a homogeneous syntax re-
gardless whether the target of the operation is local or remote (see
light gray region in Table 1). The GID used for the operation de-
termines on which locality the encapsulated function is executed.
HPX will directly schedule a local HPX-thread if the GID refers to
a local object. Otherwise a parcel will be created and dispatched to
the locality hosting the referenced object. HPX uses its implemen-
tation of AGAS to determine the locality of the destination. The
received parcel will schedule an HPX-thread on the remote local-
ity. In HPX, the operations of creating a local thread and sending
a parcel which causes a remote thread to be created and scheduled
are semantically fully equivalent operations.

3.4 Achieving Programmability
The exposure of an API based on the C++-Standard ultimately po-
sitions HPX at the level of a programming interface for higher-
level application frameworks. We anticipate that this API will not

be used directly by domain scientists, rather it will be utilized to
create higher-level domain specific application frameworks which
simplify the creation of the actual applications. Examples for such
frameworks are LibGeoDecomp [51], MetaScale NT2 [52], or
Boost.Odeint [53]. All these libraries support using HPX as a back
end.

The C++ Standards committee puts great effort into creating APIs
which are perfect for designing and writing libraries. By utiliz-
ing this API, HPX is able to leverage the powerful asynchronous
mechanisms of the standard which allow the development of com-
posable interfaces that efficiently expose parallelism. In addition,
HPX’s governing principles, design, and high performance imple-
mentation perfectly allow for nested parallelization by shifting the
burden imposed by writing parallel codes from "Joe the Scientist"
to our expert "Hero Programmer".

4. HIGH PERFORMANCE IMPLEMENTA-
TION FOR SYSTEMS OF ANY SCALE

The availability of a standardized API (see Sec. 3.3) based on a
solid theoretic foundation (see Sec. 3.1) forms the baseline of hav-
ing a competitive solution solving scalability problems at Exascale.
This section will demonstrate the ability of HPX to deliver adequate
application performance. We further outline the techniques used
to enable improved scalability beyond conventional programming
techniques (such as based on MPI and OpenMP). We show per-
formance portability by providing numbers obtained from scaling
experiments on a single node, a single Intel Xeon Phi co-processor,
and large scale distributed runs. All results were obtained from the
same source code without special treatments.

We selected a small set of available HPX applications which were
implemented with our constraint based parallelization technique
(futurization) in mind. While they don’t exploit every feature of
HPX (they don’t use adaptive locality control through migration),
they highly benefit from the ability to use fine grained parallelism
which is made possible by the HPX API. The presented applica-
tions are an Nbody-Code implemented with LibGeoDecomp [28]
and the miniGhost [54] benchmark from the Mantevo Benchmark
Suite [55]. Additionally, we compare the scheduling efficiencies
of other task based library implementations (Qthreads [2] and Intel
TBB [6]), using the Homogeneous-Timed-Task-Spawn benchmark.

Intel Xeon E5 Intel Xeon Phi

Clock Frequency 2.7 (3.5 Turbo) GHz 1.1 GHz
Number of Cores 16 (2x8) 61
SMT 2-way (deactivated) 4-way
NUMA Domains 2 1
RAM 32 GB 8 GB
SIMD AVX (256 bit) MIC (512 bit)
GFLOPS 691.2 (896.0 Turbo) 2147.2
Microarchitecture Sandy Bridge Knights Corner

Table 2: Overview of the processors built into one compute
node of the Stampede supercomputer. GLFOPS are presented
in single precision.

