DYNAMIC ADAPTATION IN

HPX - A TASK-BASED PARALLEL RUNTIME SYSTEM

BY

PATRICIA A. GRUBEL, B.S., M.S.

A dissertation submitted to the Graduate School

in partial fulfillment of the requirements

for the degree

Doctor of Philosophy, Engineering

Specialization in Electrical Engineering

New Mexico State University

Las Cruces New Mexico

August 2016

DEDICATION

Laus Deo

In loving memory of my parents, Peter and Mary Zagone.

i

ACKNOWLEDGMENTS

Through this journey there has been so much support from people in all areas
of my life including exceptional mentors and colleagues, loving family members
and wonderful caring friends. Some I will mention in particular here, but there
are many more that helped and encouraged me during my graduate studies and
made this dissertation possible. So it is not just my dissertation but a very wide
group effort.

I thank my advisor, Jeanine Cook, whose knowledge, guidance, and inspiration
were instrumental in the success of my studies, research, and completion of this
dissertation. Little did I really know what I was getting into when I met you, but
from the very start I knew you would be an inspiration. I thank Hartmut Kaiser,
my mentor at Louisiana State University, who taught me about the capabilities
of HPX and C++4. Thank you for sharing your expertise, all your support and
encouragement. Your response to any need, including computer resources and
HPX issues, was phenomenal. I thank the other committee members, Dr. David
Voelz and Dr. Yuho Jin, for their helpful technical discussions, comments, and
reviews.

I appreciate Sandia National Laboratories for funding my studies and early
research with a graduate research fellowship and the NSF for funding this research

through grant 1111798.

il

I want to also acknowlege the helpful technical disscussions with the guys in
the NMSU ACAPS lab, Soumik Banergee, Parsa Amini, Alireza Nazari, Po Chou
Su, Samer Haddad, Mohammad Qayum, Nafiul Sadique, and Waleed Kohlani,
who did a great job teaching the Computer Performance Analysis class.

I thank my collaborators of the Stellar group at Louisiana State University and
the international collaborators who supported me in many ways. Bryce Adelstein-
Lelbach supported me early on in the areas of thread scheduling, assessing over-
heads, and all things C++. Parsa Amini, left ACAPS but still supported me from
LSU, with technical discussions, helping me when systems caused me headaches
and when I caused my own, and for his careful review of this dissertation. Adrian
Serio keeps the team motivated and makes sure resources are available. Thank
you for your encouragement and making sure I finished in a timely manner. I got
those pokes to keep going even when it seemed I was ignoring them. Also thank
you for all of your reviews and suggestions on the papers. I also enjoyed working
with Zahra Khatami and Vinay Amayta. I thank Thomas Heller, University of
Erlangen-Nuremberg, for all his help with HPX configurations and solving issues
and for many technical discussions about HPX.

Also T appreciate the knowledge and help Kevin Huck and Nicholas Chaimov,
University of Oregon, gave me with APEX, performance tools, and the Standard
C++ INNCABS suite.

I thank my extended family and many friends who encouraged me and prayed

v

for me. To those who lent their ears to me during all trials, thank you for listening
and still encouraging me. You know who you are. I want to especially thank Linn
Morrison and her late husband Ted, whom I miss very much. They welcomed me
into their home and hearts and made those commutes enjoyable. Linn always asks
me when "we” will get "our” Ph.D. and its true she owns this right along with
me because she helped me a great deal by being there for me. I am so grateful
for all you did for me and am glad to share it with you.

Last but by no means least, I owe a great debt of thanks to my wonderful
family especially my husband, Paul. Thank you for encouraging me to start this
journey and all through it, listening to me and helping me in every step. And
to my children, especially those who had to live with me while I was working on
this for different phases of your own education and pursuits, your faith in me and

encouragement to continue through the daily grind meant so much to me.

1973-1976

1976-1981

1976-1977

1977-1979

1979-1981

1981-1982

1982-1984

1984-1985

1985-1990

1990-2010

2010-2010

2011-2013

2013-2016

VITA

B.S. Electrical Engineering,
New Mexico State University, Las Cruces, NM

M.S. Electrical Engineering,
New Mexico State University, Las Cruces, NM

Electronics Engineer, Instrumentation Directorate,
White Sands Missile Range, NM

Operations Research Analyst, 6585 Test Group
Holloman Air Force Base, NM

Electronics Engineer, 6585 Test Group
Holloman Air Force Base, NM

Software Engineer, OAO Corporation
Vandenberg Air Force Base, CA

Senior Electronics Engineer, High Energy Laser Program
White Sands Missile Range, NM

Senior Systems Engineer, Dynalectron Corp.
Alamogordo, NM

Consulting Systems Engineer, Denmar Technical Services
Alamogordo, NM

Educator and Tutor, K-12 and College
Alamogordo, NM

Graduate Teaching Assistant, New Mexico State University
Las Cruces, NM

Graduate Research Fellowship, Sandia National Laboratories,
New Mexico State University, Las Cruces, NM

Graduate Research Assistant, New Mexico State University
Las Cruces, NM

vi

PUBLICATIONS

Patricia Grubel, Hartmut Kaiser, Kevin Huck and Jeanine Cook, ” Using
Intrinsic Performance Counters to Assess Efficiency in Task-based Parallel
Applications”, accepted in IPDPS Workshop on Monitoring and Analysis for
High Performance Computing Systems Plus Applications (HPCMASPA),
Chicago, May 27, 2016.

Patricia Grubel, Hartmut Kaiser, Jeanine Cook, and Adrian Serio, ” The
Performance Implication of Task Size for Applications on the HPX Runtime

System”, in 2015 IEEFE International Conference on Cluster Computing,
Chicago, 1L, 2015, pp. 682-689.

PROFESSIONAL AND HONORARY SOCIETIES

Institute of Electrical and Electronics Engineers

Association for Computing Machinery

FIELD OF STUDY

Major Field: Electrical and Computer Engineering

Vil

ABSTRACT

DYNAMIC ADAPTATION IN
HPX - A TASK-BASED PARALLEL RUNTIME SYSTEM
BY

PATRICIA A. GRUBEL, B.S., M.S.

Doctor of Philosophy
New Mexico State University
Las Cruces, New Mexico, 2016

Dr. Jeanine Cook, Chair

As parallel computation enters the exascale era where applications may run
on millions to billions of processors concurrently, all aspects of the computational
model need to undergo a transformation to meet the challenges of scaling im-
paired applications. One class of models aimed towards exascale computation is
the task-based parallel computational model. Task-based execution models and
their implementations aim to support parallelism through massive multi-threading
where an application is split into numerous tasks of varying size that execute con-
currently. Thread scheduling mechanisms used to manage application level tasks
are a fundamental part of the task-based parallel computational model.

viil

In task-based systems, scheduling threads onto resources can incur large over-
heads that vary with the underlying hardware. In this work, our goal is to dynam-
ically control task grain size to minimize these overheads. We use performance
studies to determine measurable events and metrics derived from them that in-
dicate how tuning task granularity will improve performance. We aim to build
a closed loop system that measures pertinent events and dynamically tunes task
grain size to improve performance of parallel applications. High Performance
ParalleX (HPX), the first implementation of the ParalleX execution model, is a
runtime system that employs asynchronous fine-grained tasks and asynchronous
communication for improved scaling of parallel applications. HPX is a modu-
lar system that has a dynamic performance modeling capability and a variety of
thread scheduling policies and queuing models for work stealing and load bal-
ancing. It provides the ideal framework for studying parallel applications with
the ability to make dynamic performance measurements and implement adaptive
mechanisms. Therefore, dynamic tuning of task granularity is developed within

the HPX framework.

1X

CONTENTS

LIST OF TABLES . . . o 0o oo o xiii
LIST OF FIGURESI oo o oo XX
I INTRODUCTIONI, 1
(1.1 Runtime Adaptivity in Task Based Parallelism|. 2
(1.2 Dissertation Organization| 3
2 BACKGROUND 4
4

6

7

8

2.3 HPX Runtime System| 9
[2.3.1 HPX Thread Schedulingl 10
[2.3.2 Parcel Transport Layer| 14
[2.3.3 Local Control Objects| 15
[2.3.4 Active Global Address Space[. 15
[2.3.5 Performance Monitoring System|. 16

[2.4 Task Granularity| o000 17
B RELATED WORKI ¢ o oo oo e 20

[3.1 Adaptive Task Grain Size| 20

[3.2 Adaptive Schedulers|00 26
4 DISSERTATTION CONTRIBUTION] 32
36

36

37

40

44

[>.2 Task Granularity Experimental Results| 45
H.2.1 Idle-ratelo 50
[5.2.2 HPX Thread Management Overhead 58
0.2.3 Wait Timelo 63

[5.2.4 Combined Costs: HPX Thread Management and Wait Time| 69

[5.2.5 Thread Pending Queue Accesses|. 70

[>.3 Summary of Task Granularity Experiments|. 79

X1

[6.3 Performance Counter Experiments] 95
[6.4 Performance Counter Experimental Results[. 97
[6.5 Summary of Performance Counter Experiments| 114
7 ADAPTIVE METHODOLOGIES 116
[7.1 Tuning Task Granularity Example. 118
[7.2 Tuning Task Granularity Results| 120
] CONCLUSIONS AND FUTURE WORKI 123
APPENDICES| 128
A TASK GRANULARITY SUPPLEMENTARY RESULTS 128
[A.1 Task Granularity Results Sandy Bridge| 128
[A.2 Task Granularity Results vy Bridge| 136
B PERFORMANCE ASSESMENT (INNCABS] SUPPLEMENTARY] 144
B.1 HPX'vs. C++11 Standardl 144
[B.2 Overheads Using HPX Performance Counters| 152
B.3 Offcore Bandwidth Utilizationl 157
............................... 162

X1l

LIST OF TABLES

(1 Platform Specifications for Task Granularity Experiments|. 45
2 Correlation of Metrics to Fixecution Time - Haswelll 51
[3 C++11 Standard INNCABS Executed with TAU and HPCTookKit | 86
|4 Translation of Syntax: C4++11 Standard to HPX| 89
(5 Plattorm Specifications for Pertormance Counter Experiments| . . 90
(6 Software Build and Run Specifications for INNCABS| 95
[7 Benchmark Classification and Granularity | 97
(8 Platform Specifications for Pertormance Counter Experiments| . . 119
[9 Tuning Task Granularity Results| 121

xiil

LIST OF FIGURES

I Global Barriers and Thread Idle Timel 7
[2 Constraint Based Synchronization Using Futures/. 8
[3 HPX Runtime System| 10
{4 HPX Thread State Diagram| 12
(5 Priority Local-FIFO scheduler| 14
{6 Parallel State Space Search Engine (ParSSSE) Abstraction Layers 21
[7 ParSSSE Adaptive Grain Size Control (from [b1]) 22
[8 Dependencies of Heat Distribution Benchmarkl 38
[0 Sandy Bridge: Execution Time vs. Task Granularity (partition size)| 48
(L0 Ivy Bridge: Execution Time vs. Task Granularity (partition size) 48
(11 Haswell: Execution Time vs. Task Granularity (partition size)| . . 49
(12 Xeon Phi: Execution Time vs. Task Granularity (partition size) . 49
(I3 Haswell (4 cores): Idle-Rate| 52
(14 Haswell (8 cores): Idle-Rate] 52
(15 Haswell (16 cores): Idle-Rate]. 53
(16 Haswell (28 cores): Idle-Rate|. 53
(17 Xeon Phi (8 cores): Idle-Rate|, 54
(I8 Xeon Phi (16 cores): Idle-Rate[. 54

Xiv

(19 Xeon Phi (32 cores): Idle-Rate|. 55
20 Xeon Phi (60 cores): Idle-Rate[. 55
21 Haswell (4 cores): Thread Management per Corel. 59
[22 Haswell (8 cores): Thread Management per Core[. 59
[23 Haswell (16 cores): Thread Management per Core| 60
[24 Haswell (28 cores): Thread Management per Core| 60
[25 Xeon Phi (8 cores): Thread Management per Corel. 61
26 Xeon Phi (16 cores): Thread Management per Core| 61
[27 Xeon Phi (32 cores): Thread Management per Core| 62
[28 Xeon Phi (60 cores): Thread Management per Corel 62
29 Wait Time per HPX-Thread (Haswell)| 63
30 Haswell (4 cores): Wait Time per Core| 65
31 Haswell (8 cores): Wait Time per Core| 65
32 Haswell (16 cores): Wait Time per Corel 66
133 Haswell (28 cores): Wait Time per Corel 66
34 Xeon Phi (8 cores): Wait Time per Core| 67
(35 Xeon Phi (16 cores): Wait Time per Core] 67
(36 Xeon Phi (32 cores): Wait Time per Core] 68
37 Xeon Phi (60 cores): Wait Time per Core] 68
138 Haswell (4 cores): Thread Management and Wait Time per Core|. 71
39 Haswell (8 cores): Thread Management and Wait Time per Core[. 71

XV

[0

Haswell (16 cores): Thread Management and Wait Time per Core] 72

11

Haswell (28 cores): Thread Management and Wait Time per Core] 72

42

Xeon Phi (8 cores): Thread Management and Wait Time per Core] 73

3

Xeon Phi (16 cores): Thread Management and Wait Time per Core| 73

iz

Xeon Phi (32 cores): Thread Management and Wait Time per Core| 74

45

Xeon Phi (60 cores): Thread Management and Wait Time per Core| 74

M6 Haswell (4 cores): Pending Queue Accesses| 75
U7 Haswell (8 cores): Pending Queue Accesses| 75
U8 Haswell (16 cores): Pending Queue Accesses| 76
M9 Haswell (28 cores): Pending Queue Accesses| 76
[50 Xeon Phi (8 cores): Pending Queue Accesses| 7
b1 ~ Xeon Phi (16 cores): Pending Queue Accesses| 7
[52 Xeon Phi (32 cores): Pending Queue Accesses| 78
(53 Xeon Phi (60 cores): Pending Queue Accesses| 78
b4 Alignment: HPX vs. C++11 Standard |. 100
b5 Pyramids: HPX vs. C+411 Standard | 101
[56 Strassen: HPX vs. C++11 Standard | 102
7 Sort: HPX vs. C++411 Standard | 103
Hy FET: HPX vs. C++11 Standard | 105
(9 UTS: HPX (C+411 Standard fails) | 106
60 Alignment: Overheads|. 108

xXvi

[61 Pyramids: Overheads| 109

62 Strassen: Overheads] 109
63 FET: Overheads| 110
64 _UTS: Overheadsl. 110
65 Alignment: Offcore Bandwidth Utilization| 111
[66 Pyramids: Oftcore Bandwidth Utilization|. 112
67 Strassen: Offcore Bandwidth Utilizationl 112
68 FET: Offcore Bandwidth Utilizationl. 113
69 APEX Integration with HPX| 117
[70 Sandy Bridge (4 cores): Idle-Rate| 128
[f1 Sandy Bridge (8 cores): Idle-Rate| 128
(72 Sandy Bridge (12 cores): Idle-Rate[. 129
[73 Sandy Bridge (16 cores): Idle-Rate] 129
(74 Sandy Bridge (4 cores): HPX Thread Management per Core| . . . 130
{75 Sandy Bridge (8 cores): HPX Thread Management per Corel . . . 130
[76 Sandy Bridge (12 cores): HPX Thread Management per Core] . . 131
(77 Sandy Bridge (16 cores): HPX Thread Management per Core] . . 131
[78 Sandy Bridge (4 cores): Wait Time per Corel 132
[79 Sandy Bridge (8 cores): Wait Time per Core| 132
80 Sandy Bridge (12 cores): Wait Time per Corel 133
81 Sandy Bridge (16 cores): Wait Time per Corel 133

X Vil

82 Sandy Bridge (4 cores): Thread Management and Wait Time|. . . 134

83 Sandy Bridge (8 cores): Thread Management and Wait Time|. . . 134
84 Sandy Bridge (12 cores): Thread Management and Wait Time| . . 135
85 Sandy Bridge (16 cores): Thread Management and Wait Time| . . 135
86 Ivy Bridge (4 cores): Idle-Rate|. 136
87 Ivy Bridge (8 cores): Idle-Rate|. 136
(88 Ivy Bridge (16 cores): Idle-Rate| 137
89 Ivy Bridge (20 cores): Idle-Rate| 137
[90 Ivy Bridge (4 cores): HPX Thread Management per Core|. 138
91 Ivy Bridge (8 cores): HPX Thread Management per Core| 138
[92 Ivy Bridge (16 cores): HPX Thread Management per Corel 139
(93 Ivy Bridge (20 cores): HPX Thread Management per Corel 139
94 Ivy Bridge (4 cores): Wait Time per Core| 140
[95 Ivy Bridge (8 cores): Wait Time per Core] 140
96 Ivy Bridge (16 cores): Wait Time per Corel 141
[97 Ivy Bridge (20 cores): Wait Time per Corel 141
[98 Ivy Bridge (4 cores): Thread Management and Wait Time[. . . . 142
[99 Ivy Bridge (8 cores): Thread Management and Wait Time| 142
(100 Ivy Bridge (16 cores): Thread Management and Wait Time|. . . . 143
(101 Ivy Bridge (20 cores): Thread Management and Wait Time|. . . . 143
(102 Sparselu: HPX vs. C++11 Standard |. 144

XViii

103 Round: HPX vs. C++411 Standard | 145

(104 NQueens: HPX (C++11 Standard fails) | 146
(105 Health: HPX (C+4-11 Standard fails) | 147
(106 FIB: HPX (C4+411 Standard fails) | 148
(107 Floorplan: HPX (C++11 Standard fails) | 149
(108 QAP: HPX (C++11 Standard fails) | 150
(109 Intersim: HPX (C++11 Standard fails) | 151
(110 Sparselu: Overheads| 152
(111 Round: Overheads 152
(112 Sort: Overheadslo 0L 153
(113 NQueens: Overheads| 153
(114 Health: Overheads 154
[II5 FIB: Overheadd 154
(116 Floorplan: Overheads|. 155
(117 QAP: Overheads| 155
(118 Intersim: Overheadsl 156
(119 Sparselu: Oftcore Bandwidth Utilization| 157
120 Round: Offcore Bandwidth Utilization| 157
(121 NQueens: Oftcore Bandwidth Utilization| 158
122 Health: Offcore Bandwidth Utilizationl 158
123 FIB: Offcore Bandwidth Utilizationl 159

XIX

(124 Floorplan: Oftfcore Bandwidth Utilization|.

(125 QAP: Oficore Bandwidth Utilization|

XX

1 INTRODUCTION

High Performance Computing (HPC) is expected to reach ezascale by the
end of the decade. All aspects of the computational model will evolve to support
massive amounts of concurrency. Processor core and memory architectures will
undergo design changes and architectures will continue to increase core and thread
per core counts with tighter integration of many core accelerators. Runtimes and
programming models will evolve to improve scalability, programmability, perfor-
mance, portability, resilience, and energy efficiency. The Exascale Computing
Study [40] concluded that a new execution model and programming methodology
is required to achieve these goals for contemporary scaling impaired applications
and future exascale applications. The study specifically recommends the possi-
ble solution of utilizing “modern, more expressive and asynchronous programming
paradigms and languages” [40] to address scaling impaired applications with inher-
ently fine-grained tasks. An underlying hypothesis of this work is that achieving
the goal of dramatic scalability improvements for contemporary strong scaling im-
paired applications and future ezascale applications will require a new execution
model to replace the conventional Communicating Sequential Processes (CSP)

model best exemplified by the MPI application programming interface.

1.1 Runtime Adaptivity in Task Based Parallelism

Execution models (and runtime systems that implement them) that sup-
port scalability in massively parallel systems are beginning to appear in the
HPC community. Runtime libraries that support massive task-based parallelism
include Intel® TBB [I8], Charm++ [48], Qthreads [6], and HPX [37]. Also,
Intel®Cilk" " Plus [41] and OpenMP 3.0 [4] have added language extensions for
task-based parallelism. Chapel [14] is an experimental programming language
with task-based parallelism. These models and their implementations aim to
support parallelism through massive multi-threading where an application is split
into numerous tasks or threads of varying size that execute concurrently. Runtime
adaptive resource management and decision making are necessary components of
the scalability strategy. Runtime adaptivity strongly relies on the ability to iden-
tify possible decision criteria usable to steer the runtime system parameters in
the desired direction, ensuring best possible performance, energy efficiency, or
resource utilization for the application.

An important component of these runtimes that can be dynamically adapted
to optimize performance is the thread scheduler, the mechanism that schedules
the application level tasks. Many of these runtimes implement different thread
schedulers that result in widely varying overheads for different task sizes or granu-

larities [46]. This provides an opportunity to optimize performance by dynamically

adapting the thread scheduling algorithm and/or the task granularity. Our goal

is to determine criteria and subsequent methods for tuning grain size.

1.2 Dissertation Organization

The remainder of this dissertation is organized as follows: Chapter [2| presents
background information including discussions on the ParalleX execution model,
the effectiveness of future and data-flow objects, the HPX runtime system, and the
effects of task granularity on parallel applications. Chapter [3| explores research
related to adaptive techniques as applied to parallel applications with special
emphasis on thread scheduling and task grain size. The hypothesis and resulting
contributions of this research are presented in Chapter [d] The methodology used
to measure the effects of task grain size and the experimental results are observed
in Chapter [f] The use of the performance monitoring capabilities in HPX to
measure events and provide metrics for runtime adaptivity are demonstrated in
the experimental methodology in Chapter [6f The results from benchmarks with
a variety of task granularity and synchronization requirements are also presented.
In Chapter [7] we explore dynamic adaptation with the integration of HPX and
the Autonomic Performance Environment for eXascale (APEX) library [33]. An
example and results for tuning grain size based on information gathered from the
HPX performance monitoring framework are presented. Finally, the conclusion

and future work is presented in Chapter [§]

2 BACKGROUND

Using a task-based parallel computational model for scaling impaired parallel
applications is one possible solution toward solving the challenges faced to achieve
exascale computation. This section presents background information about the
ParalleX execution model and its first implementation, HPX, the task-based run-

time system used for this research.

2.1 ParalleX Model

The ParalleX [36] execution model departs from traditional communicating
sequential processes (CSP) with a new paradigm that aims to implement new
forms of fine- and medium-grain task parallelism to increase the total amount of
concurrent operations. It makes efficient use of task parallelism by the elimination
of explicit and implicit global barriers for more efficient use of processors and
reduction of overheads. ParalleX supports a new form of global address space,
called the Active Global Address Space (AGAS), that allows dynamic parallel
processes to span multiple and shared nodes, providing context for local executing
threads. Migration of work across nodes is allowed to follow the distributed state
of a task that is made up of a set of threads executing on different nodes. To
accomplish this, ParalleX uses parcels (a form of active messages [59] 27]) that

are essentially explicit message-driven computations that reduce and hide latency

by moving work to data as opposed to the traditional method of moving data to
work, enabling the runtime to execute work close to where the data is located.
ParalleX provides dataflow [21], 22, 10] and future [11), 29, B2] synchronization
semantics to replace global barriers and provide constraint-based scheduling.

To achieve massive concurrency required by advances in experimental sciences
and informatics, the HPC community is moving toward execution models that
target asynchronous task parallelism. HPX [37)], the first implementation of Par-
alleX [36], implements asynchronous task parallelism in a homogeneous program-
ming interface for both intra-node (local) and inter-node (distributed) parallelism.
This research deals with the intra-node parallelism, specifically thread scheduling.
Through HPX’s homogeneous programming model for local and remote opera-
tions, the results of this research will extend to distributed execution of applica-
tions on multiple nodes.

Execution models that target fine-grained asynchronous task parallelism allow
more efficient system utilization of parallel architectures. However, fine-grained
task parallelization can generate increased overheads associated with creation,
deletion, and management of massive quantities of tasks. This work characterizes
overheads and employs dynamic adaptive mechanisms in the HPX framework to
minimize overheads and improve performance and scalability.

To facilitate this work, we characterize task grain size in the HPX framework

and measure the effects of task granularity on scalability. We extend our ini-

tial work on characterizing task granularity to include dynamic measurements of
task grain size and associated overheads for parallel benchmarks with a variety
of task granularities, parallel constructs, and synchronization requirements. We
incorporate the findings of the above studies with experimental methodologies to
implement tuning of grain size in parallel benchmarks.

The following sections give background information on future and dataflow
objects, the HPX runtime system, including its thread scheduling mechanisms
and performance monitoring capability, and information about task granularity

in task-based runtime systems.

