
0

0.5

1

1.5

2

2.5

0 5 10 15 20

W
a

ll
ti

m
e

(S

e
c

o
n

d
s

)

Worker OS-Threads

Figure 3: Effect of AGAS Caching on Walltime

Ranged Caching

Caching

No Caching

AGAS Research and Development in 2011
Bryce Adelstein-Lelbach1, Vinay C Amatya1,2, Maciej Brodowicz1, Hartmut Kaiser1,2

1Center for Computation and Technology, 2LSU Department of Computer Science

stellar.cct.lsu.edu

STE||AR

Introduction

 The fundamental hypothesis of our research is that traditional programming

and execution models such as Communicating Sequential Processes (CSP), Message

Passing Interface (MPI) and Partitioned Global Address Space (PGAS) are insufficient

for combating load imbalances encountered during the runtime of certain classes of

scientific applications that evolve dynamic and require adaptive management.

Therefore, these applications are unable to utilize existing Petascale and planned

Exascale systems. We call these scaling impaired applications dynamic scientific

applications.

 The Systems Technologies, Emergent Parallelism and Algorithms

Research (STE||AR) group at LSU’s Center for Computation and Technology (CCT)

researches and develops a message-driven parallel execution model called ParalleX.

ParalleX is an novel execution model designed to address the needs of dynamic

scientific applications and Exascale systems. The key elements of ParalleX are:

• A global address space without the assumption of cache coherence, to bridge

the semantic gap caused by local virtual memory boundaries.

• Fine-grained parallelism to enable latency hiding instead latency avoidance.

• Preference for moving work to data rather than moving data to work.

• Constraint-based synchronization to eliminate global barriers.

• Dynamic and heuristic resource management and task-queue based

scheduling, utilizing information obtained via runtime introspection to actively

manage applications.

 STE||AR has developed the first implementation of the ParalleX model.

High Performance ParalleX (HPX) is an open-source, feature complete ParalleX

runtime system written in C++ (see Figure 1, which outlines the architecture of HPX),

targeting conventional clusters and operating systems. HPX provides an extensible

framework for developing parallel applications utilizing the ParalleX model.

 My work in the STE||AR group focuses on the research and development of

the Active Global Address Space (AGAS). AGAS is a set of addressing services

that form a hierarchical namespace that spans all resources in a particular

computation. AGAS aims to ease the difficulty of programming across local virtual

memory boundaries by exposing a global addressing system that can be used to

address both local and remote objects. AGAS is an extension of the PGAS model

used by frameworks such as X10, Chapel, UPC and Co-Array Fortran. Unlike PGAS,

which statically partitions a global address space into logical blocks, AGAS supports

the dynamic addition or subtraction of hardware resources and the migration of

globally named objects.

 This poster outlines major AGAS developments from 2011. In addition to

expanding our understanding of the AGAS model, these developments have realized

substantial usability and performance benefits for HPX applications.

Figure 1: HPX Architecture

Parcel Transport Layer

Thread

Manager Thread

Pool

LCOs

AGAS Address

Translation

Action

Manager

Interconnect

Parcel

Handler

Parcel

Port

Process Manager Migration Manager Performance

Monitor

Performance

Counters
…

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 5 10 15 20

S
p

e
e

d
u

p

(N
o

rm
a

li
z
e

d
 t

o
 1

 W
o

rk
e

r
O

S
-T

h
re

a
d

)

Worker OS-Threads

Figure 4: Effect of AGAS Caching on Speedup

Ranged Caching

Caching

No Caching

Figure 2: Depiction of AGAS Bulk Cache Entries

Network Address

Local Virtual Address (LVA)

Offset

Count

LVA + (Offset * Count)

[A, B)

AGAS Caching

 AGAS’s primary function is to translate global identifiers (GIDs) to global addresses. A global

address is the set of information required to remotely access an object; an object with a global address is

called a global object. GIDs are unique identifiers that reference global objects.

 Global addresses managed by AGAS require the creation of address translation tables. These

tables are stored on a subset of the available localities (in conventional clusters, a compute node is a

locality). The locality or localities hosting AGAS data are called AGAS servers. All localities that are not

AGAS servers are called hosted localities.

 Hosted localities can resolve GIDs by querying AGAS servers. The full resolution of a GID from a

hosted locality requires communication across localities, which implies multiple network turnarounds in

HPX. To reduce network traffic in HPX, we have implemented software caches for AGAS services, and we

are investigating hardware cache solutions via FPGAs.

 Initially, HPX’s AGAS cache stored single address entries. In large computations which

frequently reference millions of global objects throughout their execution, this naïve method of caching

leads to cache thrashing. To alleviate this issue, range-based caching was introduced. Range-based

caching is based on HPX’s pre-existing support for the bulk allocation of GIDs and bulk registration of

global objects. These bulk operations use contiguous blocks of GIDs and contiguous blocks of local virtual

memory. Additionally, each bulk registration operates on a particular type of object (taken as a parameter to

the operation) with a fixed data size. Range-based caching optimizes the caching of global addresses that

fall into these blocks by storing bulk cache entries which describe entire blocks. Figure 2 depicts the

information needed to resolve a block. The interval [a, b) in Figure 2 is local virtual memory spanned by the

block. A similar scheme is used for storing the range of contiguous GIDs associated with block.

 Range-based caching allows a relatively small cache to store very large regions of the global

address space. This greatly reduces cache evictions and cache misses, reducing HPX’s overhead and

improving HPX’s overall scalability. These performance improvements are demonstrated by results from a

standard HPX benchmark, shown in Figure 3 (overhead reduction) and Figure 4 (improvement in

scalability). The benchmark used was the HPX Eager Future Overhead (EFO) test, which is described in

more detail in one of our publications, Adaptive Mesh Refinement for Astrophysics Applications with

ParalleX (arXiV:1110.1131, section V, subsection A). EFO is part of the main HPX codebase, and can be

obtained from our website, stellar.cct.lsu.edu.

Figure 5: AGAS V1 Communication Layers

Parcel Transport

Locality 1

AGAS Transport

ASYNC

SYNC

SYNC AGAS Transport

Parcel Transport

Locality 2

Figure 6: AGAS V2 Communication Layers

Parcel Transport

AGAS Traffic

Parcel Transport

AGAS Traffic

Locality 1

ASYNC

SYNC

Locality 2

AGAS V2

 AGAS is the oldest HPX

subsystem, and was originally

written more than five years ago. As

such, the first AGAS implementation

contained a number of design flaws

which ultimately required a

complete rewrite of the AGAS

subsystem. We call the original

AGAS implementation AGAS V1,

and the new implementation AGAS

V2.

 AGAS V1’s central flaw

was the use of a communication

layer separate from the primary

HPX message protocol, the Parcel

Transport Layer. This out-of-band

AGAS transport only supported

synchronous communication,

preventing the overlapping of

network latencies when making

AGAS queries (see Figure 5).

AGAS V2 uses the Parcel transport

layer, facilitating latency hiding and

one-sided communication when

making AGAS requests (see Figure

6). AGAS V2 has greatly improved

the overall scalability of HPX.

• NSF Grants 1117470, 1048019, 1029161

• DARPA UHPC Funding

• LONI Allocation loni_hpx

• CCT HR, PR, Inventory and Sysadmins

• Steven Brandt

• Thomas Heller