The results presented here were obtained on TACC Stampede Su-
percomputer [56]. It consist of a total of 6400 nodes, each with
two Intel Xeon E5 processors and one Intel Xeon Phi coprocessor
(see Table 2). The compute nodes are interconnected with Mel-
lanox FDR InfiniBand technology (56 Gb/s) in a 2-level fat-tree



HPX

C++ Standard Library

C++

R f(p...)
Synchronous Execution Asynchronous Execution Fire & Forget Execution

(returns R) (returns future<R>) (returns void)

Functions f(p...) async(f, p...) apply(f, p...)
(direct invo-
cation)

Functions bind(f, p...)(...) async(bind(f, p...), ...) apply(bind(f, p...), ...)
(lazy invoca-
tion)

Actions HPX_ACTION(f, action) HPX_ACTION(f, action) HPX_ACTION(f, action)
(direct invo-
cation)

a(id, p...) async(a, id, p...) apply(a, id, p...)

Actions HPX_ACTION(f, action) HPX_ACTION(f, action) HPX_ACTION(f, action)
(lazy invoca-
tion)

bind(a, id, p...)
(...)

async(bind(a, id, p...),
...)

apply(bind(a, id, p...),
...)

Table 1: Overview of the main API exposed by HPX. This table shows the function invocation syntax as defined by the C++
language (dark gray), the additional invocation syntax as provided through C++ Standard Library features (medium gray), and
the extensions added by HPX (light gray). Where: f: function to invoke; p...: (optional) arguments; R: return type of f;
action: action type defined by HPX_ACTION() encapsulating f; a: an instance of the type action;
id: the global address the action is applied to.

topology. The complete system is a 10 PFLOPS cluster.

The Homogeneous-Timed-Task-Spawn results were collected on a
node from LSU’s Hermione cluster. The test machine had two Intel
Xeon E5 v2 Ivybridge processors (each with 10 cores clocked at 2.5
GHz), and 128GB of DDR3 memory.

4.1 Thread Scheduling capabilities
The HPX thread scheduling subsystem is at the heart of HPX and is
designed to efficiently handle hundreds of millions of tasks of any
duration. We present results from the Homogeneous-Timed-Task-
Spawn (HTTS) benchmark executing no-op tasks. We compare the
scheduler throughput and the thread overheads of the HPX thread-
ing subsystem with two of the most widely used cross-platform,
open source task libraries - Intel TBB [6] and Qthreads [2]. The
used benchmark is embarrassingly parallel, so there is no commu-
nication between workers. All scheduler queues have sufficient
work available, so work stealing does not occur. Note, however,
that we still pay a synchronization cost for hardware atomics used
inside the scheduler on cache coherent systems. Because of these
properties, we claim that the per-thread overheads measured pro-
vides a reasonable lower-bound estimate for HPX applications with
similar queue lengths and task payloads.

Fig. 2 shows the scheduling throughput of HPX, Qthreads, and
TBB for the HTTS benchmark on our test system. We note that
TBB and Qthreads both experience a spike in per-task overheads
at the socket boundary. HPX, however, maintains strongly linear
behavior. In Fig. 3 we present estimated per-task overheads us-
ing HTTS results. For comparison, we also present results of the
same benchmark from Qthreads (version 9f15ec9) and Intel TBB
(version 4.2). Both HPX and Qthreads are able to maintain sub-
microsecond overheads on all 20 cores of the test system. TBB
shows the greatest growth in overheads as the number of cores is
increased.

0

5

10

15

20

25

30

0 5 10 15 20

Ta
sk

s 
Ex

ec
u

te
d

 p
er

 S
e

co
n

d
M

ill
io

n
s

Number of Cores

Tasks Executed per Second

HPX

Qthreads

TBB

Figure 2: Scheduling throughput of HPX, Qthreads and
TBB on a 2-socket Intel Ivybridge system, measured with the
Homogeneous-Timed-Task-Spawn benchmark. No artificial
payload was used. Each task was a no-op and returned immedi-
ately to the scheduler, simulating extremely fine grain sizes. 2.5
million tasks per core were used; on 20 cores, all three frame-
works executed 50 million tasks in total.

Our results show that HPX per-task overheads are very small. We
performed trials of HTTS with 800 million tasks on 20 cores, also
with no-op task payloads. Those measurements show an estimated
overhead per task of 760 nanoseconds. This result agrees with
the estimated per-task overhead for the 50 million task trials: 758
nanoseconds (as shown in Fig. 3).