2.2 Futures and Dataflow Constructs Eliminate Global Barriers

Most current parallel applications are permeated with implicit or explicit
global barriers impeding progress of computation. Global barriers prevent com-
putational progression when a thread reaches the barrier until all threads arrive
at the barrier. Once all threads complete computations and reach the barrier,
usually only one thread performs the reduction, further impeding computation
as illustrated in Figure[I] Current solutions for task parallelism use continuation
models that implement futures or dataflow constructs to replace implicit or ex-
plicit global barriers. HPX provides the means of eliminating global barriers with

the implementation of both futures and dataflow objects as Local Control Objects

(LCOs)(Section [2.3.3)).

barrier
g

SERD

|D 0 0 N

reduction

) barrier

% active thread {lkﬂethread

Figure 1: Global Barriers and Thread Idle Time
2.2.1 Futures

A future [11], 29, B2] is a proxy for a result that is not known because it may
not have been computed yet. The thread that requests a value from a future will
suspend until the value is available, enabling the thread manager to schedule other
work. If the value is already available, the requesting thread will continue compu-
tation. Once the result of a future becomes available, any HPX thread waiting for
it will be reactivated by the future. HPX threads are lightweight threads that are
scheduled onto coarser grained operating system (OS) threads, also referred to as
worker threads. The scheduling of HPX threads by worker threads is explained
in more detail in section [2.3.1] Figure [2| illustrates the execution of a future and

synchronization of tasks dependent on its result.

Worker Thread Worker Thread

Consumer
Thread = ===
Start Future Object
_—
future
R t
rees(llffs ——— _ _ _ Producer
’ Thread

suspend /

thread / result —
EXeCute e‘/ %

another A
Resume

consumer
thread

Figure 2: Constraint Based Synchronization Using Futures

2.2.2 Dataflow

Dataflow objects [21, 22] [10] are mechanisms that facilitate parallel compu-
tations without global barriers. A dataflow LCO manages data dependencies of
asynchronous operations by waiting for the results from a set of futures. Once
the specified futures are ready, the dataflow object activates a continuation func-
tion as a new thread passing encapsulated results from the futures. The dataflow
itself is exposed as a future representing the result computed by the continuation.
Parallel programming models utilizing dataflow objects build dynamic execution

trees.

2.3 HPX Runtime System

In order to tackle exascale challenges, a new execution model is required that
exposes the full parallelization capabilities of contemporary and emerging hetero-
geneous hardware to the application programmer in a simple and homogeneous
way. HPX is designed to implement such an execution model. It represents an
innovative mixture of a global system-wide address space, fine-grain parallelism,
and lightweight synchronization combined with implicit, work queue based, mes-
sage driven computation, full semantic equivalence of local and remote execution,
and explicit support for hardware accelerators through percolation. HPX has
been designed to replace conventional CSP with fine-grained threading and asyn-
chronous communication, thereby eliminating explicit and implicit global barriers
and improving performance of parallel applications.

HPX [37] is a general purpose C++ runtime system for parallel and distributed
applications. The HPX Application Programming Interface (API) provides a ho-
mogeneous programming model for parallelization of applications on conventional
and distributed architectures. The API closely adheres to the C++11/14 Stan-
dards [53] - [54], and related proposals to the standardization committee. HPX
implements interfaces related to multi-threading (such as future, thread, mutez,
and async) as defined by the C++ Standard and extends the interfaces in the

C++11 threading system for dataflow and distributed programming. Conform-

ing to C++ facilitates code portability of HPX applications.

The five main modules of HPX (Figure|3)) are: Thread Scheduling System, Par-
cel Transport Layer, Local Control Objects, Active Global Address Space (AGAS),
and Performance Monitoring System and are described in the following sections.

‘ Application ‘

Performance Monitoring System

[T

z 3 - z
1 1
- Local Control Objects Thread Scheduling =
i System |
! Z A !
! D (T i
L Parcel Transport Active Global Address <

Layer Space i
<>), g >

Operating System

Figure 3: HPX Runtime System

2.3.1 HPX Thread Scheduling

HPX threads are instruction streams that are first class objects. Each HPX
thread maintains a thread state, an execution frame, and an operation specific
set of registers. HPX threads are implemented as user-level threads utilizing the
hybrid-threading (M:N) model. Hybrid-threading implementations use a pool of
N kernel threads (usually one kernel thread per processing unit or core) to execute
M library threads. HPX threads are cooperatively (non-preemptively) scheduled

by the thread scheduler on top of one kernel thread (OS thread, also referred to

10

as worker thread) per core. This way, HPX threads can be scheduled without
a kernel transition, ensuring high performance. Also, work can continue to be
executed by the OS thread even if an HPX thread is suspended. The scheduler
will not preempt a running HPX thread until it finishes execution or cooperatively
yields its execution, minimizing the expensive cost of context switches. This
implementation of the scheduling model enables each core to process millions of
application threads per second for fine-grained threading.

The thread manager currently implements several scheduling policies. Mea-
surements presented by this research are obtained from execution of applications
using a priority-based first-in-first-out (FIFO) scheduling scheme, where each OS
thread works from a separate queue of tasks. This is similar to Thread Building
Blocks(TBB) [35] and Cilk++ [41]. When execution begins, the thread manager
captures the machine topology and maps the number of OS threads to its allocated
resources according to the binding specified by the user. By default, it will use
all available cores and will create one static OS thread per core (or per hardware
thread in the case of systems with hyper-threading or multiple threads per core).
With command line options the user can bind OS threads to the cores either
manually or by several built in policies. Also, scheduling policies are modular and
new ones can be added to HPX.

All HPX thread scheduling policies use a dual-queue (staged and pending)

scheme to manage threads. The HPX thread state diagram, Figure {4, illustrates

11

Pending

Figure 4: HPX Thread State Diagram

the transistion of threads among the following five states:

1. Staged: An HPX thread is first created by the thread scheduler as a thread
description, and placed in a staged queue. Staged threads have not yet been
allocated a context, they are easily created and can be moved to queues

associated with other memory domains without associated memory costs.

2. Pending: The thread scheduler will eventually remove the staged HPX
thread, transform it into an object with a context, and place it in a pending

queue where it is ready to be executed.

3. Active: Once an HPX thread is executing, it can suspend itself for syn-
chronization or communication. An active thread can also transition from
active to pending for short periods of execution postponement to use prim-
itive synchronizations, such as spin-locks.

12

4. Suspended: An HPX thread that has suspended execution is waiting for
data or resources to resume. Once the dependencies are available the thread

will be placed back in the pending queue.

5. Terminated: When a thread has completed execution, it is placed in a ter-
minated list, and the context of terminated threads will be recycled for new

threads.

The Priority Local-FIFO scheduler, a composition of the Priority Local schedul-
ing policy and the lock free FIFO queuing policy, is used to obtain the results
presented in this dissertation. The Priority Local Scheduler uses one pending and
one staged queue per worker thread with normal priority, has a specified number
of high priority queues, and has one low priority queue for threads that will be
scheduled only when all other work has been done. When looking for work under
the Priority Local policy, the thread manager looks in the worker thread’s own
pending queue first, then in its staged queue. When the worker thread runs out
of work in its local queue system, the thread manager searches the local NUMA
domain first through other staged queues, then pending queues. If it does not
find work it will search other NUMA domains, starting with staged queues then
pending queues, as illustrated in Figure [5} This process is also referred to as

'work-stealing’.

13

n
\\\
A

\

\
|
A

N

OS-thread OS thread OS-thread OS-thread

NUMA domain NUMA domain

Task Scheduling Algorithm

1. Local Pending V?Z] Staged Thread
2. Local Staged [1 Pending Thread

3. Local NUMA Staged

4. Local NUMA Pending
5. Remote NUMA Staged
6. Remote NUMA Pending

Figure 5: Priority Local-FIFO scheduler
2.3.2 Parcel Transport Layer

The Parcel Transport Layer manages parcels (HPX active messages [59, 27])
providing HPX applications the ability to send messages that invoke methods on
remote localities. Parcels are used to send work to data, move data, and return
results. When an action is required on a remote locality, it is converted to a parcel
encompassing the global identifier (GID) of the action on the remote location, the
arguments for the action, and a possible continuation. Upon receipt of a parcel on

the requested locality, the parcel handler activates the action as an HPX thread.

14

2.3.3 Local Control Objects

Local Control Objects (LCOs) control parallelization and synchronization of
HPX applications. An LCO is any object that may create, activate, or reactivate
an HPX thread. LCOs support managing execution flow, event driven threads,
thread suspension and reactivation, and protection of shared resources. LCOs re-
place global barriers with constraint-based synchronization through the principal
LCOs in HPX, futures (Section and dataflow objects (Section. Other
LCOs include suspended threads (can reactivate themselves) and traditional syn-
chronization primitives including mutexes, semaphores, spin-locks, and barriers.
Through the use of LCOs in a global address system, HPX provides a means of
controlling synchronization on any locality. A locality is usually a node in a com-
pute cluster but can be specified by the user or application. For example, a user

can specify each socket on a node to be a locality.

2.3.4 Active Global Address Space

Active Global Address Space (AGAS) implements global addresses spanning
all localities. AGAS assigns a GID for every object on the system, that has to
be accessed remotely. Systems like X10 [16], Chapel [14], and UPC [58, 28] use
Partitioned Global Address Space (PGAS) where data is statically partitioned
to locations, as opposed to AGAS. AGAS adapts the address space throughout

the run of an application and supports migration of objects. When an object is

15

migrated in HPX the associated GID remains the same and AGAS updates the

address mapping system.

2.3.5 Performance Monitoring System

The Performance Monitoring System of HPX provides mechanisms to mon-
itor behavior of hardware, the application, the HPX runtime, or the operating
system through measured performance counters. HPX performance counters are
first class objects, each with a global address mapped to a unique symbolic name,
useful for introspection at execution time by the application or the runtime sys-
tem. The performance counters are used to provide information about how well
the runtime system or the application is performing. Counter data can help deter-
mine system bottlenecks and fine-tune system and application performance. The
HPX runtime system, its networking, global addressing, thread scheduling and
other systems provide counter data that an application can consume to provide
information to the user as to how well the application is performing. HPX also
implements hardware counters through the PAPI [23, 2] interface, giving the
ability to monitor the underlying hardware system.

Applications can also use counter data to determine how much system re-
sources to consume. For example, an application that transfers data over the
network can consume counter data from a network switch to determine how much

data to transfer without competing for network bandwidth with other network

16

traffic. The application can use the counter information to adjust its transfer rate
as the bandwidth usage from other network traffic increases or decreases.

Performance counters are HPX components that expose a predefined interface.
HPX exposes special API functions to create, manage, read the counter data, and
release instances of performance counters. Performance counter instances are
accessed by name, and these names have a predefined structure. The advantage
of this is that any performance counter can be accessed locally or remotely (from
a different locality).

Counter data may be accessed in real time during the execution of an applica-
tion. In HPX this capability is the basis for building higher-level runtime-adaptive
mechanisms that may change system or application parameters with the goal of
improving performance, energy consumption, or parallel efficiency.

Through HPX’s predefined interface and special API functions, new perfor-
mance counters are easily incorporated. The counters are easily accessible during
execution through an API or through the command-line interface for post process-
ing performance analysis. Runtime introspection of performance counters facili-

tates the development of adaptive mechanisms such as adaptive thread schedulers.

2.4 Task Granularity

An important factor for thread scheduling management is the granularity of

the tasks distributed among processors. The grain size of a task is the amount

17

of time the task executes continuously without suspension due to synchroniza-
tion or communication. Fine-grained tasks have small amounts of computation
between suspension events for communication or synchronization, while coarse-
grained tasks perform computations continuously for long periods of time. The use
of fine-grained tasks can optimize load balancing amongst the parallel processors,
but if the application is characterized by a massive number of fine-grained tasks,
significant overheads may be produced by task creation, management, communi-
cation and synchronization, as well as contention on resources such as memory
allocation for stacks. Coarse-grained tasks make it difficult to perform efficient
load balancing amongst the processors causing idle-time, but are associated with
overheads that account for a smaller percentage of total execution time.

The solution to these problems appears to be simply to use an efficient grain
size for the application. However, there are classes of scaling impaired applica-
tions, such as graph applications, that inherently employ fine-grained tasks. These
types of applications can benefit significantly from thread scheduling mechanisms
that adapt by detecting granularity (specific to the underlying hardware) and
subsequently tuning either the scheduling mechanisms and/or task granularity (if
possible) to perform more efficiently. Even applications that are not characterized
by a large percentage of fine-grained tasks can benefit from automatic task-size
detection and tuning at execution time. Steps toward runtime adaptivity include

describing the relationship between overheads and task granularity, understand-

18

ing how schedulers affect performance for different task sizes, ascertaining metrics
that can be used to dynamically determine task granularity and sources of over-
heads, and finally build a feedback loop in the runtime system to make adaptations

during execution for improved performance or use of resources.

19

3 RELATED WORK

This section focuses on research related to adaptive techniques as applied to
parallel applications with special emphasis on thread scheduling and task grain
size. There have been numerous studies of dynamic scheduling mechanisms. The
problems have become increasingly complex with increases in the number of cores
and the complexity of the memory hierarchy. Developers of task parallel im-
plementations are expanding capabilities by incorporating functionalities such as
multiple data dependencies like the utilization of dataflow LCOs in HPX, and in-
creased functionality of task parallelism in OpenMP 4.0 [4]. Most of the research
relevant to adaptive scheduling has been accomplished using parallel applications
that employ loop parallelism, although work in the area of task parallelism has in-
creased significantly in recent years. We explore research methods that are related

to scheduling techniques within the HPX platform.

3.1 Adaptive Task Grain Size

One way of tuning grain size is to employ a technique, commonly referred to
as cut-off where an execution tree stops parallelizing work at some depth of the
tree and continues by serializing subsequent computation. The cut-off technique
is useful for applications with recursive kernels and graph applications.

Y. Sun et al. [51], employ grain size adaptation using an execution tree cut-off

20

strategy in the implementation of a framework over the Charm++ [48] runtime
system. Charm-++ supports message driven task parallelism with limited migra-
tion for parallel applications on distributed computer systems. The framework,
Parallel State Space Search Engine (ParSSSE) [51]) is an abstraction above the
runtime system that enables users to solve state space search problems without

directly programming the parallelization details (Figure @

State Space Search Application

assigns thresholds ... #new tasks

ParSSSE

creates execution trees, manages granularity, priorities

<-1-» chares Charm ++ chares ¢-L-»
message driven task parallelism

Operating System

Figure 6: Parallel State Space Search Engine (ParSSSE) Abstraction Layers

State space search applications perform searches of massive size graphs such
that the graph is developed as the search progresses, thereby constructing and
searching a dynamic graph. ParSSSE begins execution by generating a task for
each node of the execution tree, generating fine-grained tasks to facilitate spread-
ing work amongst the processors. This quickly establishes saturation of work for
all the processors. Each of the initial nodes then generates an execution tree for

subsequent tasks that are parallelized until a depth threshold (specified by the

21

application) is met. After that depth, the execution of tasks is serialized produc-
ing medium-grained tasks to minimize overheads of the search. This generates
static task granularity dependent upon user specifications, requiring the user to
determine, perhaps through trial and error, proper depth for optimal performance
on a particular platform.

ParSSSE is extended to incorporate adaptive task granularity by sampling the
time it takes to expand individual nodes of the graph and estimating the average
time for the entire application. If the estimated expansion time exceeds ten times
the creation and scheduling overheads, tasks are split into a user specified number

of new parallel tasks (Figure [7)).

J { 4
PN Static
@] | & Threshold
______ _,'_.‘,______9‘.____/\‘_‘(,-—_____.
o0
('K/
0 Adaptive

Grain
Size
/" _ Control

C)"""A‘

Figure 7: ParSSSE Adaptive Grain Size Control (from [51])

Results were obtained solving an NQueens [12] problem and executing the
Unbalanced Tree Search (UTS) [45] benchmark. Comparisons were made using

ParSSSE with and without the adaptive grain size algorithm. The results using

22

adaptive grain size performed within 10% of the best manually chosen depth
threshold. It is mentioned that the variances of the samples were smaller when
using the adaptive algorithm, although the amount of variance is not reported.
This research illustrates the benefit of adaptive granularity for dynamic graph
problems in a runtime system that utilizes task parallelism and message driven
execution, for state space search algorithms. Some questions that this research

invokes are:

1. Were the overheads assessed during execution?

2. Would it be beneficial to adjust the percentage of overheads used to deter-
mine when to enforce adaptive granularity?

3. Why use adaptive cutoff when execution is "ten times” the amount of the
overhead?

4. Should the tuning be reassessed periodically, especially for long running
applications?

Dynamic scheduling has been employed for a long time, for OpenMP loops,
as a technique where idle processors steal a fixed number of iterations from busy
processors as in [61] and [50]. The number of iterations stolen are 1/p of the
iterations (where p is the number of processors). Although this form of scheduling
results in dynamic load balancing (specific to the hardware), the chunk size of
stolen iterations is statically specified for the execution of the application.

OpenMP was designed for execution of parallel loops of dense numerical ap-
plications, and has been upgraded to support other requirements for parallel
programming. One improvement is the implementation of task parallelism in

23

OpenMP 3.0. During the development of task parallelism for OpenMP 3.0, A. Du-
ran, J. Corbalan and E. Ayguadé [25] evaluated the proposed task strategies using
the Nanos experimental OpenMP research runtime. Two scheduling algorithms,
breadth-first and work-first, are evaluated with and without cut-off strategies.
They use two cut-off policies, one based on a maximum number of tasks allowed
in the pool and one based on the maximum recursion depth. They also evaluate
using tied and untied tasks; tied tasks are default in OpenMP. When a task is
tied, if it suspends and is restarted, it will always be executed by the thread that
initially executed it. Tied tasks should mitigate performance degradation due to
memory sharing, but in the experiments that employ tied tasks, performance is
impeded. The work-first scheduler performs best. The cut-off techniques improve
performance, however it is not clear which policy is better. They conclude that it
is beneficial to estimate the granularity of the tasks at execution time and utilize
that knowledge to determine a beneficial cut-off depth; they accomplish this in
subsequent research and develop Adaptive Tasks Cutoff (ATC).

A. Duran et al. continue their previous work by developing ATC [24], a mech-
anism that uses the estimation of granularity to tune cut-off at execution time.
They implement a dynamic profiler that, in full mode, times the workloads of
OpenMP tasks and nano-tasks. A nano-task is an aggregation of OpenMP tasks
executed as one user-level task. The profiler causes overheads, so they run it just

long enough to collect sufficient statistics to estimate a cut-off. At each level the

24

subtrees are timed and averaged to compute the grain size. If the grain size is
less than a specified time (1 msec in their experiments) the level is closed and all
subsequent checks will not require timing. If a level is closed sub tasks are not
created and continuation on the same task occurs ensuring a larger grain size.
Thus they then tune granularity by implementing the estimated cut-off. Over-
heads from minimum profiling of just the nano-tasks are small enough that it can
be turned on to determine if full profiling should be exercised again to re-tune the
cut-off depth. The results are comparable to the best cut-off levels determined by
tedious manual methods. Although the technique is implemented for OpenMP
task parallelism, it can be adapted to other task parallel frameworks, and illus-
trates the importance of measuring task granularity during execution. Although
this method is adaptive, it uses a static specified time to tune task grain size.

More recent work implementing adaptive grain size for OpenMP loops in par-
allel applications with irregular workloads is accomplished by M. Durand et al.
in [26]. They incorporate an adaptive loop scheduler in the libGOMP runtime
library. In applications where the iterations are irregular (i.e. the execution time
of iterations are not uniform) eventually some processors complete computations
and become idle. The scheduler initially distributes iterations of the loop evenly
to the worker threads. When a thread completes its iterations, it steals one half
of the remaining iterations from a victim thread.

The number of iterations run on the victim thread decreases and the number

25

of stolen iterations varies with each steal in an attempt to balance granularity of
the workloads. The algorithm is implemented with measures to ensure NUMA
locality by attempting steals from the victim threads in the same NUMA domain
until a threshold of unsatisfied steals has occurred, then it steals from random
victims.

The adaptive loop scheduler performs better than the available OpenMP sched-
ulers (static, dynamic, and guided) for KMeans, a benchmark in the Rodinia
suite [17], and a fluid simulation benchmark. Both benchmarks exhibit irregu-
lar workloads per iteration of the OpenMP loops. The scheduler mitigates idle
times often caused by implicit barriers in OpenMP by modifying the grain size
of tasks in the loop. This adaptive scheduler is designed for applications that
use OpenMP loops with irregular computations for each iteration, and is portable

since it is hardware agnostic.

3.2 Adaptive Schedulers

We also consider adaptive scheduling techniques for parallel applications other
than those that tune task granularity.

J. Nakashima, S. Nakatani, and K. Taura [44] implement an API that gives
the application programmer the ability to customize the behavior of the sched-
uler in the Massive Threads library [3]. The Massive Threads library implements

light weight user level threads (tasks) for parallel applications. The APT allows

26

the application to add hints to tasks and to guide the scheduler to adapt steal-
ing based on those hints. The hints are added to the bottom of the task stack.
Each scheduling queue includes a hint cache. When a task is ready for execution
it is placed on a scheduling queue and the hint is added to the hint cache for
that queue (hint cache is updated). The hint cache is only locked when it is up-
dated, allowing workers to read the cache without incurring overheads associated
with locks. Threads searching queues for available tasks read the hint cache to
determine which available tasks are best to steal.

Two types of hints (depth-aware and affinity-aware) are employed to illustrate
proof of concept. The depth-aware hint is used by a recursive divide-and- conquer
multiplication problem. The hint for each task gives an indication of the levels
of computation that will be executed by the task. The hint is an indication of
grain size. This scheduler steals tasks with the largest potential granularity. The
affinity-aware hint contains information about the relationship of the affinity of
the task to the worker so that when a thread looks for work it will steal tasks that
have the closest affinity.

Employment of task hints gives flexibility for programmers to use parameters
specific to the application, but requires the programmer to be able to understand
the scheduler and determine parameters that will help optimize scheduling of
parallel tasks. The hints may lead to varying performance on different platforms,

possibly resulting in poor performance portability.

27

In [57], A. Tzannes et al. implement lazy scheduling, a runtime adaptive
scheduler designed for applications that employ loop parallelism. Lazy schedul-
ing uses load conditions to effectively coarsen task granularity dynamically. The
scheduler features private deques (double-ended queues) for each worker that store
task descriptions (TDs). A TD contains the description of a range of tasks sched-
uled by parallel constructs such as loops or reducers in parallel applications. The
worker threads each have a shared deque to make tasks available for other workers
to steal. The scheduler checks the size of the shared deque to assess if other work-
ers are busy. If the number of tasks in the deque falls below a threshold, it is an
indication that other workers are stealing work and are not busy. The scheduler
then splits a TD and pushes tasks onto the shared deque. If the number of tasks
in the shared queue is above the threshold, the worker continues to execute local
work. Lazy scheduling relies on frequent poling of the shared deque. Although
poling incurs some overheads, continuation of local work when other workers are
busy effectively coarsens grain size and limits expensive deque transactions.

Three lazy scheduling policies implemented using Intel’s Thread Building Blocks
(TBB) are:

1. DF-LS, depth-first lazy scheduling with a threshold of one

2. DF2-LS, depth-first lazy scheduling with a threshold of two

3. BF-LS, breadth-first lazy scheduling

For the DF-LS policy, if the shared queue is empty the scheduler splits the

28

current TD and pushes tasks onto the shared queue. For BF-LS it pushes the
oldest postponed task (with the shallowest nesting depth) onto the shared deque
first. BF-LS performed best for larger number of cores for a variety of benchmarks.
Lazy scheduling is a method that adapts scheduling at runtime, does not require
tedious manual tuning by the programmer, and has the potential for portable
performance for various hardware platforms.

The authors also demonstrate the feasibility of using lazy scheduling techniques
for non-loop parallel applications. They implement a custom scheduler, Lazy
Splitting, for the Unbalanced Search Tree (UTS) benchmark by modifying the
number of tasks to move from the private to shared queue, when the shared
queue is empty and a private queue has at least two tasks. In this manner when
another queue has no tasks in its private queue and there are none remaining
in the shared queue the number of tasks remaining in another private queue are
recursively split to share. This gives a means of approximating lazy scheduling
as described previously for parallel loop applications. The three lazy scheduling
policies are then incorporated into a TBB implementation of UTS. Speedup results
from the BF-LS scheduler are very good and from the Lazy Splitting scheduler,
near perfect.