4.2 LibGeoDecomp based Nbody-Code
LibGeoDecomp [51] is an auto-parallelization Library for Geomet-
ric Decomposition codes. The user only needs to supply a simula-
tion model together with various options specifying how the simu-
lation domain is structured. The library then handles the spatial and
temporal loops as well as the data storage. In our experiment we
show how using HPX’s unified programming model for implement-



537 537
654

370
499

751

159

580

2167

0

500

1000

1500

2000

2500

1 10 20

A
m

o
rt

iz
ed

 T
h

re
ad

 O
ve

rh
ea

d
s 

[n
s]

Number of Cores

Amortized Thread Overheads per Task

HPX

Qthreads

TBB

Figure 3: Estimated lower-bound for per-task overheads in
HPX, Qthreads and TBB on a 2-socket Intel Ivybridge system.
These estimates are based upon results from the embarrass-
ingly parallel Homogeneous-Timed-Task-Spawn, with 2.5 mil-
lion tasks per core and a no-op payload. The presented data
is based on average execution times from 8 trials of the en-
tire parameter space. Our observations have found that these
overheads do not vary greatly as task duration is changed.
These lower-bound approximations can be used to determine
the smallest feasible magnitude of granularity on a given plat-
form.

ing a three dimensional N-Body simulation exhibits perfect scaling
at a single node level (16 cores) by reaching 98% peak performance
of a single node of the Stampede supercomputer [28]. We reevalu-
ated the performance presented in one of our previous papers and
reran the benchmarks which show significant improvements in var-
ious layers of HPX.

0

100

200

300

400

500

600

0 2 4 6 8 10 12 14 16

G
FL

O
P

S

Number of Cores

LibGeoDecomp N-Body - Single Node - Weak Scaling
(Host Cores)

HPX

MPI

Theoretical Peak

Figure 4: Weak scaling results for the HPX and MPI N-Body
codes collected on a single SMP node while varying the number
of cores used from 1 to 16. The figure shows the performance
in GFLOPS. The results show that the HPX backend is able to
achieve an almost perfect weak scaling. The HPX backend is
able to sustain a performance of ∼540 GLFOPS.

The results on a single compute node haven’t changed from our
previously achieved performance (see Fig. 4). We are able to reach
∼98% peak performance with HPX. The performance on a single
Xeon Phi (see Fig. 5), as on the host processor, remains at 89%
peak performance demonstrating that our runtime system is able
to efficiently utilize many-core architectures like the Xeon Phi co-
processor.

The main improvements in our implementation has been gone into

0

500

1000

1500

2000

0 50 100 150 200 250

G
FL

O
P

S

Number of Processing Units

LibGeoDecomp N-Body - Weak Scaling
(Intel Xeon Phi)

HPX

Theoretical Peak

Figure 5: Weak scaling results for the HPX N-Body code col-
lected on a single Intel Xeon Phi co-processor while varying
both the number of processing units used. The overall perfor-
mance does not increase much more after two threads per core
are used. HPX reached a sustained peak performance of 1504.7
GFLOPS using all 244 processing units which is equivalent to
a parallel efficiency of ∼89%.

0

100000

200000

300000

400000

500000

600000

700000

0 200 400 600 800 1000

G
FL

O
P

S

Number of Localities (16 Cores each)

LibGeoDecomp - Weak Scaling - Distributed
(Host Cores)

HPX

MPI

Theoretical Peak

Figure 6: Weak scaling performance results for the HPX and
MPI N-Body codes collected for runs on the host’s cores only
(16 cores per node) while increasing the number of nodes from
1 to 1024 (16 to 16384 cores). On 1024 nodes, the HPX code
outperforms the equivalent MPI code by a factor of 1.4 and
reaches a performance of ∼0.48 PFLOPS.

optimizing the communication layer. Fig. 6 shows the results of
those improvements. We were able to improve our previous results
by a factor of ∼1.35 which has the effect that the HPX backend is
able to outperform the MPI implementation by a factor of 1.4 while
performing at a parallel efficiency of ∼87% at 1024 nodes running
on a total of 16384 CPU Cores.

LibGeoDecomp is one example of an application framework which
hides the complexity of parallel programming from the end users.
By exploiting parallelism with the mechanisms provided by HPX,
scientific simulations written within LibGeoDecomp can be used
to fully unleash the power of parallel computers by showing per-
formance not possible with conventional practice.

4.3 HPX port of the miniGhost Benchmark
Our second application benchmark is a port of the miniGhost proxy
application delivered in the Mantevo benchmark suites. This miniapp
represents algorithms for solving partial differential equations with
the help of a finite difference stencil. The reference implementation



is written in the Bulk Synchronous Parallel Programming Model
(BSP).

We present early results of our take to convert the miniGhost ap-
plications BSP formulation to the constraint-based dataflow style
programming technique made available by the HPX programming
model (see Sec. 3.1). It combines the techniques developed in [57]
and [28] to provide an implementation which removes the bulk
synchronous nature of algorithms needing halo-exchanges. It also
demonstrates a way to remove the global barrier imposed by the
global reduction operation needed for some of the variables by
fully overlapping computation with communication. Any partic-
ular computation is scheduled whenever all preconditions for its
execution are met (all data dependencies are fulfilled). HPX uses
future objects to implicitly express those data dependencies and
the composition of those future objects (through dataflow ob-
jects or other LCOs) ensures that only the required minimal set of
data dependencies is considered.

For benchmarking the miniGhost application we chose a number
of 40 variables with each variable being of the dimension 200 ×
200 × 200. The number of time steps was set to 20 with reduc-
ing 10% of the variables in each time step. We used the 2D5PT
stencil throughout our runs, meaning that only a plane in the three
dimensional volume is considered while updating a element. The
characterestics of the benchmark do not change when choosing a
different stencil. The number of elements in each variable was kept
constant per process for the weak scaling experiment.

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

G
FL

O
P

S

Number of Cores

MiniGhost - Single Node - Strong Scaling
(40 variables - 20 time steps - 200x200x200 - 10% reduction)

HPX

OpenMP

Theoretical Peak

Figure 7: Strong scaling results for the HPX and OpenMP
implementation of the miniGhost application. These were ob-
tained from a single compute node of the Stampede Supercom-
puter. The results show that the HPX implementation shows
near perfect strong scaling using up to 8 cores.

Fig. 7 shows the scaling behavior of both, the reference OpenMP
implementation as well as the HPX port of the Mantevo miniGhost
application. HPX easily outscales and outperforms the reference
implementation. This is the result of the effective futurization of
the algorithm control flow made possible by the HPX API. At 8
cores, the resulting speedup is 7.1 with a parallel efficiency of 88%.
At 16 cores, the speedup is decreased due to increasing NUMA
related effects. For this reason, we chose 2 processes per node for
the distributed runs.

The results of running miniGhost in distributed is shown in Fig. 8.
We see that the constraint based parallelization is not only advan-
tageous for a single node but also, due to the unified semantics as
described in Sec. 3.3, for larger scale distributed experiments. The

0

500

1000

1500

2000

0 50 100 150 200 250 300

G
FL

O
P

S

Number of Localities (2 Localities per Node, 8 Cores each)

MiniGhost - Weak Scaling
(40 variables - 20 timesteps - 200x200x200 - 10% reduction)

HPX

MPI/OpenMP

Theoretical Peak

Figure 8: Weak scaling performance results for the HPX and
MPI+OpenMP implementation of the miniGhost application.
The experiment was conducted on up to 128 compute nodes of
the Stampede Supercomputer. We are able to show that the
HPX application outperforms the reference implementation by
a factor of 1.13.

main reasons for the speedup can be contributed to the efficient
overlapping of communication and computation due to fine grained
constraints. Those fine grained constraints also benefit from the
ability to be able to write a completely asynchronous reduction
needed for the global sum of 10% of the used variables. It is wor-
thy to note that the 128 node run used a total of 45.5 million HPX
threads which translates to around 22 thousand threads executed
per core. At a runtime of 9 seconds, this results in 5 million threads
executed per seconds.