U. Acar, A. Charguéraud, and M. Rainey [8] implement work stealing using
private deques for storage of local work and explicit communication to determine

availability of work and to send work to idle processors. In addition, busy workers

29

have to poll their deques regularly, update the system with information about the
availability of work in their deques, and push work to requesting idle workers. The
results for applications that use fork-join algorithms are comparable to the more
typical eager work stealing methods, where work is split and not dependent on
polling the load. An experiment using the technique on a benchmark employing a
pseudo-depth-first-search algorithm showed promising scaling results for irregular
graph algorithms. One disadvantage of this method is that if busy workers are
executing tasks with long durations, idle workers will continue to search for work
without success, even though possible work is on the busy workers deque.

Other work of interest includes adaptive thread scheduling based on introspec-
tion of hardware behavior as in the work done by A. Porterfield et al. in [47]. They
use RCRdaemon to collect hardware memory and power counters, then based on
the hardware performance, throttle the number of threads used for memory bound
applications. Their results indicate that this type of adaptive scheduling can im-
prove performance and save energy, but requires the ability to perform decisions
and throttling actions at the hardware level to be effective in restarting threads.

In other relevant work S. Olivier et al. [46] characterize overheads for task-
based parallel programs and augmented the Qthreads [0, 60] library with locality-
aware scheduling. The locality aware scheduler uses a shared queue with a LIFO
policy for each NUMA domain. Performance of the locality-aware scheduler is a

great improvement over other tested schedulers. The characterization of the work

30

time inflation illustrates benefits from the use of the locality aware scheduler. Our
wait time, [5.1.2] metric is a measure of work time inflation, and we characterize

wait time as it relates to varying task granularity in Sections [5.2.3| and [5.2.4]

31

4 DISSERTATION CONTRIBUTION

HPX [37] implements asynchronous task scheduling using future and dataflow
constructs (Section eliminating implicit barriers associated with execution
models such as OpenMP [20)] 15] and Cilk Plus [41]. This facilitates fine-grained
parallelism for increased performance by allowing worker threads to perform other
useful work when tasks self-suspend while waiting for resources or data. Although
implementations of asynchronous task parallelism can improve performance by
keeping the processors busy with useful work, additional overheads for manage-
ment of fine-grained tasks can degrade the gain in performance. In addition,
parallelization of massive quantities of fine-grained tasks can cause contention
on resources and inflate task execution time (grain size) as shown in results in
Chapter /| Dynamic measurement of task granularity, scheduling overheads, and
performance metrics, with subsequent adaptive thread scheduling can minimize
overheads and improve performance for parallel applications. Currently, the user
usually needs to manually experiment and adjust parameters that affect task grain
size of the application to improve performance. Such an effort can be time consum-
ing, inefficient, and inaccurate. The procedure has to be repeated if the computer
system undergoes modifications or if the application is ported to another sys-
tem. This work proposes the incorporation of adaptive measures to eliminate the

manual process of task granularity optimization by providing a feedback system

32

where measurements are taken of intrinsic events and dynamic changes are made
thus improving programmability and portability while minimizing overheads and

improving performance and scalability. The formal hypothesis of this research is:

H: Adaptive task-based parallel runtime systems can measure intrinsic
events to assess scheduling overheads, resource usage, and performance
efficiency of the parallel application on the underlying hardware then
through a feedback loop dynamically tune task grain size or adapt thread
schedulers for improved performance.

In order to accomplish dynamic adaptation of the thread scheduler or tune task
size, monitoring the system during execution is essential. While current perfor-
mance monitoring tools are designed for monitoring synchronous execution, they
are not always useful for improving codes that implement asynchronous tasks. Per-
formance tools such as HPCToolkit [9] and TAU [49] provide profiling or tracing of
application codes through instrumentation or periodic sampling and are useful for
post run analysis. They do not support task-based parallel runtime systems be-
cause they are not designed to deal with millions of short-lived threads. Results of
experiments attempting to use these tools are documented in Chapter 6] and show
that they are inadequate for the purpose of monitoring task-based parallel appli-
cations during execution time. Also in Chapter [6] the results of the experiments
performed with a variety of benchmarks illustrate the usefulness of performance
monitoring by the runtime in order to measure intrinsic performance counters

necessary to steer dynamic adaptation. An example of dynamically tuning grain

33

size based on information gathered from the HPX performance monitoring system
is presented in Chapter [7]

This dissertation specifically makes the following contributions:

1. Aided in the development and evolution of HPX through dicsovering issues

and bugs in the thread scheduling and performance monitoring systems of

HPX.

2. Characterization of the influence of task grain size on performance of task-
based parallel applications in the HPX runtime system; determination of
the metrics and their correlation to the performance and overheads of ap-

plications.

3. The implementation of new performance counters to measure average task
and phase duration and task scheduling overheads, giving the application
a means of determining the effective granularity during execution. Imple-
mentation of counters to measure cumulative scheduling overheads and task
execution time so that measurements of factors contributing to degradation

of performance can be made over any interval of execution.

4. Application of the methodologies to measure grain size and overheads to dy-
namically tune a parallel benchmark for optimal performance. We illustrate
dynamic adaptation using the integration of HPX with APEX to use per-
formance information from the runtime system by the execution policies in

34

APEX through a dynamic feedback system to tune grain size for improved

performance.

The following chapters present the experiments used to achieve the contribu-

tions.

35

5 PERFORMANCE IMPLICATION OF TASK GRANULARITY

Steps toward implementing adaptivity in task-based runtime systems include
describing the relationship between scheduling overheads and task granularity,
understanding how schedulers affect performance for different task sizes, and as-
certaining metrics that dynamically determine effects of parallelization on task
granularity and scheduling overheads. In order to fully understand the effects of
task granularity on parallel applications we run experiments to assess overheads
and performance while varying task size. In this chapter, we expand our findings

presented in [30].

5.1 Task Granularity Experimental Methodology

Our goal is to explore how to dynamically tune task granularity in a program-
ming model that uses fine-grained asynchronous task scheduling mechanisms. In
parallel applications, with regular parallel loops, task grain size can be modified
statically to improve performance. We need to be able to determine granularity
and adjust it at execution. To this end, we use HPX-Stencil, described in detail
in Section [5.1.1], with its controllable partition size and asynchronous data-flow
constructs. Varying task grain size from fine-grain to coarse-grain will result in
different overheads. Executing applications with millions of fine-grained tasks

can cause overheads for thread management and overheads associated with con-

36

tention for queuing and memory resources. We determine metrics that measure
performance behavior, determine granularity and associated overheads then use
the facilities in HPX to read required event counts and derive the metrics. This
characterization is a first step toward tuning grain size for performance improve-
ment.

The experiments for this study comprise executing the HPX parallel bench-
mark, HPX-Stencil, described in Section [5.1.1] over a large range of partition
sizes, to vary granularity, and for an increasing number of cores for strong scaling
performance. When collecting performance and counter data, we make ten runs
and calculate the mean, standard deviation and 90% confidence intervals of the

counts. We compute the metrics using the average of the required event counts.

5.1.1 Stencil Benchmark

This study uses the one dimensional heat distribution benchmark, HPX-
Stencil, (1d_stencil_4, available in the HPX distribution package), a representation
of the class of scientific applications using iterative kernels. This benchmark was
chosen because task granularity can be easily controlled, allowing us to use task
size as the basis of our experiments and enabling us to construct a simple test case
in runtime adaptivity. In HPX-stencil, the grid points are divided into partitions;
each partition contains a fixed number of grid points specified by the user. The

regular updates for the grid points in each partition is computed as one task.

37

Specifying the size of the partition provides us with the means to control grain
size for our experiments. The results from this study with the stencil benchmark
allow us to implement new counters that we are able to then use for experiments

with a variety of benchmarks (see Chapter [6). The calculation simulates the

t | XX Xi1,0 -+ Xjo1 01 Xjg = Xin1 Xi41,0 -+ Xjr1,n1 X2 - X
S~ N PP e > -
S~ao N — — Vs _ -
il XY A i Vi
tia X0 -+ Xjn1
- = tlA --
ti+2

Figure 8: Dependencies of Heat Distribution Benchmark

HPX-Stencil: Inside each partition, the temperature of a point in the next time
step is calculated using the current point’s temperature and the temperatures of
its neighbors. In order for a partition to be ready to calculate the next time step
tr.1, the three closest partitions from the previous time step ¢; must have
calculated their temperatures.
diffusion of heat across a ring by breaking the ring up into discrete points and
using the temperature of the point and the temperatures of the neighboring points
to calculate the temperature for the next time step. This dependency is captured
in Fig. |8 and explicitly describes the data dependencies captured by the original

algorithm. We use the asynchronous threading API of HPX to execute all tasks

38

in proper sequence as defined by the dependency graph.

Each of the tasks is launched as a separate HPX thread using hpx::async
generating an hpx::future that represents the expected result of each of the
tasks. The hpx::future instances are combined into the dependency tree us-
ing additional HPX facilities. These compositional facilities give the ability to
create task dependencies that mirror the data dependencies described by the orig-
inal algorithm. Here, the future objects represent the terminal nodes and their
combination represents the edges and the intermediate nodes of the dependency
graph.

HPXs lightweight threading system imposes relatively low overhead and allows
one to create and schedule a large number of tasks (up to several million concurrent
tasks) [37]. This efficiency combined with the semantics of futures allow the direct
expression of the generated dependency graph as an execution tree generated
during execution, providing a solid base for a highly efficient auto-parallelization.

In HPX-stencil, the HPX code has been futurized. This means that the de-
pendencies of the calculation have been expressed using futures. The process of
futurizing parallel applications using HPX is documented in the HPX manual [55].
In addition, the data points have been split into partitions, and each partition is
represented with a future. By changing the number of data points in each partition
(varying the available input parameters for number of grid points per partition

and number of partitions) we can change the number of calculations contained in

39

each future. In this way, we control the grain size of the problem and vary it from
~3 ps to ~30 ms for the Xeon E5 nodes and from ~100 ps to ~400 ms for the

Xeon Phi coprocessor.

5.1.2 Performance Metrics

We compute and analyze numerous metrics, and present only those metrics
that are useful to our goal of determining grain size and associated overheads that
can be used dynamically to adapt granularity. The metrics and their associated

performance event counts are as follows:

Ezxecution Time
We measure the execution time of the heat diffusion for the benchmark to
assess performance. To vary grain size, the size of the partition (grid points
per partition) is increased and the number of partitions is decreased, so that
for each experiment, heat diffusion is calculated for the same number of grid

points.

Thread Idle-rate
The idle-rate event count, /threads/idle-rate, is the ratio of thread manage-
ment overhead to execution time. HPX measures »_ teyec, the running sum
of time spent on the computation portion of each HPX thread (task), and

> ttunc, the running sum of total times to complete each task. The time

40

to complete execution of tasks includes task management overhead and we
compute the overhead by subtracting the computation time of tasks. HPX

computes the idle-rate (I,) as shown in Eq.[l]

I — z tfunc — Z texec
' Z tfunc

(1)

In Section [5.2.1| we show the affect of task granularity on idle-rate and the

correlation with execution time.

Task Duration
The average execution time of the computation of an HPX thread, task
duration (tq), is obtained from the /threads/time/average HPX performance
counter, and is computed as shown in Eq. 2, The number of HPX threads

executed, ng, is also available as counter /threads/count/cumulative.

Z texec

un

tq =

Task Overhead
The average time spent on thread management for each HPX thread, task
overhead (t,), is obtained from the /threads/time/average-overhead perfor-

mance counter, and is computed by HPX’s performance monitoring system

as shown in Eq. [

41

_ Z tfunc - Z texec

Uz

to

(3)

Task duration and overhead performance counters were added to HPX as
a part of this study and are now available for dynamic measurement. Ad-
ditional counters were added to measure average duration and overheads
of HPX thread phases. Each time a thread is activated, either as a new
thread or as one that has been suspended and reactivated, a thread phase
begins. The number of phases, phase duration, and phase overhead can be
useful to monitor the effects of suspension and are available as the counters,
/count/cumulative-phases, /threads/time/average-phase, and

/threads/time/average-phase-overhead.

HPX Thread Management Overhead
We compute the HPX thread management overhead for the entire run of the
benchmark as shown in Eq. . This metric is computed per core (divided
by the number of cores, n.) to be compared with the execution time of
the benchmark. Although we calculate this metric for the entire run, for

dynamic measurements it can be calculated over any interval of interest.

_ Z tfunc - Z texec

Ne

T

42

Wait Time
When running on multiple cores the duration of a task can increase due to
overheads caused by parallelization on the underlying hardware. We com-
pute the average wait time per thread (t), Eq.[f] as the difference between
the average task duration (¢4) and task duration for the same experiment run
on one core (tq1). Since wait time is a direct function of the task duration, a
measurement only of the computation time of the task, it does not include
task management overhead. This additional time is due to overheads caused
by cache misses, non-uniform memory latencies, memory interconnect, cache

coherency and/or memory bandwidth saturation.

te =tq —ta (5)

We use Eq. [6] to compute wait time per core (Ty,). This is effectively the
total wait time of all tasks divided by the number of cores for comparison
to execution time. This metric requires measurements from running on one
core that can be taken at a one time cost prior to data runs or by running

a small number of iterations upon initialization of the application.

43

Pending Queue Accesses
The HPX counter, pending queue accesses, (/threads/count/pending-accesses)
counts the number of times the thread scheduler looks for available HPX
threads in the worker thread’s associated pending queue. This count is
available for each worker thread or as the total from all worker threads. For
this study we use the total count. The counter registers the activity by the
HPX thread scheduler on the pending queues. The pending queue misses,
the number of times the scheduler fails to find available HPX threads is also

available as /threads/count/pending-misses.

5.1.3 Experimental Platforms

HPX is a runtime system designed for parallel computation on either a single
node or in distributed mode on homogeneous or heterogeneous clusters. This
study is only concerned with performance useful for determining task granularity
and tuning task granularity. Therefore, the experiments measure performance
on a single node. HPX employs a unified API for both parallel and distributed
applications, thus the findings of this study can be applied to the distributed case.

Experiments are run on an Intel®Xeon®Phi' " coprocessor and three Intel®E5
nodes of the Hermione cluster, Center for Computation and Technology, Louisiana
State University, running Debian GNU/Linux Unstable, kernel version 3.8.13 (on

the Xeon Phi, 2.6.38.8 klom), using HPX V0.9.10. The specifications of the

44

platforms are shown in Table[I] The three Xeon E5 nodes have hyper-threading

disabled, so the computations are done using one thread per core. For the Xeon

Phi we run experiments for 1 to 4 threads per core. The insights from the results

using multiple threads per core are not different than for those when executing

with one thread per core, so only results from running with one thread per core

are presented for the Xeon Phi.

Table 1: Platform Specifications for Task Granularity Experiments

Node Haswell (HW) Xeon Phi
Processors Intel® Xeon®E5-2695 v3 Intel®Xeon®Phi'
Clock Frequency 2.3 GHz (3.3 turbo) 1.2 GHz
Microarchitecture ~ Haswell (HW) Xeon Phi
Hardware Threading 2-way (deactivated) 4-way
Cores 28 61
Cache/Core 32 KB L1(D,I) 32 KB L1(D,I)

256 KB L2 512 KB L2
Shared Cache 35 MB
RAM 128 GB 8 GB
Node Ivy Bridge (IB) Sandy Bridge (SB)
Processors Intel®Xeon®E5-2679 v3 Intel®Xeon®E5 2690
Clock Frequency 2.3 GHz (3.3 turbo) 2.9 GHz (3.8 turbo)
Microarchitecture — Ivy Bridge (IB) Sandy Bridge (SB)
Hardware Threading 2-way (deactivated) 2-way (deactivated)
Cores 20 16
Cache/Core 32 KB L1(D,I) 32 KB L1(D,I)

256 KB L2 256 KB L2
Shared Cache 35 MB 20 MB
RAM 128 GB 64 GB

5.2 Task Granularity Experimental Results

Using the benchmark HPX-stencil, we run experiments over a large range of

task grain sizes by varying the partition size from 160 to 100,000,000 grid points,

45

resulting in task grain sizes ranging from (~3 ps to ~30 ms) for the Xeon E5 nodes
and from 1000 to 100,000,000 grid points resulting in grain sizes from (~100 ps
to ~400 ms) for the Xeon Phi. The number of partitions is adjusted to keep
the total number of grid points constant at 100,000,000. For each experiment,
the heat diffusion is computed for 50 time steps on the Xeon E5 nodes. For
experiments on the Xeon Phi five time steps are computed, since a full sweep of
experiments (ie. varying partition size and core counts for 10 samples) took 20
hours, compared to 12 hours for 50 time steps on the Haswell node. Although,
the clock speed of the Haswell processors are only twice the speed of the Xeon Phi
processors, task computations take 50 times longer on the Xeon Phi. This can be
explained by the differences in the micro-architecture of the two. The Xeon Phi
coprocessor has in-order execution cores, each with two execution pipelines [2].
The Haswell architecture has out-of-order cores, a more complex design than the
Xeon Phi, that can dispatch eight instructions per clock cycle [I], resulting in
execution times an order of magnitude faster on the Haswell.

As the number of cores used for each experiment is increased the total number
of grid points is kept the same for strong scaling results. We use the mean of ten
samples for each of the experiments. We compute the mean, standard deviation,
and 90% confidence intervals for execution times and counts. For idle-rate we
compute the harmonic means of the samples. We also compute correlation coeffi-

cients between the metrics and execution time over six ranges of task granularity

46

using each sample.

Performance monitoring can cause perturbation of execution time. To assess
any additional overheads, we run the application with and without building the
timing counters in the runtime system. We perform extensive experiments assess-
ing overheads caused by invoking the timers used for the idle-rate, task duration,
and overhead timing counters. The overheads are less than the standard error
except for some cases where the experiments are run on only one core and task
durations are less than 4 ps. Tasks that have a duration of 4 ps or less have greater
than 19% overhead since the per task overheads are 760 ns [37]. Tasks with such
short durations incur overheads that are relatively large compared to the function
and should be coarsened if possible.

We examine the performance of the HPX-stencil benchmark, in Figures[9]-[12],
showing how execution time is affected by task granularity. On all platforms,
execution time is large for very fine-grained tasks due to overheads caused by task
management and for very coarse-grained tasks where overheads are caused by poor
load balance. In between these two task-size ranges, we expect execution time to
remain constant since task management overheads are small. However, wait time
as explained in Section also influences the execution time and is dependent
on task granularity, the number of cores used, and the underlying architecture.

Using the metrics defined in Section |5.1.2] we measure the effects of varying

task granularity and the number of cores used on overheads and performance.

47

o w"*"*"f >
9 6 N — -1
e 5 M ——2
= \k’. . . —&—4
s 4 ¢ ——8
5 3 - --12
(&]
) —+—16
N2
i

1

1E+03 1E+04 1E+05 1E+06 1E+07 1E+08
Partition Size (Grid Points)

Figure 9: Sandy Bridge: Execution Time vs. Task Granularity (partition size)

JEY

P —

8 M R T cores
(] 6 i
N2 3 -1
£ 5 —-2
= jé —h—4
c) -I,_ﬂ; I i
5 3 —de— —o—16
o t 4
O —+— 20
N2
w

1

1E+03 1E+04 1E+05 1E+06 1E+07 1E+08
Partition Size (Grid Points)

Figure 10: Ivy Bridge: Execution Time vs. Task Granularity (partition size)

48

8
_ﬂ--r"iﬁ

7 I [
> * Cores
Qg
& ‘ =1
2 s e
(= L al oS —A—4
S 4 ﬂs *y' ——8
5 3 -o—-16
o ¥ ——28
X 2 } HH
n

1 |

1E+03 1E+04 1E+05 1E+06 1E+07 1E+08
Partition Size (Grid Points)

Figure 11: Haswell: Execution Time vs. Task Granularity (partition size)

60
Cores

o -1
© 40 I 2
(D)
.E A4
c -8
2 20 16
>< L 1 1 1 [1 ImE Y

0- "-""""""'Vv;éif"‘i:ii‘t

1 T
1E+03 1E+04 1E+05 1E+06 1E+07 1E+08
Partition Size (Grid Points)

Figure 12: Xeon Phi: Execution Time vs. Task Granularity (partition size)

49

We present experimental measurements and resulting data for the Haswell and
Xeon Phi platforms. Results of the metrics for the other platforms are similar to
the results from the Haswell node and are in Appendix (Sandy Bridge) and
Appendix (Ivy Bridge).

To determine the correlation between the metrics and execution time for the
Haswell node, we divide the data into six ranges of task granularity and calculate
the correlation between each metric and execution time using all samples for each
range. The correlations are listed in Table[2l In the following sections, we examine

the results for the metrics and their associated correlations.

5.2.1 Idle-rate

Idle-rate is the ratio of time spent on HPX thread management to that of
execution, shown in Figures [13]- [16] for the Haswell node and Figures [17] - 20] for
the Xeon Phi. We only present the results from these two platforms in this section
since the results from the Haswell nodes are very similar to the Sandy Bridge and
Ivy Bridge nodes. The results from the other nodes are in Appendix (Sandy
Bridge), Figures |70 - [73| and Appendix (Ivy Bridge) Figures [86] - .

For small partition sizes, there are a large number of very fine-grained tasks to
manage, and task management is a large percentage, up to 90%, of the execution
time. The region on the left side shows the large idle-rate and execution times

for very fine-grained tasks with partition sizes less than 12,500 grid points. The

50

Table 2:

Correlation of Metrics to Execution Time - Haswell

For a variety of task granularity ranges.