5. CONCLUSION
Exascale machines will require a paradigm shift in the way parallel
programs are written. The currently dominant MPI+X effort pro-
poses that these programming challenges can be overcome by tak-
ing a two-step approach: Use MPI for communication and synchro-
nization of distinct processes and“X” for intra-process parallelism.
However, due to the rise of many-core machines and faster inter-
node networks, we postulate that this way of thinking about paral-
lelism is not enough. While conventional techniques work well on
current scale and most workloads, they exhibit a critical portion of
serial code through explicit and implicit global barriers. With the
help of unified semantics of remote and local operations in com-
bination of a capable lightweight threading system, we are able to
remove almost all serial portions of code and to perfectly overlap
computation with communication without complicating the API.

HPX has been designed as a possible answer to at least part of
the Exascale challenges referenced in Sec. 1, and so far the results
we have seen are very promising. We have shown that HPX sup-
ports application scalability beyond what is possible using conven-
tional programming models today. This has been achieved based
on an API which enables high programmability by exposing asyn-
chronous parallelism in a homogeneous way. The results we present
demonstrate a high degree of performance portability based on a
very portable implementation which is conforming to the latest
C++ Standards. The achieved high parallel efficiency numbers sup-
port our claim of HPX being energy efficient through very high re-
source utilization. Overall, we show that the HPX runtime system
is unique as:

• It is based on a solid theoretical foundation, the ParalleX execu-



tion model;

• It implements a programming model which is aligned with the
theoretical model and which exposes an API compatible and
conforming to the widely accepted C++11 Standard;

• It represents an existing implementation which has shown to out-
perform equivalent applications which are based on conven-
tional programming APIs

Our work with HPX, however is far from complete. We hope to de-
velop new dynamic and runtime aware load balancing mechanisms
so that we will be able to handle changes in the application execu-
tion in real time. We intend to continue work on integrating with
existing technologies providing a smooth migration path for appli-
cation developers. In this way, we can combine the need for new
programming models with a way to use existing code transparently
within HPX. Finally, we plan to work on ways to tackle problems
related to system resilience.

Despite this work yet to be done, our results reveal that, today, HPX
can be efficiently used for homogeneous large scale applications as
well as in heterogeneous environments. We believe that these find-
ing give credence to the design of our execution model and show
that HPX is competitive player in the world of HPC.

6. ACKNOWLEDGMENTS
We would like to acknowledge the NSF, DoE, the Center for Com-
putation and Technology at Louisiana State University, and the
Department of Computer Science 3 at the University of Erlangen
Nuremberg who fund our work. We would also like to thank LSU
HPC, LONI, XSEDE, ALCF, and the Gauss Center for Supercom-
puting. for granting us allocations for their compute resources.

7. REFERENCES
[1] “X-Stack: Programming Challenges, Runtime Systems, and

Tools, DoE-FOA-0000619,” 2012, http://science.energy.gov/
/media/grants/pdf/foas/2012/SC_FOA_0000619.pdf.

[2] “The Qthread Library,” 2014,
http://www.cs.sandia.gov/qthreads/.

[3] K. Huck, S. Shende, A. Malony, H. Kaiser, A. Porterfield,
R. Fowler, and R. Brightwell, “An early prototype of an
autonomic performance environment for exascale,” in
Proceedings of the 3rd International Workshop on Runtime
and Operating Systems for Supercomputers, ser. ROSS ’13.
New York, NY, USA: ACM, 2013, pp. 8:1–8:8. [Online].
Available: http://doi.acm.org/10.1145/2491661.2481434

[4] M. Anderson, M. Brodowicz, H. Kaiser,
B. Adelstein-Lelbach, and T. L. Sterling, “Neutron star
evolutions using tabulated equations of state with a new
execution model,” CoRR, vol. abs/1205.5055, 2012.
[Online]. Available: http://dblp.uni-trier.de/db/journals/corr/
corr1205.html#abs-1205-5055

[5] C. Dekate, H. Kaiser, M. Anderson, B. Adelstein-Lelbach,
and T. Sterling, “N-Body SVN repository,” 2011, available
under a BSD-style open source license. Contact
hpx-users@stellar.cct.lsu.edu for repository access. [Online].
Available: https:
//svn.cct.lsu.edu/repos/projects/parallex/trunk/history/nbody

[6] Intel, “Intel Thread Building Blocks 3.0,” 2010,
http://www.threadingbuildingblocks.org.

[7] Microsoft, “Microsoft Parallel Pattern Library,” 2010,
http://msdn.microsoft.com/en-us/library/dd492418.aspx.

[8] “StarPU - A Unified Runtime System for Heterogeneous
Multicore Architectures,” 2013,
http://runtime.bordeaux.inria.fr/StarPU/.

[9] “Intel(R) Cilk(tm) Plus,” 2014,
http://software.intel.com/en-us/intel-cilk-plus.

[10] “OpenMP Specifications,” 2013,
http://openmp.org/wp/openmp-specifications/.

[11] B. L. Chamberlain, D. Callahan, and H. P. Zima, “Parallel
programmability and the Chapel language,” International
Journal of High Performance Computing Applications,
vol. 21, pp. 291–312, 2007.

[12] “Intel SPMD Program Compiler,” 2011-2012,
http://ispc.github.io/.

[13] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar, “X10: An
object-oriented approach to non- uniform cluster
computing,” SIGPLAN Not., vol. 40, pp. 519–538, October
2005. [Online]. Available:
http://doi.acm.org/10.1145/1103845.1094852

[14] The C++ Standards Committee, “ISO/IEC 14882:2011,
Standard for Programming Language C++,” , Tech. Rep.,
2011, http://www.open-std.org/jtc1/sc22/wg21.

[15] The C++ Standards Committee , “N3797: Working Draft,
Standard for Programming Language C++,” Tech. Rep.,
2013, http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2013/n3797.pdf.

[16] Niklas Gustafsson and Artur Laksberg and Herb Sutter and
Sana Mithani, “N3857: Improvements to std::future<T> and
Related APIs,” The C++ Standards Committee, Tech. Rep.,
2014, http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2014/n3857.pdf.

[17] “The OmpSs Programming Model,” 2013,
https://pm.bsc.es/ompss.

[18] “OpenACC - Directives for Accelerators,” 2013,
http://www.openacc-standard.org/.

[19] “C++ AMP (C++ Accelerated Massive Parallelism),” 2013,
http://msdn.microsoft.com/en-us/library/hh265137.aspx.

[20] “CUDA,” 2013,
http://www.nvidia.com/object/cuda_home_new.html.

[21] “OpenCL - The open standard for parallel programming of
heterogeneous systems,” 2013,
https://www.khronos.org/opencl/.

[22] UPC Consortium, “UPC Language Specifications, v1.2,”
Lawrence Berkeley National Lab, Tech Report
LBNL-59208, 2005. [Online]. Available:
http://www.gwu.edu/\~{}upc/publications/LBNL-59208.pdf

[23] Oracle, “Project Frotress,” 2011,
https://projectfortress.java.net/.

[24] PGAS, “PGAS - Partitioned Global Address Space,” 2011,
http://www.pgas.org.