Granularity T™ WT WT+TM Idle-rate P-Access
28 Cores:

Very Fine 0.999476 0.954147 0.999515 0.348061 0.999421
Fine 0.911898 0.657842 0.995333 0.746256 0.812874
Lower Medium 0.886485 0.644466 0.919982 0.836826 0.259002
Upper Medium 0.809178 0.692299 0.925372 0.609874 0.491171
Coarse 0.838559 0.845881 0.984155 0.476614 0.860650
Very Coarse 0.974325 -0.815015 0.977232 0.718515 0.992850
16 Cores:

Very Fine 0.999901 0.967321 0.999984 0.408203 0.999771
Fine 0.456427 0.938973 0.991474 -0.465968 -0.270003
Lower Medium 0.340618 0.594374 0.995548 0.070707 0.033850
Upper Medium 0.882440 0.497341 0.994201 0.807701 0.301322
Coarse 0.710203 0.524331 0.978720 0.554692 0.289311
Very Coarse 0.977919 -0.792151 0.980274 0.759265 0.953443
8 Cores:

Very Fine 0.999785 0.912314 0.999883 0.610751 0.999101
Fine 0.708940 0.636628 0.890115 0.122512 0.249017
Lower Medium 0.422941 0.882626 0.968495 -0.081097 -0.542913
Upper Medium 0.541566 0.478580 0.845531 0.402554 -0.433614
Coarse 0.982384 0.065747 0.691708 0.973899 0.142434
Very Coarse 0.984972 -0.785002 0.956071 0.831534 0.969126
4 Cores:

Very Fine 0.999728 0.869302 0.999146 0.766364 0.997811
Fine 0.830655 0.519580 0.735368 0.455680 0.577314
Lower Medium 0.841350 0.830339 0.976786 0.742679 -0.072411
Upper Medium 0.911439 0.957041 0.988756 0.852246 -0.563450
Coarse 0.929920 0.659185 0.839686 0.890149 -0.453998
Very Coarse 0.997503 -0.811933 0.942513 0.934292 0.989301
Granularity =~ Range of Points per Partition Grain Size (11s)
Very Fine 160 to 15625 3to 26

Fine 16000 to 80000 29 to 101
Lower Medium 100000 to 160000 125 to 194
Upper Medium 200000 to 400000 241 to 481
Coarse 500000 to 800000 601 to 998

Very Coarse

> 800000

1283 to 33072

TM - Thread Management Overhead per Core, WT - Wait Time per Core
P-Access - Pending Queue Accesses

o1

Exec. Time-+- Idle-rate -a- Eff. Loss

10 - 100
S 8- 1 80
a || .

o
2 61c0 IS
= o)
— . o
g ALA :!‘. !I m
R A i #IM* 2
A x ‘ 5
é AA tIiI:::g...g;...‘t....-__..__.”I/ -
w 2 iAAA‘ \\HWH l }‘ " / 20
““‘A““““‘Aan‘AA‘A‘AA—-A.-- A/
1000 10000 100000 1e+06 1e+07 1e+08
Partition Size (Grid Points)
Figure 13: Haswell (4 cores): Idle-Rate
Exec. Time-+- Idle-rate -a- Eff. Loss

10 \ ‘ 100
o eyl Al 80
\(_/), AAA\! .
o N / X
= 6 A - 60 <
= ”a)
~ PI‘A *c_s'
S 4 A\ sl a0
= . N /| (D]
3 4,15, / S
2 “A;:A“AAA‘ _co‘ooooo-oo....—-o-}--”

o 2 “Eexiy ““:&&‘)‘)‘A‘AA‘,,%;‘L/ 20
1000 10000 100000 1le+06 le+07 1e+08

Partition Size (Grid Points)
Figure 14: Haswell (8 cores): Idle-Rate

52

Execution Time (sec)

Execution Time (sec)

Exec. Time-+- Idle-rate -a- Eff. Loss

LT -
4 ‘A“’\ | ‘ A ’T‘!
8 LT : =o' ﬁ/A 80
\‘ / -
6 Al ; 60>
(0]
le 1
4 Ia - 4 40 o
‘;f 4 :A “‘A st 2
:itl ‘HHH /A V3 A~!tlgo.A4,_!"£
2 Tezgt® A 4422020,4"2 20
1000 10000 100000 1e+06 1e+07 1e+08
Partition Size (Grid Points)
Figure 15: Haswell (16 cores): Idle-Rate
Exec. Time-+- Idle-rate-a- Eff. Loss
ez T LT T I T3
N Al el
8 . A 80
it
<
6 \ 60 S
(0]
\ \ IA 3 §
s ||| A
4 RN :' 402
| “ 2848 0ad, 000000040 //I i)
i \HWH | LT | J+imi
2 II I S PE gesewesEEgIN 20
1000 10000 100000 1le+06 le+07 1e+08

Partition Size (Grid Points)
Figure 16: Haswell (28 cores): Idle-Rate

53

Execution Time (sec)

Execution Time (sec)

Exec. Time - + -

Idle-rate -a- Eff. Loss

10 X 100
i |
\ |
8 { Al 80
o..‘}.) / / ’a
6 ’*.”"0"00..‘;0.’::.*: . ,/ 608\/
/ L
T
4 40 o
A‘I E
2 \ 20
‘ |
‘ ‘ IIAAAI‘AAIA“A____ - == 9 17
1000 10000 100000 1e+06 1e+07 1e+08
Partition Size (Grid Points)
Figure 17: Xeon Phi (8 cores): Idle-Rate
Exec. Time-+- Idle-rate -a- Eff. Loss
8 3 / 80
6 “f‘ A . 60 S
s/ Q
\‘ “{ ; T
.c!: /’ D:
4 " “o
‘ oooo.o....‘I!!”__’ 9
2 \ ‘ T 20
fAaaasaansassaastatat o0 o ‘
1000 10000 100000 le+06 le+07 1e+08

Partition Size (Grid Points)
Figure 18: Xeon Phi (16 cores): Idle-Rate

o4

Exec. Time-+- Idle-rate -a- Eff. Loss

//
g 8 7A:‘A o (// 80
) : / —_
o
2 6 ‘ . 60 S
£ A o
— \ o
S \ g
2 4 m - ooy 40 o
o | ‘ | N k=
O] “‘...’190000‘ - /
@ 2 At 120 el - Lk 20
‘A ‘ ‘A“AA‘AAA‘ :
e LI |
IR
1000 10000 ~ 100000 1e+06 1e+07 1e+08
Partition Size (Grid Points)
Figure 19: Xeon Phi (32 cores): Idle-Rate
Exec. Time-+- Idle-rate-a- Eff. Loss
10 ‘ ‘ - 100
A g
v
o 8 \!" /A% 80
A |
) I‘\ A / S
I =)
) A . >
g6 o 60;:
= y IS
[!
S 4 - H 40%
= hi MA / %
§ . \A t HH‘) . =
| - N A 452 A
b 2 ‘nn’ui’;ﬁ’:‘.““m* — 20
'VYVVIN A '-‘....
1000 10000 100000 1le+06 le+07 1e+08

Partition Size (Grid Points)
Figure 20: Xeon Phi (60 cores): Idle-Rate

%)

average task duration for computing 12,500 grid points using one core is 21 ps on
Haswell and 1.1 ms on the Xeon Phi. Although, the clock speed of the Haswell
processors are only twice the speed of the Xeon Phi processors, task computations
take 50 times longer on the latter. This can be explained by the differences in the
micro-architecture of the two. The Xeon Phi coprocessor has in-order execution
cores, each with two execution pipelines [2]. The Haswell architecture has out-of-
order cores, a more complex design than the Xeon Phi, that can dispatch eight
instructions per clock cycle [1].

For large partition sizes, idle-rate increases due to starvation. The tasks are
large and concurrency is difficult to maintain, resulting in poor load balance where
cores are left with no meaningful work, but the thread scheduler continues to look
for work.

For strong scaling the workload is kept constant as parallel resources (i.e.
cores) are increased. Ideal strong scaling is achieved when speedup, Eq. , is the
same factor as the increase in the number of cores, resulting in 100% efficiency,
Eq.[8l However, overheads caused by parallelization limit scaling, resulting in loss
of efficiency, Eq.[0] Both loss of efficiency and idle-rate increase as the number of
cores are increased, limiting scaling. However, idle-rate does not account for all

of loss of efficiency.

56

T
SU = Fl where

n
T} = execution time on 1 core (7)

T,, = execution time on n cores

SU
Efficiency = — % 100% (8)
n
Efficiency Loss = 100% — Efficiency (9)

Idle-rate can be used to determine a range of task granularity that will not
impose large scheduling overheads, but since the only overhead it considers is task
management, it cannot be used alone to determine optimal grain size. Pronounced
examples of this can be seen in Figures [I4] and [I5] for the Haswell node for 8 and
16 cores, for partition sizes from 20,000 to 100,000 (32 to 125pus), even though
idle-rate increases, execution time decreases. Another clear example is shown in
Figure[20|for 60 cores on the Xeon Phi. There is a jump in execution time when the
partition size is greater than 125,000 grid points (~11 ms). The next partition size,
156,250 grid points, uses more than 1 MB of memory for each partition, stressing
the memory system for each task. Idle-rate does not reflect this drastic change
since there is no additional task management overhead. By visual inspection, we
can see that idle-rate does not behave the same as execution time. Correlations of

idle-rate with execution time for each task granularity range on the Haswell node

57

are listed in Table |2l and vary widely across both task granularity and core counts.
The values are less than 0.5 in most cases, confirming our visual inspection that
this metric alone does not correlate well to execution time for fine- to coarse-

grained task ranges and is not sufficient to determine optimal grain size.

5.2.2 HPX Thread Management Overhead

Thread management overhead per core for HPX is computed in Eq. and

compared to execution time in Figures [21] through [28

t unc ~ texec
7, = 2 tme =2 (10)

Ne

The overhead is high for very fine- and very coarse-grained tasks, and the
behavior is similar to execution time in those regions. The correlation of task
management overhead per core with execution time for the Haswell node is nearly
perfect (~ 1.0) for the very fine-grained and very coarse-grained ranges, Table .
However, in the center region the behavior of the HPX thread management over-
head is relatively constant, but execution time is not. Although as the number of
cores are increased, task management also increases but does not appear to have
much effect on execution time, for fine- to coarse-grained tasks. Correlations of
task management overhead with execution time vary from ~.3 to ~.9 for fine- to

coarse-grained tasks.

o8

Execution_Time - + - TM / core -=-

10 ‘
E

o 8 }

& N\ j

© » z

£ 6\

4

§ 4\ ' ol

- 4 = e ,7,

3 \ i o

2 = Ii!:::-..lllll.".‘ol.——- . o/’

a 2 " /l,,,,
', i/
NIl LT Cr I I PN gy

1000 10000 100000 le+06 le+07 1e+08

Partition Size (Grid Points)
Figure 21: Haswell (4 cores): Thread Management per Core (TM/core)

Execution_Time -+ - TM / core -=-
10
{
~ 8 3
] \ >
il |
o)
2o\
— '\ \
C ‘
9o 4 LI Y
SN 2l
O \ 3 L. =
Q » i‘- e R Lk oy] ‘ 4
N2 ', 'FexIf® ./
| 7
H‘HH ".\-\.\'\””'\”\“”“”"'_\ \/
[N Llditlin | | |

1000 10000 100000 ~ le+06 1e+07 1e+08
Partition Size (Grid Points)

Figure 22: Haswell (8 cores): Thread Management per Core (TM/core)

99

Execution_Time - + - TM / core -=-

10 ;
| |

o 8 /
@ ¥
o i
g 6
I— i‘é\
5 4 ik /I,,,
5 \El 44
] S I 17 /
< 2 IIi .‘l‘ll’ll'l‘.——‘!‘__ //‘
’] I

E = 2l

kit stiretle it]

| [N T
1000 10000 100000 1e+06 le+07 1e+08

Partition Size (Grid Points)
Figure 23: Haswell (16 cores): Thread Management per Core (TM/core)

Execution_Time -+ - TM / core -=-
10
f
l\ |
g ° \;. |
~ \ *
(0] .
g 6 \;'.;
~ \ i
C
S 1 1\ fl L]
8 “:! /,;/
(O] “!i ’_I---I//
Ll>j 2 I Basadent lt'-lt-.-!"-EJ.‘l:;—-'
\ IR e
» - em
\ Silan ik

1000 10000 100000 ~ le+06 1e+07 1e+08
Partition Size (Grid Points)

Figure 24: Haswell (28 cores): Thread Management per Core (TM/core)

60

Execution_Time - + - TM / core -=-

10 X
i |
‘ /
S 8 {
a -
; ..‘{'olo.. /
e 6 IR e P R el = = Y 1
= »
[
g 4% /
5
(@]
2
i 20
-
ii.u.’ /
‘ ‘ | B mmm NNy
1000 10000 100000 1le+06 le+07 1e+08

Partition Size (Grid Points)
Figure 25: Xeon Phi (8 cores): Thread Management per Core (TM/core)

Execution_Time -+ - TM / core -=-
10
Ll
) 8—\——I 5
D //
2
4
e 6§+ .
= AT
R
.9 4 A} * .-“'..’
h =] °¢0‘ -
8 * .‘.‘OOsnigio.__’ /
() -
|_|>j 2 LY
‘l
\
LK S F R F SRR RSN SERSLERBRERES RE NN

i
1000 10000 100000 ~ le+06 1e+07 1e+08
Partition Size (Grid Points)

Figure 26: Xeon Phi (16 cores): Thread Management per Core (TM/core)

61

Execution_Time - + - TM / core -=-

10
o 8
D \{ /
L
2 6 -
=
5
> X"
8 b . . /.
< sesVreanest
L 2 .‘.'0'3;7!TT00
.,\‘ H ‘ ‘ //.
| "snmananendninninnununnnonn

1000 10000 100000 ~ 1e+06 1e+07 1e+08
Partition Size (Grid Points)

Figure 27: Xeon Phi (32 cores): Thread Management per Core (TM/core)

Execution_Time -+ - TM / core -=-
10
o 8
)
& /
: &
=
S
= 4
8 “ - /
g * /!I /‘ /i
LIJ 2 .°0 . . T !-. [
" te gty
. - & --“..... /‘
" HH\ I I \.‘.b
IR TR R T LT L L LL L

1000 10000 100000 ~ le+06 1e+07 1e+08
Partition Size (Grid Points)

Figure 28: Xeon Phi (60 cores): Thread Management per Core (TM/core)

62

5.2.3 Wait Time

When the benchmark is executed on multiple cores the duration of a task
increases due to overheads caused by parallelization on the underlying hardware.
The additional time is due to overheads caused by cache misses, non-uniform
memory latencies, memory interconnect, cache coherency and/or memory band-

width saturation. The average wait time per HPX thread, is computed as the

700
600
n //
© 500 / Cores
o
S 400 +4
w0
2 300 — ,/. +16
E Lo / /oo/ ——28
=
| _—k
s
0 m——.——

10,000 30,000 50,000 70,000 90,000
Partition Size (Grid Points)

Figure 29: Wait Time per HPX-Thread (Haswell)

difference between the average task duration (¢4) and task duration for the same

experiment run on one core (tq1) in Eq. [11]

tw =td — ta1 (11)

63

Wait time per HPX thread increases with the number of cores and with the
partition size as shown for the Haswell node in Figure [29,

To compute wait time per core for the entire experiment we use Eq. [12]

(Zfd — tdl) * T
nC
ny = number of tasks (12)

T, =

n. = number of cores

The results of wait time for the Haswell node in Figures |[30|- 33| and for the Xeon
Phi in Figures [34]- 37 show that for fine- to medium-grained tasks wait time and
execution time have the same behavior. This region is for partition sizes ranging
from 20,000 to 1,000,000 grid points with task durations of 32 s to 1.3 ms for the
Haswell node and 1.8 to 50 ms on the Xeon Phi.

Correlation coefficients for wait time with execution time indicate that cor-
relations are strong for very fine-grained tasks with values ranging from 0.87 to
0.97 and are above 0.5 for medium- and fine-grained task ranges. However, the
correlations are ~ -.8 for the very coarse-grained range for all core counts. This
indicates a strong inverse relationship.

Wait time measures the increase in execution time of tasks when run on mul-
tiple cores compared to executing on a single core. However, wait time is negative
for very coarse-grained tasks, indicating that the task duration is shorter when run

on multiple cores than on one core. The metric uses a measure of task duration

64

Execution_Time - + - WT / core -« -

10 :
E
o 8 }
& N\ j
) %
g 6 :
I— .
g 4 !! 3
5 !Ili //
(&) n R 3 Lt
2 .i i!::!-.'lllll“'.‘cl.——--—-.
w 2 "haxg
l
H "ﬂ""fu N etn st
L] LT,
1000 10000 100000 1le+06 le+u7 1e+08
Partition Size (Grid Points)
Figure 30: Haswell (4 cores): Wait Time per Core (WT/core)
Execution_Time -+ - WT / core - = -
10 \
o 8+ |
2 |\
—~ 3
)
£ 6
— A
S 5 :
= 4 =
= 7
8 !!I-I ,0/
% ‘. "ffffu‘u'"\"'~"m "]
Erg.x "
i 21l nmgn, HHIH!\H __uu\l | i
Trrea uulunll B U
| 1]] LTI,
1000 10000 100000 1le+06 le+07 1le+08

Partition Size (Grid Points)
Figure 31: Haswell (8 cores): Wait Time per Core (WT/core)

65

Execution Time (sec)

Execution Time (sec)

Execution_Time - + - WT / core -« -

10 ‘
\ |
8 \
6 I-\‘
\
F
4 3
z
!! //!
S
s tl!l.-.-.,—!
2 1 I i‘!'! " \‘H\HH mi
u'. iiiii HH\H .uu--u--.....\
| H\HHH T
1000 10000 100000 1e+06 1le+07 1e+08

Partition Size (Grid Points)
Figure 32: Haswell (16 cores): Wait Time per Core (WT/core)

Execution_Time -+ - WT / core - = -

=
o
"

o]
1

I 11 sEemEERERR T
2 ‘Il...zo-‘ ‘ \H\HM r‘

ya Muy,
rewsnest UL L Lt
I B

L
1000 10000 100000 ~ le+06 1e+07 1e+08
Partition Size (Grid Points)

Figure 33: Haswell (28 cores): Wait Time per Core (WT/core)

66

Execution Time (sec)

Execution Time (sec)

10 —
i |
\
8 {
...‘{'olo /
6 oﬁ’.ooo.o....‘.!“’::’:::’
4
13
2/} A
| 3

(=Y
o

Execution_Time - + - WT / core -« -

b,

LR {
o -
-
‘ ‘ ‘ HH\.\.‘\ My, .
1000 10000 10000U ~ 1e+06 1e+07 1e+08
Partition Size (Grid Points)

Figure 34: Xeon Phi (8 cores): Wait Time per Core (WT/core)

Execution_Time -+ - WT / core - = -

[e¢]
- ™
—_

**ta ..

., 'l‘..~.~..'
tr
| |

- w
e
MHM 'I'l-

1000 10000 100000 ~ 1e+06 1e+07 1e+08
Partition Size (Grid Points)

Figure 35: Xeon Phi (16 cores): Wait Time per Core (WT /core)

67

Execution Time (sec)

Execution Time (sec)

Execution_Time - + - WT / core -« -

10

6 T -
4

"‘o¢¢’40000 - /.
2 s, 0, I

‘ ‘ ‘ b L I PN
i - an I LE BB l
ol \H\HH || ‘H‘HH WL T
1000 10000 100000 1e+06 1e+07 1e+08
Partition Size (Grid Points)

Figure 36: Xeon Phi (32 cores): Wait Time per Core (WT/core)

Execution_Time -+ - WT / core - = -

10
8
Il /

6| .
4 .

b‘ K

‘. 3
2 ‘. / ‘I
\ H\H T O
- 2y u.u‘ul-‘u'n.w / " ‘HHH
L "\\\\HH\ DL | . "ay,

1000 10000 100000 le+u6 le+07 1le+08

Partition Size (Grid Points)
Figure 37: Xeon Phi (60 cores): Wait Time per Core (WT /core)

68

of all HPX threads and includes helper tasks that are invoked to support timers
and synchronization. The number of these types of helper tasks increases with the
number of cores used. When tasks are split into large partitions (i.e. very coarse-
grained tasks), the number of tasks that perform the computations decreases and
the proportion of helper tasks increases. For fine- to medium-grained tasks the
proportion of helper tasks is much less than 1% of the total number of tasks, on
the Haswell node, and does not perturb the calculation for task duration. For
very coarse-grained tasks the proportion ranges from 11% to 130%. This is even
more apparent in the results for the Xeon Phi since the number of time steps
computed is 1/10 that of Haswell. Wait time is negative at smaller partition sizes
than on the Haswell because there are fewer computations. The portion of tasks
that perturb this metric is amortized when there is a large number of tasks for
smaller task granularity and with longer running applications. Since task-based
systems are designed for scheduling massive numbers of fine-grained tasks, the
very coarse-grained tasks are beyond the range of interest but are presented for

completeness.

5.2.4 Combined Costs: HPX Thread Management and Wait Time

When thread management overhead and wait time are combined, the correla-
tions with execution time are very strong, greater than 0.9 for all task granularity

ranges when executing with 16 and 28 cores and near or greater than 0.7 for all

69

other cases on the Haswell node, Table 2] Figures [38] through 5] shows the that
the costs increase with parallelism causing the execution time to stay relatively
constant after eight cores. The gap between execution time and the combined
costs of thread management and wait time depicts the actual computation time.
As the number of cores used increases (i.e. increased parallelism) the computation
time decreases, but overheads and wait time increase, impairing performance and

scaling behavior.

5.2.5 Thread Pending Queue Accesses

The number of accesses to the pending queues is a measure of the amount of
activity involving the thread scheduler and does not require support from system
timers. Figures[0]-[53]show that this metric for very fine-grained tasks follows the
behavior of execution time. Coarsening tasks to minimize pending queue access
can decrease task management overheads and reduce execution time. Correlations
of the thread pending queue accesses with execution time show strong correlation
for very fine-grained tasks. Correlations of pending queue accesses with execution
time are greater than 0.9 for the very fine-grained and very coarse-grained task

ranges, but vary considerably for the other ranges.

70

Execution_Time - + - (TM+WT) / core -=-

10, m
4
T 8 }
& \\)
E
£ 6\
= i .
c \ B
S 4 x I i
>] s, /
Q " !ii E BN l.——----./’E
(O]) FEJEsSERIRES .
& 2
'=I.l.l'll.llilllu....)
LB} — g
I T P s
1000 10000 100000 1e+06 1le+07 1e+08

Partition Size (Grid Points)

Figure 38: Haswell (4 cores): Thread Management and Wait Time per Core
((TM+WT)/core)

Execution_Time -+ - (TM+WT) / core - = -
—~~ i!
o 8- |
g |\l

B
(O]
£ 6\
— i\\i »
.5 4 'F‘! /!77?1’
S l,‘ \!!I' /
O § “‘ H 3 e
3 .'I‘ i' ".\.\‘\.\‘M‘H'..\'.\-r—\-\r)
ot P11 LK I | 1
w 2 Im"l‘.‘.‘i\\ u""'..."'"uu.‘__u‘“ g—_.//l
1000 10000 100000 1e+06 1e+07 1e+08

Partition Size (Grid Points)

Figure 39: Haswell (8 cores): Thread Management and Wait Time per Core
((TM+WT)/core)

71

Execution_Time - + - (TM+WT) / core -=-

10 ;
1 |

o 8 ‘
()
& &
(D)
E 6 ‘i‘ ¥
~ N .
S .
=] if
3 -
(&] iI! //!
2 '!‘I;i .-.--l-lslc-.-‘——!“'_i ‘//
LU 2 {ii::;n;";ﬁulul-...".‘_—\'\‘“-i’—'

1000 10000 100000 1e+06 le+07 1e+08

Partition Size (Grid Points)

Figure 40: Haswell (16 cores): Thread Management and Wait Time per Core
((TM+WT)/core)

Execution_Time -+ - (TM+WT) / core - = -
10 .
=
\ >
o 8
& \
£ 6 :
= t JlA
S v
S 4 .l /
8 " b ']
= lide i Ly
2 l Tz 4t 7"’.-‘7-? ‘:*” *—i
Ll iii.‘,.'.ulﬂ"""'lnlu" 5=
1000 10000 100000 1e+06 1e+07 1e+08

Partition Size (Grid Points)

Figure 41: Haswell (28 cores): Thread Management and Wait Time per Core
((TM+WT)/core)

72

Execution_Time - + - (TM+WT) / core -=-

=
o

..‘

()] [e0)
—
4
+
——
]
4
[
+
. *
+
*
+
&
H
—_—
—

Execution Time (sec)

T"#ﬂ‘nﬂfr-......

1000 10000 100000 ~ 1e+06 1e+07 1e+08
Partition Size (Grid Points)

Figure 42: Xeon Phi (8 cores): Thread Management and Wait Time per Core
((TM+WT)/core)

Execution_Time -+ - (TM+WT) / core - = -

'_\
AO
|_sam”
/L—-r—T

o 8 :

)

37\ I
4

e 6 \ I

= T\ |

c E \-

S 21 '--l:’...

"é o’..o,....."!!!
F *e— @

2 2 '.\

L \ »

LS T

. o -
‘ HH \\ RN L LT
1000 10000 100000 ~ 1e+06 1e+07 1e+08
Partition Size (Grid Points)

Figure 43: Xeon Phi (16 cores): Thread Management and Wait Time per Core
((TM+WT)/core)

73

Execution_Time - + - (TM+WT) / core -=-

10
o 8 \! y
(O]
3 \V //f
£ 6 Iy -
o
[
S 4 3 |
§ ""._‘040..0.’ - /. :
Ll>j 2 .w\ | H\‘}" ..‘ o
Sl TR
..uuu-.un ‘H H J/.
HHH HHHH \ \ """--- - ﬂ”
1000 10000 100000 1le+06 le+07 1e+08

Partition Size (Grid Points)

Figure 44: Xeon Phi (32 cores): Thread Management and Wait Time per Core
((TM+WT)/core)

Execution_Time -+ - (TM+WT) / core - = -
o 8
0 1! /
~— 3
Il
e 6) a
= \
s A
S 4 \
o . A/
2 !.‘.] I! /| /i
[H| 2 ‘ﬁw‘....’..:ofi"i \-. Y,
L R R R l! - n
ﬁuu.."...‘. \‘H“‘ooo | L/
RN T
1000 10000 100000 1e+06 le+07 1e+08

Partition Size (Grid Points)

Figure 45: Xeon Phi (60 cores): Thread Management and Wait Time per Core
((TM+WT)/core)

74

Execution_Time - +- Pending Queue Accesses - = -

40
N il 35
] 130z
Py 5
@ H 25 =
= £
|_ i —
- 20 8
9o i 15 &
5 I‘! l/ 8
8 Ii! [ll.“...l-——----./’ Q
< EE R E LAY 110 ©
<
n /
.."l"ulu--:--n--.a:utul—-1"-'"‘ 1
1 S | R R
1000 10000 100000 1e+06 1e+07 1e+08
Partition Size (Grid Points)
Figure 46: Haswell (4 cores): Pending Queue Accesses
Execution_Time -+- Pending Queue Accesses - = -
10 17 40
\ i
H 35
o 8
O \ 5 130 %
2 : 5
) H 25 =
c 5 | 20 -
S 4 . amp it EER
o \\!\!I’ i/ 0
O ‘ i L O
(0D} i.“ i. '3000000100¢...—-o---- | 100
L|>j 2 : it P2 F 1 L <
L]
A A
1000 10000 100000 1le+06 le+07 1le+08

Partition Size (Grid Points)
Figure 47: Haswell (8 cores): Pending Queue Accesses

1)

Execution Time (sec)

Execution Time (sec)

=
o

[E
o

Execution_Time - +- Pending Queue Accesses - = -

‘ ‘ 40
|
8
30 v
| 1 5
: 1 25 =
6 = =
\1 \E/
}\] //i z ||| 20 8
4 \ ¥ 115 B
| i :
N E i 1 i/’ 1 10 o
2 R A g
[| | s
AT i
R
1000 10000 100000 1e+06 1e+07 1e+08
Partition Size (Grid Points)
Figure 48: Haswell (16 cores): Pending Queue Accesses
Execution_Time - +- Pending Queue Accesses - x -
- 40
* 135
8 - L
K '}\ IR
S
6 -\ \‘n 0 25 é
YN c
" t 120
MIN // 3 s
= ‘\m q)
4 o ¥ 115 9
. ‘ ,i (%)
| g ‘ ‘ /I Q
;{ 'qi | L_} ¥ L 10 2
2 I P ~e "o g i.!ii !--
ii:..:a.li"' H 5
1000 10000 100000 1le+06 le+07 1le+08

Partition Size (Grid Points)
Figure 49: Haswell (28 cores): Pending Queue Accesses

76

Execution Time (sec)

Execution Time (sec)

Execution_Time - +- Pending Queue Accesses - = -

10 (1o 2
|
1k
8 | L]
\l) {. 159
.“t} g
67\/}\ ‘0‘0070.000.00...."’.’::.7::'. %
l\{ L \E/
I n
4 H 9
(%))
(O]
10503
2 3 <
]
AT I
1000 10000 100000 1e+06 1e+07 1e+08
Partition Size (Grid Points)
Figure 50: Xeon Phi (8 cores): Pending Queue Accesses
Execution_Time -+- Pending Queue Accesses - = -
10 ‘ ‘ 2
R “
gl |1}
1150
z [
NI / 2
\!\ + E
| 1y
4 .""‘!.“. g
"o.o N
ooocoo.c{;!o,__ 05 §
2 } | | | <
IR
"'""'""'""i’*"ﬁm il
L Lt | | |
1000 10000 100000 1e+06 1e+07 1e+08

Partition Size (Grid Points)
Figure 51: Xeon Phi (16 cores): Pending Queue Accesses

77

Execution Time (sec)

Execution Time (sec)

Execution_Time - +- Pending Queue Accesses - = -

=
o

2
1
8
\L / 115
6 L .
Hl
4 \
. |
'l‘ .
2 i\\ e .”"N\.‘ / 102
\H H -‘-3-..:.:;J
| 'z
A A1 i
1000 10000 _1oooqo 1e+06 1e+07 1e+08
Partition Size (Grid Points)
Figure 52: Xeon Phi (32 cores): Pending Queue Accesses
Execution_Time -+- Pending Queue Accesses - = -
10 2
8
1 / 15
6 I\
1 i
\ 1
2
4
L]
" 3 «F |
2 ‘\ / \!!. /‘ 105
‘\.‘. .\’\’\‘\.H°".il‘l‘ ; "
‘l’:.u.‘“‘ ! ﬂ'.' *
R Tiitiak}
1000 10000 100000 1le+06 le+07 1le+08

Partition Size (Grid Points)
Figure 53: Xeon Phi (60 cores): Pending Queue Accesses

78

Accesses (millions)

Accesses (millions)

5.3 Summary of Task Granularity Experiments

Prior to this research, the HPX runtime system had few counters that assessed
thread scheduling behavior and overheads. Developers depended on the idle-rate
counter (ratio of time spent on HPX thread management to that of execution)
to assess overheads and modified their code to minimize idle-rate for improved
performance. This usually helps improve performance but does not consider costs
other than thread management. Several counters were added to assess activity by
the scheduler, such as the number of accesses and misses on queues, the time tasks
spend waiting in the queues, number of tasks stolen, and average task durations.
We study the behavior of these counters over a wide range of task granularity.

In this chapter, we present the characterization study of pertinent metrics
that evaluate performance behavior and overheads and how they are affected by
task granularity. Idle-rate and pending queue accesses are HPX counters and
can be used to tune grain size to amortize task management costs. However,
using them exclusively does not take into consideration other overheads caused
by parallelization on the underlying architecture for fine- to medium-grained tasks.

For the one dimensional stencil benchmark on the Haswell node, correlations
of task management overheads to execution time are greater than 0.9 for tasks
with durations less than 27 ps and greater than 1 ms, but for tasks from 27 ps to

1 ms vary from 0.3 to 0.9. While correlations of wait time are only consistently

79

greater than 0.9 for tasks less than 27 ps. However, when the two metrics, task
management overheads and wait time are combined, correlations to execution
time are above 0.9 for all task granularities when run on more than 8 cores.

Metrics that are derived from available counts include thread management
overhead and wait time and show that combining these two components of over-
heads give us the best correlation with execution time. We show that by measuring
intrinsic events and calculating pertinent metrics, we can determine optimal grain
size to amortize task management overheads and wait time for best performance.
However, wait time is dependent on metrics from running with only one core so
will have to be collected prior to runtime or as a portion of the execution causing
additional overheads.

Results from this study led to the implementation of performance counters
that time task execution and task management overheads. The subsequent study
adapted from [3I] and presented in Chapter |§|, explains the challenges of per-
formance monitoring of asynchronous task-based systems and demonstrates the
capabilities of measuring intrinsic events by the runtime system for a variety of
benchmarks using the new performance counters to assess application efficiency
and resource usage of the underlying hardware during execution time, paving the

path toward runtime adaptation.

80

6 USING INTRINSIC PERFORMANCE COUNTERS TO ASSESS

OVERHEADS DURING EXECUTION

As the High Performance Computing community continues to explore so-
lutions for future computational needs, computing systems are evolving quickly.
Computer systems continue to grow more complex with increasing core counts per
node, deeper memory hierarchies, an increasing variety of heterogeneous nodes,
and networks are becoming more intricate. Additionally, applications are growing
larger, more complex, and more integrated with other applications in workflows.
One solution, task-based parallelism with runtime adaptivity, as proposed by this
dissertation, depends on readily available, low overhead, performance metrics that
are able to give an introspective view of any part of the system on demand.

Task-based programming systems, such as Charm++ [39] and OpenMP 3.0
Tasks [13] and many other research and commercial runtimes, have slowly emerged
over the last three decades. Unfortunately, each model requires a specific solution
to the problem of performance measurement. Current performance monitoring
tools are designed for the much more common case of synchronous execution
and are not able to monitor intrinsic events of asynchronous task-based paral-
lel applications during execution. Most of the widely used open-source parallel
performance measurement tools (such as HPCToolkit [9] or TAU [49]) are based

on the profiling or tracing of application codes through either instrumentation or

81

periodic sampling. These types of tools are quite useful for post-mortem analysis
and optimization of large scale parallel application codes. However, they currently
fail to support massive quantities of asynchronous tasks. In addition, because they
are designed for post-mortem analysis they are not easily extended to implement
runtime adaptive mechanisms. The challenges of using performance monitoring
tools and measurements that demonstrate the inability of currently available tools
to provide the type of performance monitoring required for dynamic adaptation
are presented in Section (6.1}

In addition to previously mentioned task-based programming systems, task-
based parallelism is implemented in the C++11 Standard [53]. The implemen-
tation of task parallel constructs in the standard is designed to increase parallel
programming productivity and portability of parallel applications with the po-
tential of increased performance through compiler support. To assess the per-
formance of the standard implementation, Thoman, Gschwadtner, and Fahringer
introduced the Innsbruck C++11 Async Benchmark Suite (INNCABS [56]), con-
sisting of parallel benchmarks with varying task granularities and synchronization
requirements. The performance study using INNCABS illustrates the use of the
C++11 Standard parallel constructs across readily available compiler platforms.
However, their results demonstrate that the standard implementation of the par-
allel constructs do not perform well and are not adequate to replace current third

party implementations of task-based parallelism.

82

HPX, a general purpose C++ task-based runtime system for parallel and dis-
tributed applications (see description in Section , is one solution that employs
improved programming productivity and portability since its API adheres to the
C++11/14 Standards [53] - [54] and is designed to run parallel tasks on current
platforms and increasingly complex platforms of future designs. HPX employs a
unified API for both parallel and distributed applications thus the ease of pro-
gramming extends to the distributed use case. In addition, HPX implements a
performance monitoring framework that enables both the runtime system and the
application to monitor intrinsic events during execution.

We show the ease of porting the INNCABS benchmark suite to the HPX run-
time system, the improved performance of benchmarks that employ fine-grained
task parallelism and the capabilities and advantages of using the performance mon-
itoring system in HPX to give detailed insight of the performance and behavior
of benchmarks with varying task granularities and synchronization requirements.

This chapter, adopted from [31], illustrates the capabilities of the HPX run-
time system to schedule massive numbers of small tasks efficiently for parallel
applications with the ability to monitor intrinsic software and hardware counters
at execution time. The C+411 Standard solution, based on kernel threads, is not
sufficient to provide adequate scalability of parallel applications, and third party
runtime libraries, such as HPX, are required for support. Measuring intrinsic

events through the runtime can give the ability to assess scheduling and paral-

83

lelization costs and their impact on performance and provide that information to
guide adaptive schedulers.

The remainder of this chapter discusses the challenges of using existing tools
for performance monitoring at execution time, the ease of porting benchmarks
from the C++11 Standard to HPX, the improvement in performance, and the
advantages of using HPX with the ability to monitor intrinsic events. Finally, the
results of experiments measuring performance counters to assess overheads and

performance of the application are presented.

6.1 Challenges Using Performance Monitoring Tools

It is important to understand how C++ parallel constructs are distinct from
other thread-parallel models, and why it is so difficult to measure and understand
the performance behavior. The Standard C++ implementation constructs, exe-
cutes, and destroys an Operating System (OS) thread for every task created with
std: :async, resulting in thousands or even millions of OS threads being created.
While this implementation is certainly within the capabilities of the OS kernel, it is
somewhat naive and inefficient and presents a significant challenge to performance
tools that are not explicitly designed to support this type of implementation.

Widely used open-source parallel performance measurement tools like HPC-
Toolkit [9] and TAU [49] provide profiling and/or tracing of many different types

of parallel application models. These tools use several methods to observe ap-

84

plication behavior, including source instrumentation, binary instrumentation, li-
brary wrappers, performance tool interfaces, callbacks, and/or periodic sampling
based on interrupts combined with call stack unwinding. These tools are capable
of context-aware measurement with variable levels of resolution and subsequent
overhead. Large scale parallel codes with concurrency greater than hundreds of
thousands of processes and/or threads have been successfully measured.
However, these tools fail to adequately support the current implementation
of C++ task parallel constructs. Both TAU and HPCToolkit make design as-
sumptions about the overall number of OS threads they expect to see in a given
process space. In the case of TAU, the data structures used to store performance
measurements are constructed at program launch to minimize perturbation of the
application during execution. While the maximum number of threads per pro-
cess is a configurable option (default=128), it is fixed at compilation time. When
set to a much larger number (i.e. 64k) TAU causes the benchmark programs to
crash. While HPCToolkit doesn’t set a limit on the number of threads per pro-
cess, the introduced overhead becomes unacceptable as each thread is launched
and the file system is accessed, and in most benchmark cases the program crashes
due to system resource constraints. Table [3| shows the results of running the
C++11 Standard INNCABS benchmarks at full concurrency with either TAU or
HPCToolkit using the test system and protocol described in Section [6.2.2]

In addition, because they are designed for post-mortem analysis these tools

85

are not easily extended to implement runtime adaptive mechanisms. In both
cases, post-processing of the performance data (usually done at program exit) is
required before an accurate performance profile containing the full system state

(across nodes and/or threads) is possible.

Table 3: C++11 Standard INNCABS Executed with TAU and HPCTookKit.

When the benchmarks are executed with these tools resulting overheads and

failures confirm that the tools fail to support the current implementation of
C++ task parallel constructs.

Baseline TAU HPCToolkit
Benchmark time tasks time time overhead
Alignment 971 4950 SegV 112,795 11516%
FFT 48,423 2.04E406 SegV timeout
Fib Abort N/A SegV N/A
Floorplan 5,788 169708 SegV SegV
Health 589,415 1.75E+07 Abort Abort
Intersim 827 1.70E+06 Abort SegV
NQueens Abort N/A N/A N/A
Pyramids 2,148 112,344 SegV 275,088 12707%
Qap SegV N/A N/A N/A
Round 155 512 SegV 5,588 3505%
Sort 7,240 328,000 SegV Abort
Sparselu 786 11,099 SegV 99,123 12511%
Strassen 4,782 137,256 SegV ~ Abort
UTS Abort N/A N/A N/A

In contrast, Autonomic Performance Environment for eXascale (APEX) [34]
33] has been designed for the HPX runtime to provide performance introspection
and runtime adaptation using the available HPX performance monitoring frame-
work. A discussion of the current state and future potential of APEX is provided

in Chapter

86

6.2 Performance Counter Experimental Methodology

To demonstrate the capabilities of the HPX runtime system and its perfor-
mance monitoring system, we run strong scaling experiments with the C++11
Standard and HPX versions of the INNCABS benchmarks by increasing the num-
ber of cores while keeping the total workload constant for each benchmark. This
section describes the benchmarks, system configuration, performance counter mea-

surements, and the methods used to run the experiments.

6.2.1 Benchmarks

In order to assess efficiency of task-based parallel programs using intrinsic per-
formance counters, we measure events that determine the costs of parallelization
and task scheduling, then model the correlation of the costs to performance. We
measure these events for benchmarks with a variety of task granularity, parallel
structures, and synchronization requirements. To accomplish this, we ported to
HPX the INNCABS benchmark suite [56], introduced by Thoman, Gschwadtner,
and Fahringer as a suite of benchmarks using the C++11 Standard constructs for
thread parallelism. The benchmarks are written and/or ported to C++11 to as-
sess the performance achieved by using the C++11 Standard thread mechanisms
for parallel applications without the support of third party libraries. Table
in Section classifies the benchmarks by programming structure and synchro-

nization and includes task granularity and scaling results of both versions. The

87

benchmarks are classified by the parallel structure of the tasks. Recursive par-
allelism is formed by scheduling trees of asynchronous tasks. Balanced recursive
structures have the same number of tasks per subtree, and unbalanced recursive
structures have variable number of tasks per subtree. Loop-like parallel struc-
tures schedule asynchronous tasks in a for or while loop. Co-dependent parallel
structures schedule tasks that depend on mutexes shared between the tasks for
synchronization.

Since HPX’s API is modeled after the C++ Standards, replacing the standard
task parallel structures with HPX equivalents for the INNCABS parallel bench-
marks is fairly simple. This involved setting defitions to use the HPX library
when compiling for HPX, creating cmake files for compilation, and in most cases
for each benchmark changing the function’s namespace (see Table . As defined

in the C4++ Standard, the template function std: :async:
...runs the function £ asynchronously ‘as if on a new thread’ (poten-
tially in a separate thread that may be part of a thread pool) and

returns a std::future that will eventually hold the result of that
function call. [1

The std: :thread class is a convenience wrapper around an OS thread of execu-

tion, and the std: :mutex class is:

... a synchronization primitive that can be used to protect shared data
from being simultaneously accessed by multiple threads. E|

Thttp://en.cppreference.com/w/cpp/thread/async
2http://en.cppreference.com/w/cpp/thread /mutex

88

Sources and detailed descriptions of the INNCABS [5] benchmarks are available
online as are the HPX ported versions [7].

HPX significantly improves the performance of the benchmarks with sufficient
concurrency due to the smaller overheads of the fine-grained lightweight user level
HPX threads when compared to the use of pthreads by the C++11 Standard
(see Section [6.4]). For the applications where the tasks are coarse-grained, the
overheads are not as significant, so the HPX versions either only slightly outper-

form or perform close to the C+411 Standard versions.

Table 4: Translation of Syntax: C++411 Standard to HPX

C++11 STD HPX

std::async — — — > hpx:async

std::future — — —> hpx:future
std::thread — — — > hpx:thread
std::mutex — — — > hpx:lcos::local::mutex

6.2.2 Configurations

Our experiments are performed on an Intel® node on the Hermione cluster
at the Center for Computation and Technology, Louisiana State University, run-
ning Debian GNU /Linux kernel version 3.8.13. The node is an Ivy Bridge dual
socket system with specifications shown in Table [f] We run experiments with
hyper-threading activated and compare results for running one thread per core to
running two threads per core resulting in small change in performance. We deacti-
vate hyper-threading and present only results with hyper-threading disabled. The

89

software is built using GNU C++ version 4.9.1, GNU libstdc++ version 20140908,

and HPX version 0.9.11 (8417f14) [3§].

Table 5: Platform Specifications for Performance Counter Experiments

Node Ivy Bridge (IB)

Processors 2 Intel®Xeon®E5-2670 v2
Clock Frequency 2.5 GHz (3.3 turbo)
Microarchitecture Ivy Bridge (IB)
Hardware Threading 2-way (deactivated)

20

Cores

Cache/Core 32 KB L1(D.I)
256 KB L2

Shared Cache 35 MB

RAM 128 GB

For best performance, the HPX benchmarks are configured using tcmalloc E| for
memory allocation. Comparisons were made for the standard benchmarks using
system malloc and tcmalloc. The C++11 Standard versions perform best using
the system memory allocator except for the Alignment benchmark. The original
Alignment benchmark allocates large arrays on the stack, and execution fails for
the default HPX stack size (8 KB), so the benchmark was modified to allocate
the arrays on the heap for both versions. We build the standard benchmarks with
the system allocator with the exception of Alignment since it performs best using
temalloc.

The original INNCABS benchmarks can be run with any of three launch poli-
cies (async, deferred, or optional) as specified by the user. HPX options include

these launch policies and a new policy, fork, added in version 0.9.11. The fork

3http://goog-perftools.sourceforge.net /doc/temalloc.html

90

launch policy is equivalent to async except that it enforces continuation steal-
ing instead of child stealing, the default. Continuation stealing allows the parent
thread to be stolen, and the child thread can be executed on the current pro-
cessing unit, while child stealing is the opposite. This can result in performance
improvements for strict fork/join use cases, where the future returned from async
is guaranteed to be queried from the current OS-thread. We compared perfor-
mance of all launch policies for both C++11 Standard and HPX versions of the
benchmarks and found the async policy provides the best performance, so we only

present the results using the async policy.

6.2.3 Performance Counter Metrics

To demonstrate the capabilities of the performance monitoring system, we
select both runtime and hardware performance counters to observe. The software
counters used in this research measure the task execution times, overheads, and
efficiency of the thread scheduler in order to monitor performance of the runtime’s
thread scheduling system and execution performance of the tasks on the underly-
ing hardware. The hardware counters we use demonstrate the ability to measure
hardware events that are available to ascertain information that can be used for
decision making such as throttling the number of cores used to save energy. Al-
though for this research we run benchmarks that are designed for parallelism on

one node, HPX performance counters can also be utilized for distributed applica-

91

tions to make decisions such as when to migrate data.

The HPX performance monitoring framework provides the flexibility to inspect
events over any interval of the application. The INNCABS applications have
support for multiple execution samples in one run. This enables us to select the
number of samples and run them with one execution of the program without the
overhead of starting HPX. The counters are read for each sample by using the
HPX evaluate and reset API calls. HPX also includes the ability to monitor
events for predefined timed intervals and for individual OS threads. For these
experiments we use the cumulative total of the OS thread counts.

There are more than 50 types of performance counters available in HPX,
many of those have more than 25 subtypes ﬁ The counters are grouped into
four groups representing the main subsystems of HPX: AGAS counters, Parcel
counters, Thread Manager counters, and general counters. There are also mecha-
nisms for aggregating the counters or deriving ratios from combinations of coun-
ters. From this large group of counters, we only use a few that demonstrate their
general functionality and provide the metrics required. The metrics and their

associated performance counters for these experiments are:

Task Duration
The value of the /threads/time/average counter that measures the average

time spent in the execution of an HPX thread, also referred to as an HPX

4http:/ /stellar-group.github.io/hpx/docs/html/hpx /manual.html

92

task. Task durations for runs using one core give us a measure of task granu-
larity and are reported in Table[7, When the number of cores is increased we
observe an increase in task duration that indicates the execution is delayed
due to overheads caused by parellization on underlying hardware. This is

illustrated in Figure 29| Section [5.2.3]

Task Overhead
The value of the /threads/time/average-overhead counter measures the aver-
age scheduling cost to execute an HPX thread. We observed task overheads
on the order of 50-100% of the task grain size for benchmarks comprising

primarily very fine-grained tasks (< 10 ps).

Task Time
Task time measures the cumulative execution time of HPX tasks during the
selected interval using the /threads/time/cumulative counter. We divide
task time by the number of cores to show the relation to the execution time

of the application.

Scheduling Overhead
The measurement of time spent in scheduling all HPX tasks using the
/threads/time/cumulative-overhead counter is scheduling overhead. To dis-
tinguish this from task overhead, this is the cumulative of task overheads

for all tasks. For fine-grained applications, scheduling overheads can be a

93

major cost because the cost of scheduling the tasks is large in comparison

to the task execution time.

Bandwidth Utilization
Bandwidth Utilization is estimated for the Ivy Bridge node by summing
the counts of the off-core memory requests for all data reads, demand code
reads, and demand reads for ownership. The count is then multiplied by the
cache line size of 64 bytes and divided by the execution time. The counters

are accessed in HPX as:

papi/0OFFCORE_REQUESTS:ALL DATA RD
papi/0FFCORE_REQUESTS :DEMAND_CODE_RD
papi/0FFCORE_REQUESTS : DEMAND_RFO

Measuring hardware events (such as the off-core requests) through the HPX
interface to PAPI gives the application information about the behavior on the par-
ticular system. Using native PAPI counters for the Ivy Bridge node, we compute
an estimated offcore memory bandwidth utilization.

The overhead caused by collecting these counters is very small (within variabil-
ity noise), but sometimes are up to 10% for the benchmarks with very fine-grained

tasks when run on one or two cores.

94

6.3 Performance Counter Experiments

Based on the wide range of available possibilities, we conduct a large number of
experiments to determine the best configuration for the build and run policies that
provide the best comparisons of the benchmarks. Table [f] lists the configurations
we use for the experiments. We present experiments that give a fair comparison
between C++11 Standard and HPX and illustrate the capabilities of the HPX
runtime system for scheduling asynchronous tasks on parallel systems with the

benefit of measuring intrinsic performance events.

Table 6: Software Build and Run Specifications for INNCABS

Specification C++411 STD HPX
Compiler gce gee
Memory Allocation system”* tcmalloc
Launch Policy async async

*tcmalloc — memory allocator used for C++11 STD Alignment

To assess performance of the benchmarks, we use strong scaling by increasing
the number of cores while keeping a fixed workload. The one exception to this
is the Floorplan benchmark. The std: :async implementation uses a single task
queue from which all threads are scheduled. In comparison, the HPX implemen-
tation provides a local task queue for each OS thread in the thread pool. Because
of this subtle difference, the two implementations execute the tasks in a different
logical ordering, causing the hpx: :async implementation to evaluate many more

possible solutions prior to pruning. In fact, the HPX implementation evaluates

95

over two orders of magnitude additional solutions, although the time per task is
much smaller. Further study is needed to understand whether the HPX imple-
mentation can prune the search space more effectively. For the purposes of this
dissertation, a fixed limit on the number of total tasks executed is added to ensure
a fair comparison between the two runtimes. The input sets used in the original
INNCABS paper [56] are used for each benchmark, with the exception of QAP.
QAP only runs successfully using the smallest input set included with the original
sources.

To maximize locality, we pin threads to cores such that the sockets are filled
first. For the C++11 Standard version we use the command taskset and specify
the proper CPU order to ensure proper affinity; this is tricky since logical core
designations vary from system to system. HPX utilizes HWLOC and provides
flexible thread affinity support through the --hpx:bind command line option.
We verify that both versions properly use thread affinity by monitoring test runs
using the htop utility.

For each experiment 20 samples are collected, however, the first sample is
excluded since for these benchmarks initialization is measured in the first loop.
We present the mean of the remaining 19 samples for the execution times and
the counters. We compute and plot the 95% confidence interval for the execution
times. The confidence intervals are small and most are not visible on the graphs.

To measure the counter data, we evaluate and reset the counters for each sample

96

using hpx: :evaluate active_counters and hpx::reset_active_counters API

functions.