[25] S. Chatterjee, S. Tasirlar, Z. Budimlic, V. Cavé, M. Chabbi,
M. Grossman, V. Sarkar, and Y. Yan, “Integrating
asynchronous task parallelism with mpi.” in IPDPS. IEEE
Computer Society, 2013, pp. 712–725. [Online]. Available:
http://dblp.uni-trier.de/db/conf/ipps/ipdps2013.html#
ChatterjeeTBCCGSY13

[26] Message Passing Interface Forum, MPI: A Message-Passing
Interface Standard, Version 2.2. Stuttgart, Germany: High
Performance Computing Center Stuttgart (HLRS),
September 2009.

[27] H. Kaiser, M. Brodowicz, and T. Sterling, “ParalleX: An
Advanced Parallel Execution Model for Scaling-Impaired



Applications,” in Parallel Processing Workshops. Los
Alamitos, CA, USA: IEEE Computer Society, 2009, pp.
394–401.

[28] T. Heller, H. Kaiser, A. Schäfer, and D. Fey, “Using HPX
and LibGeoDecomp for Scaling HPC Applications on
Heterogeneous Supercomputers,” in Proceedings of the
Workshop on Latest Advances in Scalable Algorithms for
Large-Scale Systems, ser. ScalA ’13. New York, NY, USA:
ACM, 2013, pp. 1:1–1:8. [Online]. Available:
http://doi.acm.org/10.1145/2530268.2530269

[29] C. Dekate, M. Anderson, M. Brodowicz, H. Kaiser,
B. Adelstein-Lelbach, and T. L. Sterling, “Improving the
scalability of parallel N-body applications with an event
driven constraint based execution model,” The International
Journal of High Performance Computing Applications, vol.
abs/1109.5190, 2012, http://arxiv.org/abs/1109.5190.

[30] A. Tabbal, M. Anderson, M. Brodowicz, H. Kaiser, and
T. Sterling, “Preliminary design examination of the ParalleX
system from a software and hardware perspective,”
SIGMETRICS Performance Evaluation Review, vol. 38, p. 4,
Mar 2011.

[31] M. Anderson, M. Brodowicz, H. Kaiser, and T. L. Sterling,
“An application driven analysis of the ParalleX execution
model,” CoRR, vol. abs/1109.5201, 2011,
http://arxiv.org/abs/1109.5201.

[32] “InifiniBand Trade Association,” 2014,
http://www.infinibandta.org/.

[33] A. Kopser and D. Vollrath, “Overview of the Next
Generation Cray XMT,” in Cray User Group Proceedings,
2011, pp. 1–10.

[34] C. E. Leiserson, “The Cilk++ concurrency platform,” in DAC
’09: Proceedings of the 46th Annual Design Automation
Conference. New York, NY, USA: ACM, 2009, pp.
522–527. [Online]. Available:
http://dx.doi.org/10.1145/1629911.1630048

[35] L. Dagum and R. Menon, “OpenMP: An Industry- Standard
API for Shared-Memory Programming,” IEEE
Computational Science and Engineering, vol. 5, no. 1, pp.
46–55, 1998.

[36] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald,
and R. Menon, Parallel programming in OpenMP. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
2001.

[37] G. Papadopoulos and D. Culler, “Monsoon: An Explicit
Token-Store Architecture,” in 17th International Symposium
on Computer Architecture, ser. ACM SIGARCH Computer
Architecture News, no. 18(2). Seattle, Washington, May
28–31: ACM Digital Library, June 1990, pp. 82–91.

[38] J. B. Dennis, “First version of a data flow procedure
language,” in Symposium on Programming, 1974, pp.
362–376.

[39] PPL, “PPL - Parallel Programming Laboratory,” 2011,
http://charm.cs.uiuc.edu/.

[40] “CppLINDA: C++ LINDA implementation,” 2013,
http://sourceforge.net/projects/cpplinda/.

[41] D. W. Wall, “Messages as active agents,” in Proceedings of
the 9th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, ser. POPL ’82. New York, NY,
USA: ACM, 1982, pp. 34–39. [Online]. Available:
http://doi.acm.org/10.1145/582153.582157

[42] K. Yelick, V. Sarkar, J. Demmel, M. Erez, and D. Quinlan,
“DEGAS: Dynamic Exascale Global Address Space,” 2013,

http://crd.lbl.gov/assets/Uploads/FTG/Projects/DEGAS/
RetreatSummer13/DEGAS-Overview-Yelick-Retreat13.pdf.