6.4 Performance Counter Experimental Results

To illustrate the capability of performance monitoring on a variety of bench-

Table 7: Benchmark Classification and Granularity

Class Sync. Task Dur. Gran. Scaling Speedup
Benchmark (ps) STD HPX STD HPX
Loop Like
Alignment N 2748 C 20 20 154 173
Health N 1 VF AF 10 - 2.8
Sparselu N 980 C 20 20 122 156
Recursive Balanced
FFT N 1 VF(var) 6 6 1.3 1.5
Fib N 1 VF AF 10 - 3.8
Pyramids N 246 M 20 20 8.0 129
Sort N 52 F(var) 10 20 3.0 119
Strassen N 107 F SF 8 20 3.1 111
Recursive Unbalanced
Floorplan AP 5 VF 8 10 1.2 2.1
NQueens N 28 F AF 20 - 112
QAP AP 1 VF 6 20 1.1 7.8
uTs N 1 VF AF 10 - 3.2
Co-dependent
Intersim MM 3 VF AF 12 - 2.7
Round 2M 9671 C 20 20 20 18.7
Notes: 1. Sync. (synchronization): N-none, AP-atomic pruning
MM-multiple mutex per task, 2M-two mutex per task
2. Task Dur. (average task duration)
3. Gran. (granularity): var.-variable
VF - very fine (< 30 ps) F - fine (30 - 100 ps)
M - medium (100 - 500 ps) C - coarse (> 500 ys)
4. Scaling Behavior: Scales up to number of cores
AF-all fail, SF-some fail

97

marks, we run experiments using the 14 benchmarks from the INNCABS bench-
mark suite. Table[7]is an expansion of Table 1 in [56] that shows the structure of
the benchmarks. We include measurements of Task Duration (task grain size) and
classify the granularity according to our measurements of the HPX performance
counter when the benchmark is run on one core. Included are the scaling behav-
iors of both the C++11 Standard and HPX versions measured in our experiments.
Even though the benchmarks have a variety of structures and synchronization, the
most prominent factor that affects scaling behavior and overall performance for
these task parallel benchmarks is task granularity. In every category the HPX
version of the benchmarks with very fine-grained tasks scale only to 10 cores and
the speedup is only 3 to 4, 30-40% of the maximum expected for 10 cores. When
run on more than 10 cores, or beyond the socket boundary, speedup decreases.
The benchmarks with fine-grained tasks are all in the recursive category and all
scale to 20 cores with speedups around 11 to 12, 55 to 60% of maximum. There is
only one benchmark, Pyramids, in the medium-grained category and it also scales
to 20 cores with slightly higher speedup of 13, 65% of maximum. Two of the
coarse-grained benchmarks, Alignment and Sparselu have loop like parallel struc-
tures and one has a co-dependent structure, but all three have speedups above 15,
76% of the maximum speedup.

In several cases, the performance of the benchmarks are similar to others with

the same task granularity, so we present a cross section of results that represents

98

each category of task granularity. Appendix[B]contains graphs of the performance
and overheads of the benchmarks not shown in this chapter. First, we present ex-
ecution time and speedup for comparison of the two runtime libraries and then
the respective performance metrics. The coarse-grained benchmarks are Align-
ment, SparseLU, and Round. Figure shows execution time and speedup for
Alignment, a good representation of the scaling behavior for all three benchmarks.
These benchmarks are all coarse-grained with task grain size ranging from ~1 ms
to ~10 ms. Scheduling overheads for coarse-grained tasks are a small percentage
of task duration. The benchmarks scale best for HPX with linear speedup that
exceeds 76% of maximum for 20 cores.

The Pyramids benchmark (Figure has a medium grain size of ~250 ps and
is the only application that executes faster for the C4++11 Standard version than
the HPX implementation. Although the C++11 Standard version executes faster
up to 14 cores, it has a speedup factor of 8 for 20 cores, while for HPX there is a
speedup of 13, and the minimum execution times are equivalent.

Strassen, Sort, and NQueens classify as fine-grained benchmarks with task
grain sizes ~100 ps, ~50 ps and ~25 ps respectively. For each of these benchmarks,
HPX shows the ability to scale to 20 cores, while the standard version either does
not run (NQueens and some Strassen experiments) or only scales up to 10 cores
like Sort. The behavior of the execution time of the fine-grained benchmarks are

typified by that for Strassen, (Figure and Sort (Figure [57).

99

Execution Time (seconds)

Speedup

16

. ‘ Standard - + -
al . Alignment HPX - x - |
»
12+ -
10+ .
8+t |
»
6| \ |
4l . |
\‘\
2+ I=====‘ » N B} i 4
| | | | | | | | | ?
O0 2 4 6 8 10 12 14 16 18 20
Cores
20 T T T T T
Alignment STD - +-
181 HPX - - *
16 - -
+
14|]
/1-/
12 + /:/ |
10+ /5/ g
n/
8l o |
6t ’,/’ i
4l -]
2r /n/]
=
O — %2 4 6 8 10 12 14 16 18 20
Cores

Figure 54: Alignment: HPX vs. C++11 Standard, grain size ~3 ms, typifies

scaling behavior of the coarse-grained benchmarks.

100

Execution Time (seconds)

Speedup

30

‘ . Standard - + -
Pyramids HPX - x -
25+ .
20 - .
150\ L]
10 +\ .
»
5 \1-\:]
\‘_:'\‘
T—t— 4 = » T
O %2 4 6 8 10 12 14 16 18 20
Cores
20 T T T T
181 Pyramids STD -+- |
HPX - -
16 - .
14 - i
12 —1
I /./’ |
10 - .’,,n .
8¢ /./ —*
6F n e +/ |
l;"‘/
4f =" 1
2l ./ ,
O — %2 4 6 8 10 12 14 16 18 20

Figure 55: Pyramids: HPX vs. C++11 Standard, ~250 ps medium-grained

101

16
14
12

10

Execution Time (seconds)
(o]

20
18
16
14
12
10

Speedup

o N b~ OO

Figure 56: Strassen: HPX vs. C++11 Standard,

Strassen

Standard - + -
HPX -u- |

2 4 6 8 10 12 14 16 18 20
Cores
Strassen HPX - x - |
/‘/3
/'

. i

b 1

«
. i
/./ 1

»

./ |

2 4 6 8 10 12
Cores

102

14 16 18 20

~100 ps fine-grained

Execution Time (seconds)

Speedup

16

| Standard - + -
14| = Sort HPX -%- |
12 - :
10 - -
+
8 \\\\]
* +
+ —
\‘§+/+_——__
4+ » 4
\.
2l T, |
e — o —
O | | | | | | | | | T

0 2 4 6 8 10 12 14 16 18 20
Cores
20 T T T T
Sort STD -+ -
18 HPX - x - |
16 - .
14+ .
12 - i
‘____—n/
10+ - ,
"
8 « -
6 el
n/
4l e |
—— —
2+ .‘!4"‘/* * ' * e———
O — %2 4 6 8 10 12 14 16 18 20
Cores

Figure 57: Sort: HPX vs. C++11 Standard, ~50 ps fine-grained

103

The remainder of the benchmarks are all classified as very fine-grained since
they have task sizes less than ~5 ps. For HPX, we observe measurements of the
task overhead performance counter from 0.5 ps to 1 ps for these benchmarks, so
scheduling overheads are a significant portion of the execution time. The standard
versions of NQueens, Health, Intersim, Fib and UTS all fail. For these we observe
80,000 to 97,000 pthreads launched by std: :async just before failure. The stack
size required per pthread is 16 KB (minimum) resulting in at least a total of 1.2
GB. The system is not able to manage these quantities of pthreads. The C++11
Standard versions of very fine-grained benchmarks that do manage to complete,
FFT and Floorplan, scale poorly or not at all and have execution times much
greater than the HPX versions. FFT and UTS, Figures [58 and (9] illustrate these
behaviors. Context switching for the C++11 Standard version takes a kernel
transition and costs on the order of micro seconds [42], while we measure the cost
of HPX context switches in the tens of nano seconds.

Figures [60] - [64] illustrate the capability the performance monitoring system
provides to determine factors affecting the performance of the application. The
metrics and associated counters are described in Section [6.2.3]

To illustrate ideal strong scaling, we plot T, execution time, and IT, ideal
execution time from Eq. [13]

T
ITy = Wl (13)

104

Execution Time (seconds)

Speedup

45

‘ | + —Standard - +- *
a0l FFT .— HPX - -
+
AN
35+ |
lll\+ /
30} Te—, . |
25+ .
20+ .
15+ .
10+ g
5+ —— =N
0 - » » » =
0 2 4 6 8 10 12 14 16 18 20
Cores
20 T T T T
FFT STD - +-
18 HPX - x - |
16 + g
14+ |
12 + g
10+ .
8L i
6 4
4L i
2 .gl=l=l=l]
0 ._\ | | L \\‘=‘ ‘ ‘ ‘
0 2 4 6 8 10 12 14 16 18 20
Cores

Figure 58: FFT: HPX vs. C4++11 Standard, ~1 us very fine-grained

105

Execution Time (seconds)

Speedup

65
60
55
50
45
40
35
30
25
20
15

20
18
16
14
12
10

o N b~ OO
T

| UTS HPX -- |

L ‘ ‘_—_‘___’__—l

|- ‘/ —

L » _
~., /

L \‘ - |
0 2 4 6 8 10 12 14 16 18 20
Cores

T UTS T T HPX -\ -
|) . i |
fl”” \\\"‘—l » » '
" |
0 2 4 6 8 10 12 14 16 18 20
Cores

Figure 59: UTS: HPX (C++11 Standard fails), ~1 ps very fine-grained

106

where N = the number of cores, [T}y is ideal time for N cores, and T} is measured
execution time for 1 core. On the same graphs are the measured components:
scheduling overheads and task time per core; also included is ideal task time. Ideal
task time is the task time we expect if it scaled perfectly with added concurrency.
Ideal times for execution time and task time per core are included to visualize
the difference between ideal and measured as concurrency (number of cores) is
increased.

When the scheduling overheads are low, Figures [60] [6I] and [62] as is the
case for the fine- to coarse-grained benchmarks, the overall execution time of the
benchmark is composed almost totally of the time spent in actual execution of
the tasks. For Strassen the overheads are slightly larger than Alignment and this
shows that the execution time does not scale as close to the ideal time.

The scheduling overheads have a larger effect on the overall execution time for
applications that have smaller granularity. This is further demonstrated with the
measurements from the very fine-grained benchmarks, Figures [63] and [64, The
combination of smaller task size and larger number of tasks executed per second
also puts pressure on system resources causing the task time to increase. The ef-
fects are unique to each benchmark and underlying architecture. For UTS, Fig. [64]
the scheduling overhead is not as large as the increase in execution time caused by
overheads due to contention, cache misses, non-uniform memory latencies, mem-

ory interconnect, cache coherency and/or memory bandwidth saturation. The

107

opposite is true for FFT, Fig. [63] Increasing the number of cores that the bench-
mark is executed on, also increases resource overheads as seen by the growth of
the gap between task execution time and its ideal. For both FFT and UTS, the
jump in execution time from 10 cores to 12 cores is caused by crossing the socket

boundary and thus the NUMA domain of the system.

10 . T T LT N T
Alignment Execution Time ——
Ideal Execution Time —
gl Task Time (per core) -%- |
\ Ideal Task Time (per core) - - -
-0- Scheduling Overhead (per core) -H-
S 6 Task Time + Overhead (per core
)
Q
%._
T~ !
2r ' .
= —=0~__! 1 .
e 04— Y \,}'_”\f _
Op m-B—8—u—*N Cl'o v - <
ores

Figure 60: Alignment: Overheads, coarse-grained task size, very small
scheduling overhead and the task time is close to ideal so has good scaling
behavior with speedup of 17 for 20 cores.

108

10

Pyramids Execution Time =
Ideal Execution Time —
Task Time (per core) -%-

81 ldeal Task Time (per core) - - - |
Scheduling Overhead (per core) -H-

5 Task Time + Overhead (per core
87 i |
) .
E 4l T~ i
i: 4 \ ! \ 1 - .

20 ' \,"t_*-_ = : — -

—a—n
2-g—a—n—N—n—1—H§ ‘ ‘

0 0 2 4 6 8 10 12 14 16 18 20
Cores

Figure 61: Pyramids: Overheads , medium-grained task size, has slightly larger
scheduling overheads than Alignment and the task time is larger than ideal.
Speedup for 20 cores is 13.

10

Ideal Execution Time —

Task Time (per core) -%-

Ideal Task Time (per core) - - -

Scheduling Overhead (per core) -H-
Task Time + Overhead (per core

\ Strassen Execution Time ——

oo
T
1
1

Time (sec)
[ep)

A

— 1
= 1 -
— = 1
o —) —— O
- = —
— . ; n——mO———)=

oL H-H [| [| [| [| [| || | || [|
4 6 8 10 12 14 16 18 20
Cores

Figure 62: Strassen: Overheads, with fine-grained task size, small scheduling
overheads, but the gap between the ideal and actual task time is larger than for
Pyramids, and the resulting speedup is 11 for 20 cores.

- 1
.4\ - 1
Pt
M \ -

.

109

FFT Execution Time =

Ideal Execution Time — 1 =0~
5+ Task Time (per core) -%- O
Ideal Task Time (per core) - - -, "1
Scheduling Overhead (per core) -H- ¢
4r . Task Time + Overhead (per core) 1

Time (sec)

Figure 63: FFT: Overheads, very fine-grained and has scheduling overheads
equivalent to the task time and both increase significantly beyond the socket
boundary. This results in poor scaling and limits scaling to one socket.

70 T I T LT N T
-0- UTS Execution Time
60 Ideal Execution Time —
I Task Time (per core) -%- |
Ideal Task Time (per core) - - -
50 - Scheduling Overhead (per core) -H- -
5 Task Time + Overhead (per core
8o S Y
© 0 ! '
i [—_—— %
E 30 i -_/ N
20 | \ —\- 1 /x/ |
10 Ny
T~ —5 -—I—INI\T
O | | | | | | T

0 2 4 6 8 10 12 14 16 18
Cores

Figure 64: UTS: Overheads, very fine-grained, scheduling overheads are
approximately 50% of the task time, after 4 cores task time is larger than ideal
and increases after the socket boundary, resulting in poor scaling and increased

execution time past the socket boundary.

110

Hardware counters can be utilized to monitor performance bottlenecks of the
underlying system. One example is offcore bandwidth utilization, a metric de-
rived from hardware counters (Section [6.2.3). Offcore bandwidth utilization is
compared to speedup in Figures [65] - [68 For very fine-grained benchmarks, like
FFT (Figure [68)), bandwidth utilization increases with the number of cores used
only to the socket boundary then it drops dramatically and speedup decreases
significantly beyond the socket boundary. Figure illustrates this for FFT a
representation of the benchmarks with very fine-grained tasks. However, band-

width utilization continues to increase for the benchmarks that scale to 20 cores.

Alignment Speed Up -+- BW -x-
20 60 g
18 - + o —
16 - +/: 50 @
14+ +/ 140)
o ~ x O
S5 12+ /+ x/* E’
D 10! T _x7 308
o + X c
8+ /)(/ B =
N +7 1203
6 / /X a
+ X <
4l ~x 1108
"'/ 410 s
2| =X 1B
%=X 5
% 2 4 6 8 10 12 14 16 18 200 ®

Figure 65: Alignment: Offcore Bandwidth Utilization, coarse-grained tasks

111

Pyramids Speed Up -+- BW -x-

20 GOrg
18 + | g
16 - 190 g
14 - N
40

+
512 . + QE
T 10] %~ 17308
2 8- + —X o
o 6 +/x/x 1205
i +/X/ 1 P
4. _l_/x/ S
Zx 103
2L ,.‘/ 4 o]
zX =
0 X I I I I I I I I I O S

0 2 4 6 8 10 12 14 16 18 20

Cores

Figure 66: Pyramids: Offcore Bandwidth Utilization, medium-grained tasks

Strassen Speed Up -+- BW -x-
20 60 5
18 -) b
50 4,
16 T
14| x/x/ f%)
o x/ 140 O
> 127 x= +
(dD) —_— ©
? 6| x” i+ 1205
x4 ES
4 /+/ 110 S
20 X=X | %
+ 7 S
O 2 4 6 8 10 12 14 16 18 20° @

Cores

Figure 67: Strassen: Offcore Bandwidth Utilization, fine-grained tasks

112

FFT Speed Up -+- BW -x-

20 60

18 - 18

16 - 150 @

14 | 1 nm

c

D 10+ 1308
(O]

o 8 X _ N

- X=X <

4+ X 1102

2 x/ 13

e —+ + + +— c

0 X | | | | + + + + '“-O 8

0 2 4 6 8 iO 12 14 16 18 20
Cores

Figure 68: FFT: Offcore Bandwidth Utilization, very fine-grained tasks

113

6.5 Summary of Performance Counter Experiments

We demonstrate the capabilities of the performance monitoring framework
in the HPX runtime system to measure intrinsic events that give detailed insight
into the behavior of the application and the runtime system. Because the perfor-
mance monitoring capability is implemented within the HPX runtime, the reduced
measurement overheads enable us to collect performance data that provides an
understanding of application efficiency and resource usage during execution.

We show the ease of porting the INNCABS parallel benchmarks to HPX and
the resultant performance improvement of the benchmarks. All HPX benchmarks
with task durations greater than 25 ps scale to 20 cores, although for the C++11
Standard versions only the benchmarks with task durations greater than 240 us
scale to 20 cores. The strong scaling speedup is from 9.5 to 24.5% higher for HPX
than the C++11 Standard versions, except for Round with a very coarse grain
size of 10 ms. The C++11 Standard version of Round scales 6.5% higher than
the HPX version, but the execution times are equivalent on 20 cores. Thus HPX
performs better than C++11 Standard for fine- to medium-grained benchmarks
and as well as the C++11 Standard versions for coarse-grained benchmarks.

We demonstrate that current external tools are not capable of supporting C+-+
task parallel constructs and do not support the runtime performance monitoring

that is necessary for adaptive runtime decisions. Experiments performed to assess

114

performance of the C++11 Standard INNCABS benchmarks using two of the most
common available tools, HPCToolkit and TAU, either abort or have overheads
that are 35 to 125 times the execution time without the tool. In contrast, the HPX
performance monitoring framework gives the ability to monitor intrinsic events
during execution and incurs overheads less than one percent when running on more
than two cores. Measurements of task time and task management overheads give
insight to the performance of the benchmark and can be queried for any interval
of an application during execution to use for runtime adaption. Resource usage is
also available by introspection of hardware counters as is demonstrated through
querying and using offcore counters to estimate bandwidth utilization.

The capabilities of HPX presented pave a path toward runtime adaptivity. The
results in this chapter indicate that measuring task time and scheduling overheads
during execution and tuning task grain to minimize these metrics can improve
performance of the benchmarks.

As previously mentioned, the APEX library extends HPX functionality [33].
APEX includes a Policy Engine that executes performance analysis functions
to enforce policy rules. By including guided search and auto-tuning libraries in
the analysis functions, APEX has already demonstrated an emerging capability
for runtime adaptation in HPX applications using its performance monitoring
framework. In Chapter [7] we explore the capabilities of the policy engine in the

APEX library to demonstrate using performance counters for runtime adaptivity.

115

7 ADAPTIVE METHODOLOGIES

In this chapter we explore adaptive techniques using the performance moni-
toring framework of the HPX runtime system with the integration of the Auto-
nomic Performance Environment for Exascale (APEX) library, as illustrated in
Figure The integration of APEX enables HPX to pass performance events
to APEX for analysis that in turn provides an interface to external performance
monitoring as well as feedback for control of the application.

The two main components of APEX are the performance introspection compo-
nent and the policy engine. APEX implements runtime performance observation
facilities with event listeners for both post-mortem analysis and real time adap-
tation. The introspection component collects information, such as HPX counters,
from the application or runtime system through the use of event APIs. The
events are handled either synchronously for immediate action or asynchronously
and stored in a queue for background processing while execution is returned to the
calling process. Introspection of events from the operating system or hardware
can also be collected through periodic sampling run on additional OS threads.
One method of procuring system level information such as energy consumption
is using Resource Centric Reflection(RCR) [43] through the RCRdameon. APEX
has four event listeners: Profiling, Concurrency, Tau and the Policy Engine. The

first three are used to collect information for post-mortem processing, and are not

116

used for the work in this dissertation.

The Policy Engine is the event listener that provides controls to an application
or runtime system by executing analysis functions on collected measurements
and enforcing specified policy rules. For this study the policy engine applies the
Nelder-Mead algorithm, a simplex method for minimization, as the policy rule to
minimize a user specified performance counter from HPX. APEX implements the

Nelder-Mead algorithm from the Active Harmony library [19].

APEX Introspection

g

APEX State

Triggered

APEX Policy

Figure 69: APEX Integration with HPX, from [33]

events

/Application

RCR
Toolkit

meta events

actuators

Runtime adaptation in HPX applications is demonstrated using the APEX
prototype for both performance and power optimization by K. Huck, et al. [33].
A scheduler that throttles the number of OS threads is used to optimize either

power consumption or performance. In the following section, we demonstrate

117

tuning task granularity for improved performance through the integration of HPX

with APEX.

7.1 Tuning Task Granularity Example

To illustrate tuning task granularity using the integration of APEX with
HPX, we use a modified version of the HPX-stencil benchmark (referred to as
HPX-repart-stencil and is available in the HPX repository as 1d_stencil 4 _repart).
Each trial of the experiment calculates the heat problem for 100,000,000 grid
points for 50 time steps. The policy engine uses the Nelder-Mead algorithm, a
simplex method for minimization, provided by the Active Harmony library [19].
The policy is initialized with a set of partition sizes that range from 1000 points
per partition to the largest size that will result in enough partitions to run at least
one partition per core (5,000,000 for 20 cores). The user specifies an HPX counter
to be used by the benchmark with the goal to minimize the counts. For each trial
(50 time steps per trial), APEX reads the counter and reports the count to the
policy engine. Based on the new count, Active Harmony refines the search to a
smaller set of partition sizes until the search space converges to 5% (default) of the
initial search space. Once the search space has converged, the heat calculations
are repeated using the partition size chosen by the policy engine for the remaining
specified number of trials. For our experiments we specify 100 trials in total.

The experiments are performed on an Intel® node on the Hermione cluster at

118

the Center for Computation and Technology, Louisiana State University, running
Debian GNU/Linux kernel version 3.8.13, using HPX version 0.9.12 and APEX
version v0.5-rc0. The node is an Ivy Bridge dual socket system with specifications

shown in Table [§l The first set of experiments uses all the cores on one socket

Table 8: Platform Specifications for Performance Counter Experiments

Node Ivy Bridge (IB)
Processors 2 Intel®Xeon®E5-2670 v2
Clock Frequency 2.5 GHz (3.3 turbo)

Microarchitecture ~ Ivy Bridge (IB)
Hardware Threading 2-way (deactivated)
20

Cores

Cache/Core 32 KB L1(D.I)
256 KB L2

Shared Cache 35 MB

RAM 128 GB

(10 cores), then the experiments are run again using 12 cores by filling the first
socket and running two cores on the second socket, and the final set uses all cores
on both sockets (20 cores).

Experiments are performed using each of following four HPX counters to be

passed to APEX for use by the policy engine:

1. Idle-rate: /threads/idle-rate - the ratio of time spent on thread management
to that of overall execution time.

2. Cumulative: /threads/time/cumulative - camulative solve time of HPX tasks.

3. Overhead: /threads/time/cumulative-overhead - cumulative time spent on
task management.

4. Overall: /threads/time/cumulative-overall - overall execution time spent on
all HPX tasks, includes task solve and task management overhead.

119

7.2 Tuning Task Granularity Results

The results from the experiments using the HPX-repart-stencil benchmark
are listed in Table [0 Since the overall counter provides the execution time spent
on all HPX tasks, it is a measure of total execution time. Using APEX to tune
grain size by selecting the partition size of the benchmark based on this count
results in minimum execution time. The value of the overall task time converges
for partition sizes ranging from 40,000 to 62,500 grid points that have fine-grained
task durations from 50 to 74 ps.

When minimizing idle-rate the partition sizes selected by APEX run from
250,000 to 500,000 grid points, 286 to 586 ps task durations, and achieve execution
times for the benchmark from 12 to 16% higher than the minimum execution
time. Minimizing idle-rate biases the tuning policy towards choosing larger task
grain size resulting in scheduling fewer tasks. Since idle-rate is a ratio of task
management overhead to overall time, using it for adaptation does not take into
consideration other overheads caused by parallelization, and the adaptive process
does not minimize those overheads.

Using the overhead counter, a measurement of task management overheads,
also results in selection of partition sizes that have medium to coarse-grained task
durations, 145 to 745 ps, and execution times from 7 to 16% higher than the

minimum.

120

Table 9: Tuning Task Granularity Results: An example using the integration of
HPX and APEX to tune task granularity by automatically repartitioning the 1d
stencil benchmark based on a policy to minimize the value from an HPX counter.

Counter Partition Size Execution Trials to Task
at Convergence Time Convergence Duration
(grid points) (secs) (ps)
10 Cores
Idle-rate 250,000 2.731 63 286
Overhead 625,000 2.743 49 745
Cumulative 3,125 4.512 29 6
Overall 40,000 2.351 33 50
12 Cores
Idle-rate 500,000 2.226 43 586
Overhead 160,000 2.246 35 187
Cumulative 6,400 3.560 69 10
Overall 62,500 1.992 33 74
20 Cores
Idle-rate 500,000 1.754 63 586
Overhead 125,000 1.686 57 145
Cumulative 8,000 3.448 89 13
Overall 50,000 1.571 85 62
Notes: 1. Execution Time - average time of all trials after convergence.
2. Task Duration - average duration of HPX threads from HPX
counter /threads/time/average when running the original
HPX stencil benchmark on 1 core for the same partition size.

The cumulative counter measures only solve time of the tasks and does not
include task management overheads. When using this counter the partition sizes
that are selected through the adaptive process are very fine-grained with task
durations ranging from 6 to 13 ps. Minimizing the cumulative counter is biased
towards minimizing task time, resulting in a bias towards choosing very small

partitions. The resulting execution times are approximately twice the minimum

121

execution time. In Chapter 5] we show that the very fine-grained tasks can produce
large task management overheads, that are essentially ignored when selecting the
cumulative counter to be minimized.

The results of this study show that to minimize execution time it is best
to use the overall counter as the input to the policy in the HPX-repart-stencil
benchmark. Tuning grain size can improve performance, but in the case of this
example the entire benchmark is run from 29 to 89 times in order to select a
partition size that gives the best performance, incurring additional overhead from
approximately 130 to 300 seconds. Policies can be changed to improve the number
of trials it takes to reach convergence. For example, the search space can be
shortened to include only partitions for fine to medium task granularity, or a
history of previous searches can be used to limit the search space. Also, if the
application were to use this type of policy to tune grain size for a limited number
of time steps or a small portion of the program and then run with that task
granularity for longer portions of the program the overhead will be amortized.

Future plans for using the integration of APEX and HPX to implement adap-
tive techniques include tuning grain size for use by HPX parallel algorithms, using
multi-objective policies such as power consumption, performance and/or network-

ing overheads to control the application. Future plans are discussed in more detail

in Chapter

122

8 CONCLUSIONS AND FUTURE WORK

Results of the characterization studies include:

1. The combination of two metrics, thread management overhead and wait
time, has correlations to execution time greater than 0.9 for all task gran-
ularity ranges for the one dimensional stencil benchmark on more than 8

cores.

2. Current external tools are not capable of supporting C++ task parallel
constructs and do not provide the runtime performance monitoring that is
necessary for adaptive decisions during execution. Experiments that assess
performance of the C++11 Standard versions of the INNCABS benchmarks
using two of the most common available tools, HPCToolkit and TAU, either
abort or have overheads that are 35 to 125 times the execution time without

the tool.

3. The HPX performance monitoring framework gives the ability to monitor
intrinsic events during execution. Additional overheads incurred by moni-

toring is less than one percent when running on more than two cores.

4. HPX performs better than the C++11 Standard versions of the INNCABS
benchmarks for fine- to medium-grained tasks and atleast as well as C++11

Standard versions for benchmarks with coarse-grained tasks. HPX scales

123

to 20 cores for benchmarks with task granularity greater than 25 ps, while
C++11 Standard only scales to 20 cores when task granularities are greater
than 240 ps. Strong scaling speedup is from 9.5 to 24.5% higher for HPX
than for C++11 Standard for benchmarks with fine- to coarse-grained tasks.
For the benchmark with 10 ms tasks (the largest grain size) the C++11
Standard version scaled 6.5% higher than HPX, however the execution times

were equivalent on 20 cores.

. The example of HPX integrated with APEX for tuning task grain size to
improve performance uses a policy in APEX to minimize an HPX counter.
Four counters were specified as the count to minimize in order to tune task
granularity: cumulative, idle-rate, overhead, and overall task time. Of these,
overall resulted in the minimum execution time while minimizing idle-rate
and overhead resulted in approximately 10% - 11% slower times, and cumu-

lative resulted in twice the minimum execution time.

. For the adaptive example, it takes from 29 to 89 trials to converge on the task
grain size for best performance, incurring an overhead from approximately
130 to 300 seconds. If the application were to use this type of policy to
tune grain size for a limited number of time steps or a small portion of the
program and then run with that task granularity for longer portions of the

program the overhead will be amortized.

124

Important contributions of this dissertation are:

1. The illustration of the important role task granularity plays in task-based
parallel applications. Application developers should develop applications

with a means to adjust task granularity.

2. Aided in guiding the maturation of the thread scheduling and performance
monitoring systems of HPX through discovering issues and bugs and steering

implementation of improvements.

3. Understanding the overheads produced by parallel programs using asyn-
chronous task-based runtime systems, such as HPX, and that the amortiza-
tion of these overheads is dependent on task grain size. Tuning grain size

can amortize task management and wait time for optimal performance.

4. The implementation of new performance counters and further characteriza-
tion of overheads for benchmarks with a variety of task granularity, parallel

structures, and synchronization.

5. The example, that illustrates dynamic adaptation, tunes grain size to op-
timize performance by using a policy that is based on minimizing an HPX
counter. The example uses the integration of HPX with APEX providing an
interface to the HPX performance monitoring framework as well as feedback

for control of the benchmark. The conclusion from this example is that the

125

policy needs to minimize the overall task time counter in order to choose

optimal task granularity.

Future plans include:

1. The implementation of tuning grain size in HPX parallel algorithms. The
HPX parallel algorithms are the implementation of C++ standards and
proposals for parallel programming. The plan is to implement auto chunk-
ing in parallel algorithms that apply functions to a given range or set of
elements. Implementing auto chunking for parallel algorithms will aim at
automatically tuning task grain size based on policies specified in APEX.
The example in Chapter [7] tunes task grain size directly in the benchmark
through the interface of APEX with HPX. For future applications, we plan
to implement tuning task grain size in the HPX parallel algorithms so that

a higher level API will be available to the programmer.

2. To utilize adaptive mechanisms for distributed HPX applications. One op-
timization planned is to automatically determine the number of parcels to

coalesce before sending them over the network to optimize networking over-

heads.

3. Implementing multi-objective optimization policies. Multi-objective policies

will allow the application to apply adaptive measures towards more than one

126

objective, such as optimizing execution time, minimizing power consump-

tion, and mitigating networking overheads.

. The broad view of future plans includes using the performance framework
of HPX with the capabilities of APEX for dynamic adaptation to improve
performance, resilience, and energy efficiency for scientific applications on

large scale distributed heterogeneous systems.

127

APPENDICES

A TASK GRANULARITY SUPPLEMENTARY RESULTS

A.1 Task Granularity Results Sandy Bridge

10 100%

9 x —@- Execution Time
8 8 —¥ |dle Rate 80%
2]
i ¢
E 6, 60% £
= 5T VI
S 4% 40%
§ 3 P —'.----./“ i)
o}
x 2 , 20%
w L/

} vyy A4 —ﬂ----’v
0 T 0%
1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07 1.0E+08
Partition Size (Grid Points)
Figure 70: Sandy Bridge (4 cores): Idle-Rate

10 e - 100%

9 \ —@- Execution Time Jl"
3 s X —¥— |dle Rate flrgo%
e /
©
£ 6 y 60% %
z ° # o
2 4 i 40% &
3 3 ‘ —-‘—’;// =
% 2 T 20%

FY YTy

1 i iiiiiniaadanini

0 1 R 1 i 0%

1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07 1.0E+08

Partition Size (Grid Points)
Figure 71: Sandy Bridge (8 cores): Idle-Rate

128

10 — - 100%
9 —@- Execution Time . 4
—~ V/
S 8 —¥—Idle Rate X 80%
7 »
~ 7
Q /
g 6 60% %
o g
S 4 40% &
3 3 -
© , 20%
LIJ
1 | |
0 1 0%
1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07 1.0E+08
Partition Size (Grid Points)
Figure 72: Sandy Bridge (12 cores): Idle-Rate
10— — 100%
9 —@- Execution Time »f’
S g —¥-Idle Rate 7/ » 80%
AR /
o &
€ 6 %y o S a0 O
£ 5 | 4 S
c ! y / x
g 4 T 40% 2
3 3 s b 7&&——-‘/ 2
2 2 L 20%
w . |
0 A1 - 0%
1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07 1.0E+08

Partition Size (Grid Points)
Figure 73: Sandy Bridge (16 cores): Idle-Rate

129

seconds

seconds

Figure 75: Sandy Bridge (8 cores): HPX Thread Management per Core

-0 Elxecution Time
—¥ HPX-thread Mgmt

/

.//)//
y

PN W b

/

-~

vvvvvvvvv

vvvvv

1.0E+03

1.0E+04

1.0E+05
Partition Size (Grid Points)

Figure 74: Sandy Bridge (4 cores): HPX Thread Management per Core

1.0E+06

1.0E+07

13 \ —8- Execution Time

8 \ —¥ HPX-thread Mgmt

. g

6- /Y

: //

R Pl

. St

AR P
‘vw— v

1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07

Partition Size (Grid Points)

130

1.0E+08

1.0E+08

seconds

seconds

10

-8- Execution Time

zi —¥ HPX-thread Mgmt
T
6 /
: /]
Al X P
3 \ éL
) X
) b\ /
et e
1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07

Partition Size (Grid Points)
Figure 76: Sandy Bridge (12 cores): HPX Thread Management per Core

1.0E+08

—@- Execution Time
—¥ HPX-thread Mgmt

x

vvvvvvvv m‘

1.0E+03

1.0E+04

1.0E+05

1.0E+06

Partition Size (Grid Points)
Figure 77: Sandy Bridge (16 cores): HPX Thread Management per Core

131

1.0E+07

1.0E+08

seconds

seconds

10 [T T [0
9 —< Execution Time
8 —¥— Wait Time
7 »
/
6
5
4
3 —-‘----./“
2
1 e aadddliidacas 2N
RREl ﬂ\\x

1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07 1.0E+08
Partition Size (Grid Points)

Figure 78: Sandy Bridge (4 cores): Wait Time per Core

10 I R
9 —< Execution Time
8 —¥— Wait Time »
7
6 /
5
4 /
1
% | -
| | [
2
SEEE v
LT i
|

1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07 1.0E+08
Partition Size (Grid Points)

Figure 79: Sandy Bridge (8 cores): Wait Time per Core

132

seconds

seconds

10 [T T T
9 x —<- Execution Time
8 —¥- Wait Time
7
5 /
> #
4
3 e g
2 W"_mﬁﬁ N
1 ™
L L IS
1.0E+03 1.0E+04 1.0E+05 1.0E+06 10E+07 1.0E+08

Partition Size (Grid Points)

Figure 80: Sandy Bridge (12 cores): Wait Time per Core

10 [T T [0

9 —< Execution Time

8 . —¥— Wait Time »
7

6

5

4

. I e

2 N

! iaatill b &

1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07 1.0E+08

Partition Size (Grid Points)

Figure 81: Sandy Bridge (16 cores): Wait Time per Core

133

10 e 100%
9 x —@- Execution Time
8 8 —¥— |dle Rate 80%
o /f
€ 6 60% Q
= 5]&\] &
c X, /
o 4 - 40% &
5 o L=
3 3 = J
L2 L 20%
“a Rddaiananaaiet a e NI
0 | LT T T 0%
1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07 1.0E+08

Partition Size (Grid Points)
Figure 82: Sandy Bridge (4 cores): Thread Management and Wait Time

10 e - 100%
9 \ -@- Execution Time Jl"
8 8 X —¥|dle Rate 7 80%
7 »
- 7
c 6 - 60% @
i= S
5 o
o 4 40%%
3 3 2
2 2 i 20%
ni Adiris
1 RARATiTiARARA
0 I e WA i 0%
1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07 1.0E+08

Partition Size (Grid Points)
Figure 83: Sandy Bridge (8 cores): Thread Management and Wait Time

134

10 — - 100%
9 —@- Execution Time) 4
~—~ r/
S 8 —¥— |dle Rate RAlll 80%
» »
~ 7
o /
e 6 60% %
c ® o
S 4 40%%
o 3 =
Q5 20%
L
1 | |
0 I 0%
1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07 1.0E+08

Partition Size (Grid Points)
Figure 84: Sandy Bridge (12 cores): Thread Management and Wait Time

10— — 100%
9 —@- Execution Time »f’
S 8 —¥|dle Rate 7/ bBO%
AR /
© J
E 61— XN 60% @
£ 5 | J S
c | ﬂ / o
S 4 F—a 40% Q
3 3 s b 7&&——-‘/ 2
o 5 il 20%
w o, v |
0 11 0%
1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07 1.0E+08

Partition Size (Grid Points)
Figure 85: Sandy Bridge (16 cores): Thread Management and Wait Time

135

A.2 Task Granularity Results Ivy Bridge

10 S 100%
9 3} —e— Execution Time
g\ 8 \ —¥—|dle Rate 80%
<L 7 L\
/ @
Q gl X 60% 1T
£ . \ / o
c 3 / o
S 4 » 40% S
"5' 3 o0 I\ 9004 .
o 2 X 20%
X
w1 as er—¥—¥
I TT, | oo

1.0E+03 1.0E+04 10E+05 1.0E+06 1.0E+07 1.0E+08
Partition Size (Grid Points)

Figure 86: Ivy Bridge (4 cores): Idle-Rate

10 S 100%
9 —o— Execution Time ‘
.4
~~ /
8 8 * —¥—|dle Rate r, 80%
&L 7y \
o) /i L
e 6 60% ©
E s o
S 4 40% 5
o) —— 40% T
g 3 Tm‘* PPN 004 e -
O IUBLL oo /[
g 2 20%
i i
T | 0%

1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07 1.0E+08
Partition Size (Grid Points)

Figure 87: Ivy Bridge (8 cores): Idle-Rate

136

10

9+ \ —— Execution Time 95,4
S g W —¥- |dle Rate / 780%
& 4 /S
[0
e 6 /'/ 60% T
|: 5 \ i / o
c X | 2
o 4 / / 40% ©
5 3 . Y TN
8 2 - 20%
5 1 e
1 0%

1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07 1.0E+08
Partition Size (Grid Points)

Figure 88: Ivy Bridge (16 cores): Idle-Rate

10 S 100%

9 —— Execution Time
o g —¥—|dle Rate ’800/
2 A4 T
g 6 / / 60% T
E s b / / c
S 4 \ / /// 40% S
5 3 -&t:;: sssessbsetert s
§ 2 - 20%
X 1 reerey

1 0%

1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07 1.0E+08
Partition Size (Grid Points)

Figure 89: Ivy Bridge (20 cores): Idle-Rate

137

10

9 * —@- Execution Time
8 \ —¥— HPX-thread Mgmt
7{
g 2
S - 1]
o 4 A 7
5 5 e
2 7
/
1
Wwpnnmwwnnm" v >

1.0E+03 1.0E+04 10E+05 1.0E+06 1.0E+07 1.0E+08
Partition Size (Grid Points)

Figure 90: Ivy Bridge (4 cores): HPX Thread Management per Core

9 —8- Execution Time

g —¥ HPX-thread Mgmt

7 il
8 6

/

5 5
S 4\ Al
n 3 (E*:gy'

2 '/)‘v'

1 P

|||||I v WW'——"’

1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07 1.0E+08
Partition Size (Grid Points)

Figure 91: Ivy Bridge (8 cores): HPX Thread Management per Core

138

10 - -

9 “ —< Execution Time

8 ’“ —¥— HPX-thread Mgmt ?

¢
L 6
S . /
S) /

4

5 | mhiii

/,'
1
y vy mrnnwr’

1.0E+03 1.0E+04 10E+05 1.0E+06 1.0E+07 1.0E+08
Partition Size (Grid Points)

Figure 92: Ivy Bridge (16 cores): HPX Thread Management per Core

—<- Execution Time
—¥ HPX-thread Mgmt g

i

+&
-
¥

seconds
P N W b 01O N 00O ©

\AddddAddidAaasdd

1.0E+03 1.0E+04 10E+05 1.0E+06 1.0E+07 1.0E+08
Partition Size (Grid Points)

Figure 93: Ivy Bridge (20 cores): HPX Thread Management per Core

139

seconds

seconds

10

o ©

~
|

g o

w

* —@- Execution Time
\ —¥- Wait Time
By |
—o-—o—9
%‘!HV‘ o
! i FTH||||| | TN
1.0E+03 1.0E+04 10E+05 1.0E+06 1.0E+07 1.0E+08

Partition Size (Grid Points)

Figure 94: Ivy Bridge (4 cores): Wait Time per Core

—@—- Execution Time

—¥— Wait Time

[T1] %

S et

1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07

Partition Size (Grid Points)

1.0E+08

Figure 95: Ivy Bridge (8 cores): Wait Time per Core

140

seconds

seconds

[
o

—@- Execution Time
¥ Wait Time

/.—/

N W h 01O N 0 ©

.ﬂ,--?

1%;1;#'{#* {

L] |~
1.0E+03 1.0E+04 10E+05 1.0E+06 1.0E+07 1.0E+08
Partition Size (Grid Points)

Figure 96: Ivy Bridge (16 cores): Wait Time per Core

10
9 x —@- Execution Time
8 —¥ Wait Time
2
6
5 il
; S
mp~ate 4
2 s
N
1
Ehdadaagil bl

1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07 1.0E+08
Partition Size (Grid Points)

Figure 97: Ivy Bridge (20 cores): Wait Time per Core

141

-@- Execution Time

‘
8‘Q\ —¥-Th Mgmt & Wait Time
\

seconds
(6)]

/

2 Mmm, /

1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07

Partition Size (Grid Points)

Figure 98: Ivy Bridge (4 cores): Thread Management and Wait Time

9 —@- Execution Time

8- —¥ Th Mgmt & Wait Time

seconds
(6]

o A acs= o AUFNI

1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07

Partition Size (Grid Points)

Figure 99: Ivy Bridge (8 cores): Thread Management and Wait Time

142

1.0E+08

1.0E+08

10 . .
\\ -8 Execution Time
—¥-Th Mgmt & Wait Time /),

»H OO N 0 ©

seconds

WT

1.0E+03 1.0E+04 10E+05 1.0E+06 1.0E+07 1.0E+08
Partition Size (Grid Points)

Figure 100: Ivy Bridge (16 cores): Thread Management and Wait Time

10 : .

9 \¥ —@- Execution Time

8 —¥-Th Mgmt & Wait Time /;:

: i
§ 6
S 5
o 4

1

1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07 1.0E+08
Partition Size (Grid Points)

Figure 101: Ivy Bridge (20 cores): Thread Management and Wait Time

143

B PERFORMANCE ASSESMENT (INNCABS) SUPPLEMENTARY

B.1 HPX vs. C++11 Standard
12 S Standard
andard - + -
. Sparselu HPX -
v 10- .
©
c
(@)
o 8r .
@L
()
g 6 1
= »
C
2 4r 1
3 "
() \
oo 2f i S]
‘§’=‘\ -
§‘_~=’=f
00— 2 4 6 8 10 12 14 16 18 20
Cores
20 T T T T
181 Sparselu STD -+ |
HPX - x
16 F
14 "
o ‘/ +
S 12¢ ’/ .
® 10 = =
B - |
() / +
(/D)- 8l = +/ B
/+/
‘/
6 /+ i
=
45 ’/' i
2r /u/ 1
0 " | | | | | | | | |
0 2 4 6 8 10 12 14 16 18 20
Cores

Figure 102: Sparselu: HPX vs. C++11 Standard, grain size ~1 ms,

coarse-grained

144

Execution Time (seconds)

Speedup

+ ‘ Standard - + -

\ Round HPX - x -
5L ® |
4 i
3 |

»
2 \ |
»
1 ~, |
HKsﬁ\lhxhu_‘_$
00— =2 4 6 8 10 12z 14 16 18 20
Cores
20 T T T T T
18 Round STD - +- ,///1
HPX - = - /,/
16 . |
ﬁ/
14 / |
=
12 n:;;;* |
10 /.<+]
8 ,. |
6 x/ =
) /‘/ |
2 = i

'/

0 2 4 6 8 10 12 14 16 18 20

Cores

Figure 103: Round: HPX vs. C++11 Standard, grain size ~10 ms,

coarse-grained

145

NQueens HPX - -

Execution Time (seconds)
N
ol

Cores
20 T T T T
181 NQueens HPX - x- |
16 - -
14+ .
g _
8 10 - n/‘ i
o " —n—
%) 8L ’/ i
6 -
l/
A - |
2+ /u/ .
»
0O 2 4 6 8 10 12 14 16 18 20
Cores

Figure 104: NQueens: HPX (C++11 Standard fails), grain size ~28 ps,
fine-grained

146

Execution Time (seconds)

Speedup

30

28 -
26 -
24 -
22 -
20 -
18+
16+
14+
12+
10+

Health HPX - -

\ ‘/’sl\‘ll

20

18+
16+
14+
12+
10+

O N A O ©
T T

X

e i —
/‘/’ \l

-]

0

2 4 6 8 iO 12 14 16 18 20
Cores

Figure 105: Health: HPX (C++11 Standard fails), grain size ~1 ps,

very fine-grained

147

Execution Time (seconds)

Speedup

6.5

5.5

4.5

3.5

25

15

20

Fib HPX - x -

18
16
14
12
10

O N b O

‘/‘— ’——_‘\
o — n =

10 12 14 16 18
Cores

4 6 8

Figure 106: FIB: HPX (C++11 Standard fails), grain size ~1 ps,

very fine-grained

148

Execution Time (seconds)

Speedup

5| ; Floorplan T]Stg:;:f’
=P
45 —" |
4+ ¥ = R
35 ~, / 1
Tt
3+ |
2.5+ -
2+ |
1.5¢ 4
1F e, |
05} B R e R —— » » . T
00— =2 4 6 8 10 12z 14 16 18 20
Cores
20 T T T T
181 Floorplan STD - +- |
HPX - -
16 - -
14| 1
12 .
10 -
81 |
6 |
40 i
L e W —— W —
U L et e g
00— 2 4 6 8 10 12 14 16 18 20
Cores

Figure 107: Floorplan: HPX (C++11 Standard fails), grain size ~5 ps,

very fine-grained

149

Execution Time (seconds)

Speedup

‘ Standard - + -
QAP HPX - = -
25 +
/f/}/
2 .}/{'
*\-I-\
15 Pty -
1 . g
ol \ |
0 ﬁ\’ = 9 ‘/‘ » = » ’
2 4 6 8 10 12 14 16 18 20
Cores
20 T T T T
QAP STD -+ - |
18 HPX - = -
16 g
14 g
12 g
10 F
8 n n——"/*
6 ‘/‘/ \‘/ |
4 u/ 4
/‘/
2 /” |
0 = T N * * + + +
0 2 4 6 8 10 12 14 16 18 20
Cores

Figure 108: QAP: HPX (C++11 Standard fails), grain size ~1 ps,

very fine-grained

150

x HPX - x -
—~ 8r N
[%2]
IS
S 7¢ |
o
o 6 i
(O]
£ 5¢ 1
|_
§ 4 |
= »
5 3l \ i
(O]
|.|>j » /l—"_’_‘
2+ S~] .
x\‘\‘/
1O 2 4 6 8 10 12 14 16 18 20
Cores
20 T T T
i HPX -x -
181 Intersim |
16 - -
14+ .
éL 12+ 1
o 10+ .
g
n 8 8
6+ E—— .
/!
4+ x/’ \l]
T » » *
2+ b
0 ’/
0 2 4 6 8 10 12 14 16 18
Cores

Figure 109: Intersim: HPX (C++11 Standard fails, although it displays
execution time), grain size ~3 ps, very fine-grained

151

B.2 Overheads Using HPX Performance Counters

Time (sec)

Time (sec)