[43] H. C. Baker and C. Hewitt, “The incremental garbage
collection of processes,” in SIGART Bull. New York, NY,
USA: ACM, August 1977, pp. 55–59. [Online]. Available:
http://doi.acm.org/10.1145/872736.806932

[44] D. P. Friedman and D. S. Wise, “CONS Should Not Evaluate
its Arguments,” in ICALP, 1976, pp. 257–284.

[45] R. H. Halstead, Jr., “MULTILISP: A language for concurrent
symbolic computation,” ACM Trans. Program. Lang. Syst.,
vol. 7, pp. 501–538, October 1985. [Online]. Available:
http://doi.acm.org/10.1145/4472.4478

[46] J. B. Dennis and D. Misunas, “A Preliminary Architecture
for a Basic Data-Flow Processor,” in 25 Years ISCA:
Retrospectives and Reprints, 1998, pp. 125–131.

[47] Arvind and R. Nikhil, “Executing a Program on the MIT
Tagged-Token Dataflow Architecture",” in PARLE ’87,
Parallel Architectures and Languages Europe, Volume 2:
Parallel Languages, J. W. de Bakker, A. J. Nijman, and P. C.
Treleaven, Eds. Berlin, DE: Springer-Verlag, 1987, lecture
Notes in Computer Science 259.

[48] P. J. Courtois, F. Heymans, and D. L. Parnas, “Concurrent
control with “readers” and “writers”,” Commun. ACM,
vol. 14, no. 10, pp. 667–668, 1971.

[49] Vicente J. Botet Escriba, “N3865: More Improvements to
std::future<T>,” The C++ Standards Committee, Tech. Rep.,
2014, http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2014/n3865.pdf.

[50] Chris Mysen and Niklas Gustafsson and Matt Austern and
Jeffrey Yasskin, “N3785: Executors and schedulers, revision
3,” , Tech. Rep., 2013, http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2013/n3785.pdf.

[51] A. Schï£¡fer and D. Fey, “LibGeoDecomp: A Grid-Enabled
Library for Geometric Decomposition Codes,” in
Proceedings of the 15th European PVM/MPI Users’ Group
Meeting on Recent Advances in Parallel Virtual Machine and
Message Passing Interface. Berlin, Heidelberg: Springer,
2008, pp. 285–294.

[52] MetaScale, “NT2 – High-performance MATLAB-inspired
C++ framework,” 2014,
http://www.metascale.org/products/nt2.

[53] Odeint, “Boost.Odeint – a C++ Library for Solving ODEs,”
2014, http://www.odeint.com.

[54] R. F. Barrett, C. T. Vaughan, and M. A. Heroux, “Minighost:
a miniapp for exploring boundary exchange strategies using
stencil computations in scientific parallel computing,”
Sandia National Laboratories, Tech. Rep. SAND, vol.
5294832, 2011.

[55] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M.
Willenbring, H. C. Edwards, A. Williams, M. Rajan, E. R.
Keiter, H. K. Thornquist, and R. W. Numrich, “Improving
performance via mini-applications,” Sandia National
Laboratories, Tech. Rep. SAND2009-5574, 2009.

[56] Texas Advanced Computing Center - Stampede.
Http://www.tacc.utexas.edu/resources/hpc/stampede.
[Online]. Available:
http://www.tacc.utexas.edu/resources/hpc/stampede

[57] T. Heller, H. Kaiser, and K. Iglberger, “Application of the
ParalleX Execution Model to Stencil-based Problems,” in
Proceedings of the International Supercomputing
Conference ISC’12, Hamburg, Germany, 2012. [Online].
Available: http://stellar.cct.lsu.edu/pubs/isc2012.pdf