12

10

Sparselu Execution Time
-0~ Ideal Execution Time —
Task Time (per core) -%- -
Ideal Task Time (per core) - - -
Scheduling Overhead (per core) -m-
Task Time + Overhead (per core]

N- 1
= === : ! !

f

- E (R B v Y v R
Cores

Figure 110: Sparselu: Overheads, coarse-grained ~1 ms

Round Execution Time
Ideal Execution Time —
Task Time (per core) -%- -
Ideal Task Time (per core) - - -
Scheduling Overhead (per core) -H-
Task Time + Overhead (per core]

—s—8—8—8—8—8—nN
Cores

Figure 111: Round: Overheads, coarse-grained ~10 ms

152

N =
N A O

=
o

Time (sec)

Time (sec)

B-g— — —
0% 2 % T R R RETR

, " sort_exec_time

| =O= ideal_scaling — |

task_time / core -%-

task _time_ideal - - -

sched_overhd/ core -m-
(task_time+overhd)/core

= 1 1

—1OT = 1

M | Oy S _777')
) =) e -

a8,

Cores
Figure 112: Sort: Overheads, fine-grained ~50 ps

-0- NQueens Execution Time
x Ideal Execution Time — -
Task Time (per core) -%-

Ideal Task Time (per core) - - -+
Scheduling Overhead (per core) -H-
Task Time + Overhead (per core]

e

Cores
Figure 113: NQueens: Overheads, fine-grained ~28 ps

153

w
ol

Health Execution Time
30l -2 Ideal Execution Time —
TR Task Time (per core) -%- |
\ Ideal Task Time (per core) - - -
251 Scheduling Overhead (per core) -H- -
> \\ Task Time + Overhead (per core
@20 =
]
€15+
=
10~
5L
0O

Figure 114: Health: Overheads, very fine-grained ~1 ps

8 . T LT N T
Fib Execution Time
7L -6- Ideal Execution Time — |
Task Time (per core) -%-
6l Ideal Task Time (per core) - - - |
Scheduling Overhead (per core) -m-
55 Task Time + Overhead (per core
]
L
() 4r 7
£ o
= 3¢ . —=C '::'*\x-
o5 " —— W ——
2+ ! . I//;/ — =
1 o=
1k \x—x/ J
—y—p——a—n__
% % 4 & 8 10 12 14 16 18 20
Cores

Figure 115: FIB: Overheads, very fine-grained ~1 ps

154

: Floorplan Execution Time -|-
0.9--9= Ideal Execution Time —
\. Task Time (per core) -%-

081 °N Ideal Task Time (per core) - - - |
0.7L \ Scheduling Overhead (per core) -H- |
* Task Time + Overhead (per core
306 , R S S
;0.5 - ;‘:‘, - ' ._-_/;(—/x K —— —— X
—_— 0.4 r \x* -
0.3+ g
0.2+ m - .
% 2 4 & 8 10 iz i4 16 18

Cores
Figure 116: Floorplan: Overheads, very fine-grained ~5 ps

1-1 T T T
: QAP Execution Time —~ |
1--0- Ideal Execution Time —
09 | Task Time (per core) -%- |
\ Ideal Task Time (per core) - - -
08 | Scheduling Overhead (per core) -m-

~0.7L \ Task Time + Overhead (per core i

n 0.6+ \ i

Q05 y\-0- |

= W\

0.4} \ |
0.3+ \ 1 7
02 B> N S~ ' . - I

% Qs
01l .\ \x§x_x_*/X\m;”‘_
O | | | j
0 2 4 6 8 10 12 14 16 18 20

Cores
Figure 117: QAP: Overheads, very fine-grained ~1 ps

155

Time (sec)
O P N W b O O N 0O ©

-0~ "Intersim Execution Time
Ideal Execution Time — -

Task Time (per core) -%-

Ideal Task Time (per core) - - -+
Scheduling Overhead (per core) -m-
Task Time + Overhead (per core]

o
N
D
(o))
(e¢]
H
o
H
N
[N
N
H
[ep)
H
o
N
o

Cores
Figure 118: Intersim: Overheads, very fine-grained ~3 us

156

B.3 Offcore Bandwidth Utilization

Sparselu Speed Up -+- BW -x-
20 60 5
18 18
1507,
16 - P
14| A T
o -+ 7 O
S 12+ +/ 4 =
10 - + 1308
g')_ 8 +/ S
| ng 1208
6 - 172
4l + 5
- 110°%
21 X —X—X &
0 % x__"——)(——x—_‘x_x__ L | | 0 S
0 Z 6 8 10 12 14 16 18 20
Cores

Figure 119: Sparselu: Offcore Bandwidth Utilization, coarse-grained ~ 1 ms

Round Speed Up -+- BW -x-
20 ‘ 60
181 1t 3
+ 1507,
16 +/ 18
14+ ~ 1 0@
o + | O
S 12+ +/ IS
c
B 10| + 1308
;)')- 8¢ +/ 1. =
6 +/] 205
<
Ar - 1108
2r +/ 2 %
+7 3
0L X=X ——X——N—X—— N — N X=X = X ——=X ()
0 Z 4 (§] 3 10 12 14 16 18 20
Cores

Figure 120: Round: Offcore Bandwidth Utilization, coarse-grained ~ 10 ms

157

NQueens Speed Up -+- BW -x-

20 60
18 ¢ 1B
16| 190

>

- L8
D 12+ _+ =
o +/+ g
o 10+ - 13028
(D) +/+ ©
o 8L +/ 4 E
? 6 /+/ 1205
e

4r " 102

2l _+— x——x_-——x—x———x"?‘ 3

+ XX S

0 x_s(——)(. | | | | | 0 m

0% 4 6 8 10 12 14 16 18 20
Cores

Figure 121: NQueens: Offcore Bandwidth Utilization, fine-grained ~28 ps

Health Speed Up -+- BW -x-
20 60 5
18} | §
16+ 150 @
s
o 1408
5 12+ . =
D 10f 1308
] ©
e 1 i
6l 1205
4 x/"\x§ =
i x/x/ XNX——X—)(]_()E
2 ‘gﬁ+-—-+—'+'—+\+—+—+—-+—+ T
©
00 2 4 6 8 10 12 14 16 18 200 @

Cores

Figure 122: Health: Offcore Bandwidth Utilization, very fine-grained ~1 ps

158

Fib Speed Up - +- BW -x-

20 60 o
18+ i §
16| 190
14 Sy
s 1408
c
® 10+ 1308
g g I
2 6l - 205
4 - —x R i=)

X —_—tt —X—x—2x 10
2+ =+ S — e — 3
x’x G
05— 2 4 6 8 10 12 14 16 18 20° @

Figure 123: FIB: Offcore Bandwidth Utilization, very fine-grained ~1 ps

Floorplan Speed Up -+- BW -x-

20 60»8\
18+ - o
161 B 50§
14 -] CT>3‘

o] 40(.’)
o 12+ 8 =
S 10t 13028
(] ©
e 1 i
6l 1205

<

41 N] 10%

2 >'<=x-’x_-=>(-ﬁx= =X =X==X—=X—=X ?u
00 2 4 6 8 10 12 14 16 18 200 ®

Cores

Figure 124: Floorplan: Offcore Bandwidth Utilization, very fine-grained ~5 s

159

Speed Up

20
18
16
14
12
10

o N b~ O

QAP Speed Up -+- BW -x-

60 &
@
H e n
| 150
9
: -
|] 409
5
i +30 2
= +—+ a X
, o~ 1205
/)t/x\x =
| /x/x TX—X—Xx—Xx10%
L 4)*(’ =
x | | | | | | | | | 0 S

0 2 4 6 8 10 12 14 16 18 20

Cores

Figure 125: QAP: Offcore Bandwidth Utilization, very fine-grained

Speed Up

20
18
16
14
12
10

oON b~ O

UTS Speed Up -+- BW -x-
60 5
(]
L = (%]
i 150,
()
i -
I 1403
c
L 41308
©
- - =
I 1205
X/x/x\x £
r —— N S
—t— X—x—x—x105
i ¢>_<4+’ \+~+—+—+—+ 2
L L L L L L L L L (U
0 2 4 6 8 10 12 14 16 18 200 @

Cores

~1 ps

Figure 126: UTS: Offcore Bandwidth Utilization, very fine-grained ~1 ps

160

Intersim Speed Up -+- BW -x-

20 60»8\
18 - - »n
16| 1%0 g
14 1 onD
o 140 O
o 12+ 8 g
® 10+ 1308
4] ©
G 8 =
1208
6 =% 8 >
x/)(\x <
4+ L= +——X—X—X—X 14 8
/x * *—T T 10 =
2 %= 1 2
- %
0 X | | | | | | | | | 0 m

0 2 4 6 8 10 12 14 16 18 20

Cores

Figure 127: Intersim: Offcore Bandwidth Utilization, very fine-grained ~3 ps

161

REFERENCES

1]

2]

[10]

[11]

[12]

Intel 64 and IA-32 Architectures Optimization Reference Manual. Intel Cor-
poration, 2013.

Intel®Xeon®PhiTMSystem Software Developer’s Guide. Intel Corporation,
2014.

MassiveThreads: A Lightweight Thread Library for High Productivity Lan-
guages, 2014. http://code.google.com/p/massivethreads/.

OpenMP Specifications, 2014.
http://openmp.org/wp/openmp-specifications/.

The Innsbruck C++11 Async Benchmark Suite, 2014.
https://github.com/PeterTh/inncabs.

The Qthread Library, 2014. http://www.cs.sandia.gov/qthreads/.

Stellar-Group/INNCARBS, 2015.
https://github.com/STEIIAR-GROUP /inncabs.

Umut A. Acar, Arthur Chargueraud, and Mike Rainey. Scheduling Parallel
Programs by Work Stealing with Private Deques. In Proceedings of the 18th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, PPoPP 13, pages 219228, New York, NY, USA, 2013. ACM.

L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-
Crummey, and N. R. Tallent. HPCTOOLKIT: Tools for Performance Anal-
ysis of Optimized Parallel Programs Http://Hpctoolkit.Org. Concurr. Com-
put. : Pract. Exper., 22(6):685-701, April 2010.

Arvind and R. Nikhil. Executing a Program on the MIT Tagged-Token
Dataflow Architecture”. In J. W. de Bakker, A. J. Nijman, and P. C. Tre-
leaven, editors, PARLE °87, Parallel Architectures and Languages FEurope,
Volume 2: Parallel Languages. Springer-Verlag, Berlin, DE, 1987. Lecture
Notes in Computer Science 259.

Henry C. Baker and Carl Hewitt. The Incremental Garbage Collection of
Processes. In SIGART Bull., pages 55-59, New York, NY, USA, August
1977. ACM.

Jordan Bell and Brett Stevens. A survey of known results and research areas
for -queens. Discrete Mathematics, 309(1):1 — 31, 20009.

162

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

The OpenMP Architecture Review Board. OpenMP Application Program
Interface V3.0, 2008.

Bradford L. Chamberlain, David Callahan, and Hans P. Zima. Parallel pro-
grammability and the Chapel language. International Journal of High Per-
formance Computing Applications, 21:291-312, 2007.

Robit Chandra, Leonardo Dagum, Dave Kohr, Dror Maydan, Jeff McDonald,
and Ramesh Menon. Parallel programming in OpenMP. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2001.

Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa,
Allan Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar.
X10: An Object-oriented Approach to Non-uniform Cluster Computing. SIG-
PLAN Not., 40:519-538, October 2005.

Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaf-
fer, Sang-Ha Lee, and Kevin Skadron. Rodinia: A Benchmark Suite for
Heterogeneous Computing. In Proceedings of the 2009 IEEE International
Symposium on Workload Characterization (IISWC), IISWC 09, pages 44-54,
Washington, DC, USA, 2009. IEEE Computer Society.

G. Contreras and M. Martonosi. Characterizing and Improving the Perfor-
mance of Intel Threading Building Blocks. In Workload Characterization,
2008. IISWC 2008. IEEE International Symposium on, pages 57—66, Sept
2008.

Cristian Tapus, I-Hsin Chung, and Jeffrey K. Hollingsworth. Active har-
mony: Towards automated performance tuning. In Proceedings of the 2002
ACM/IEEE Conference on Supercomputing, SC ’02, pages 1-11, Los Alami-
tos, CA, USA, 2002. IEEE Computer Society Press.

Leonardo Dagum and Ramesh Menon. OpenMP: An Industry- Standard
API for Shared-Memory Programming. [IEEE Computational Science and
Engineering, 5(1):46-55, 1998.

Jack B. Dennis. First Version of a Data Flow Procedure Language. In
Symposium on Programming, pages 362-376, 1974.

Jack B. Dennis and David Misunas. A Preliminary Architecture for a Basic
Data-Flow Processor. In 25 Years ISCA: Retrospectives and Reprints, pages
125-131, 1998.

163

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

J. Dongarra, K. London, S. Moore, P. Mucci, and D. Terpstra. Using PAPI
for Hardware Performance Monitoring on Linux Systems. In International
Conference on Linuz Clusters: The HPC Revolution, jun 2001.

Alejandro Duran, Julita Corbalan, and Eduard Ayguadé. An Adaptive Cut-
off for Task Parallelism. In Proceedings of the 2008 ACM/IEEE Conference
on Supercomputing, SC 08, pages 36:1-36:11, Piscataway, NJ, USA, 2008.
IEEE Press.

Alejandro Duran, Julita Corbalan, and Eduard Ayguadé. Evaluation of
OpenMP Task Scheduling Strategies. In Proceedings of the 4th International
Conference on OpenMP in a New Era of Parallelism, IWOMP’08, pages 100—
110, Berlin, Heidelberg, 2008. Springer-Verlag.

Marie Durand, Franois Broquedis, Thierry Gautier, and Bruno Raffin. An
Efficient OpenMP Loop Scheduler for Irregular Applications on Large-Scale
NUMA Machines. In OpenMP in the Era of Low Power Devices and Accel-
erators, volume 8122 of Lecture Notes in Computer Science, pages 141-155.
Springer Berlin Heidelberg, 2013.

T.v. Eicken, D.E. Culler, S.C. Goldstein, and K.E. Schauser. Active Messages:
A Mechanism for Integrated Communication and Computation. Computer
Architecture, 1992. Proceedings., The 19th Annual International Symposium
on, pages 256-266, 1992.

Tarek El-Ghazawi and Lauren Smith. UPC: Unified Parallel C. In SC ’06:
Proceedings of the 2006 ACM/IEEE conference on Supercomputing, page 27,
New York, NY, USA, 2006. ACM.

Daniel P. Friedman and David S. Wise. CONS Should Not Evaluate its
Arguments. In ICALP, pages 257-284, 1976.

P. Grubel, H. Kaiser, J. Cook, and A. Serio. The Performance Implication
of Task Size for Applications on the HPX Runtime System (©)2015 IEEE.
Reprinted, with permission, from Grubel, P. and Kaiser, H. and Cook, J.
and Serio, A. In Cluster Computing (CLUSTER), 2015 IEEE International
Conference on, pages 682—-689, Sept 2015.

P. Grubel, H. Kaiser, K. Huck, and J. Cook. Using Intrinsic Performance
Counters to Assess Efficiency in Task-based Parallel Applications. Reprinted

with permissions, from Grubel, P. and Kaiser, H. and Huck, K. and Cook, J.
2016. (accepted) IPDPSWS HPCMASPA, Chicago, May 2016.

164

[32]

[33]

[34]

[35]

[36]

[38]

[39]

[40]

[41]

Robert H. Halstead, Jr. MULTILISP: A Language for Concurrent Symbolic
Computation. ACM Trans. Program. Lang. Syst., 7:501-538, October 1985.

Kevin Huck, Allan Porterfield, Nick Chaimov, Hartmut Kaiser, Allen Malony,
Thomas Sterling, and Rob Fowler. An Autonomic Performance Environment
for Exascale. Supercomputing frontiers and innovations, 2(3), 2015.

Kevin Huck, Sameer Shende, Allen Malony, Hartmut Kaiser, Allan jh, Rob
Fowler, and Ron Brightwell. An early prototype of an autonomic performance
environment for exascale. In Proceedings of the 3rd International Workshop

on Runtime and Operating Systems for Supercomputers, ROSS 13, pages
8:1-8:8, New York, NY, USA, 2013. ACM.

Intel. Intel Thread Building Blocks 3.0, 2010.
http://www.threadingbuildingblocks.org.

Hartmut Kaiser, Maciej Brodowicz, and Thomas Sterling. ParalleX: An Ad-
vanced Parallel Execution Model for Scaling-Impaired Applications. In Par-
allel Processing Workshops, pages 394-401, Los Alamitos, CA, USA, 2009.
IEEE Computer Society.

Hartmut Kaiser, Thomas Heller, Bryce Adelstein-Lelbach, Adrian Serio, and
Dietmar Fey. HPX: A Task Based Programming Model in a Global Address
Space. In Proceedings of the 8th International Conference on Partitioned
Global Address Space Programming Models, PGAS 14, pages 6:1-6:11, New
York, NY, USA, 2014. ACM.

Hartmut Kaiser, Thomas Heller, Agustin Berge, and Bryce Adelstein-
Lelbach. HPX V0.9.11: A General Purpose C++ Runtime Sys-
tem for Parallel and Distributed Applications of Any Scale, 2015.
http://github.com/STEIAR-GROUP /hpx.

L.V. Kalé and S. Krishnan. CHARM++: A Portable Concurrent Object
Oriented System Based on C++. In A. Paepcke, editor, Proceedings of OOP-
SLA’93, pages 91-108. ACM Press, September 1993.

Peter Kogge et al. ExaScale Computing Study: Technology Challenges in
Achieving Exascale Systems. Technical Report TR-2008-13, University of
Notre Dame, Notre Dame, IN, 2008.

Charles E. Leiserson. The Cilk++ Concurrency Platform. In DAC '09:
Proceedings of the 46th Annual Design Automation Conference, pages 522—
527, New York, NY, USA, 2009. ACM.

165

[42]

[45]

[47]

[48]

[49]

[50]

[51]

Chuanpeng Li, Chen Ding, and Kai Shen. Quantifying the cost of context
switch. In Proceedings of the 2007 Workshop on Ezxperimental Computer
Science, ExpCS 07, New York, NY, USA, 2007. ACM.

Anirban Mandal, Rob Fowler, and Allan Porterfield. System-wide introspec-
tion for accurate attribution of performance bottlenecks.

Jun Nakashima, Sho Nakatani, and Kenjiro Taura. Design and Implementa-
tion of a Customizable Work Stealing Scheduler. In Proceedings of the 3rd
International Workshop on Runtime and Operating Systems for Supercom-
puters, ROSS 13, pages 9:1-9:8, New York, NY, USA, 2013. ACM.

Stephen Olivier, Jun Huan, Jinze Liu, Jan Prins, James Dinan, P Sadayap-
pan, and Chau-Wen Tseng. UTS: An Unbalanced Tree Search Benchmark. In
Languages and Compilers for Parallel Computing, pages 235-250. Springer,
2007.

Stephen L. Olivier, Bronis R. de Supinski, Martin Schulz, and Jan F. Prins.
Characterizing and Mitigating Work Time Inflation in Task Parallel Pro-
grams. In Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, SC "12, pages 65:1-65:12, Los
Alamitos, CA, USA, 2012. IEEE Computer Society Press.

Allan Porterfield, Rob Fowler, Anirban Mandal, David O’Brien, Stephen
Olivier, and Michael Spiegel. Adaptive Scheduling Using Performance Intro-
spection, RENCI Technical Report TR-12-02, Renaissance Computing Insti-
tute, 2012.

PPL. PPL - Parallel Programming Laboratory, 2011.
http://charm.cs.uiuc.edu/.

Sameer S. Shende and Allen D. Malony. The Tau Parallel Performance Sys-
tem. Int. J. High Perform. Comput. Appl., 20(2):287-311, May 2006.

S. Subramaniam and D.L. Eager. Affinity Scheduling of Unbalanced Work-
loads. In Supercomputing ’94., Proceedings, pages 214-226, Nov 1994.

Yanhua Sun, Gengbin Zheng, Pritish Jetley, and Laxmikant V. Kale. An
Adaptive Framework for Large-scale State Space Search. In Proceedings of
Workshop on Large-Scale Parallel Processing (LSPP) in IEEE International
Parallel and Distributed Processing Symposium (IPDPS), 2011, Anchorage,
Alaska, May 2011.

166

[52]

[53]

[54]

[55]

[56]

[58]

[59]

[60]

[61]

D. Terpstra, H. Jagode, H. You, and J Dongarra. Collecting Performance
Data with PAPI-C. In Tools for High Performance Computing, pages 157—
173. Springer Verlag, 2009. 3rd Parallel Tools Workshop.

The C++ Standards Committee. ISO International Standard ISO/IEC
14882:2011, Programming Language C++. Technical report, Geneva,
Switzerland: International Organization for Standardization (ISO)., 2011.
http://www.open-std.org/jtcl /sc22/wg21.

The C++ Standards Committee. ISO International Standard ISO/IEC
14882:2014, Programming Language C++. Technical report, Geneva,
Switzerland: International Organization for Standardization (ISO)., 2014.
http://www.open-std.org/jtcl /sc22/wg21.

The STEIIAR Group, Louisiana State University. HPX Users Manual, 2007-
2014. Available under the Boost Software License (a BSD-style open source
license), http://stellar-group.github.io/hpx/docs/html/.

P. Thoman, P. Gschwandtner, and T. Fahringer. On the Quality of Imple-
mentation of the C++11 Thread Support Library. In Parallel, Distributed
and Network-Based Processing (PDP), 2015 23rd Euromicro International
Conference on, pages 94-98, March 2015.

Alexandros Tzannes, George C. Caragea, Uzi Vishkin, and Rajeev Barua.
Lazy Scheduling: A Runtime Adaptive Scheduler for Declarative Parallelism.
ACM Trans. Program. Lang. Syst., 36(3):10:1-10:51, September 2014.

UPC Consortium. UPC Language Specifications, v1.2. Tech
Report LBNL-59208, Lawrence Berkeley National Lab, 2005.
http://www.gwu.edu/ upc/publications/LBNL-59208.pdf.

David W. Wall. Messages as Active Agents. In Proceedings of the 9th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 82, pages 34-39, New York, NY, USA, 1982. ACM.

K.B. Wheeler, R.C. Murphy, and D. Thain. Qthreads: An API for pro-
gramming with millions of lightweight threads. In Parallel and Distributed
Processing, 2008. IPDPS 2008. IEEE International Symposium on, pages
1-8, April 2008.

Yong Yan, Canming Jin, and Xiaodong Zhang. Adaptively Scheduling Par-
allel Loops in Distributed Shared-memory Systems. Parallel and Distributed
Systems, IEEE Transactions on, 8(1):70-81, Jan 1997.

167

	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Runtime Adaptivity in Task Based Parallelism
	Dissertation Organization

	BACKGROUND
	ParalleX Model
	Futures and Dataflow Constructs Eliminate Global Barriers
	Futures
	Dataflow

	HPX Runtime System
	HPX Thread Scheduling
	Parcel Transport Layer
	Local Control Objects
	Active Global Address Space
	Performance Monitoring System

	Task Granularity

	RELATED WORK
	Adaptive Task Grain Size
	Adaptive Schedulers

	DISSERTATION CONTRIBUTION
	PERFORMANCE IMPLICATION OF TASK GRANULARITY
	Task Granularity Experimental Methodology
	Stencil Benchmark
	Performance Metrics
	Experimental Platforms

	Task Granularity Experimental Results
	Idle-rate
	HPX Thread Management Overhead
	Wait Time
	Combined Costs: HPX Thread Management and Wait Time
	Thread Pending Queue Accesses

	Summary of Task Granularity Experiments

	USING INTRINSIC PERFORMANCE COUNTERS TO ASSESS OVERHEADS DURING EXECUTION
	Challenges Using Performance Monitoring Tools
	Performance Counter Experimental Methodology
	Benchmarks
	Configurations
	Performance Counter Metrics

	Performance Counter Experiments
	Performance Counter Experimental Results
	Summary of Performance Counter Experiments

	ADAPTIVE METHODOLOGIES
	Tuning Task Granularity Example
	Tuning Task Granularity Results

	CONCLUSIONS AND FUTURE WORK
	APPENDICES
	TASK GRANULARITY SUPPLEMENTARY RESULTS
	Task Granularity Results Sandy Bridge
	Task Granularity Results Ivy Bridge

	PERFORMANCE ASSESMENT (INNCABS) SUPPLEMENTARY
	HPX vs. C++11 Standard
	Overheads Using HPX Performance Counters
	Offcore Bandwidth Utilization

	REFERENCES

