Introduction

The fundamental hypothesis of our research is that traditional programming
and execution models such as Communicating Sequential Processes (CSP), Message
Passing Interface (MPI) and Partitioned Global Address Space (PGAS) are insufficient

Figure 2: Depiction of AGAS Bulk Cache Entries

for combating load imbalances encountered during the runtime of certain classes of
scientific applications that evolve dynamic and require adaptive management.

Network Address

Therefore, these applications are unable to utilize existing Petascale and planned
Exascale systems. We call these scaling impaired applications dynamic scientific

Local Virtual Address (LVA)

applications.

Offset

The Systems Technologies, Emergent Parallelism and Algorithms

Count

Research (STE||AR) group at LSU’s Center for Computation and Technology (CCT)
researches and develops a message-driven parallel execution model called ParalleX.
ParalleX is an novel execution model designed to address the needs of dynamic -

[A, B)

&) AGAS Research and Development in 2011 e

Bryce Adelstein-Lelbach?, Vinay C Amatyal2, Maciej Brodowicz!, Hartmut Kaiseri:2 j i}

1Center for Computation and Technology, 2LSU Department of Computer Science CENTER FOR COMPUTATION

Y
LVA + (Offset * Count)

scientific applications and Exascale systems. The key elements of ParalleX are:

« A global address space without the assumption of cache coherence, to bridge (
the semantic gap caused by local virtual memory boundaries.
* Fine-grained parallelism to enable latency hiding instead latency avoidance. 2.5

« Preference for moving work to data rather than moving data to work.

« Constraint-based synchronization to eliminate global barriers.

« Dynamic and heuristic resource management and task-queue based
scheduling, utilizing information obtained via runtime introspection to actively 2
manage applications.

STE||AR has developed the first implementation of the ParalleX model.

High Performance ParalleX (HPX) is an open-source, feature complete ParalleX oo
runtime system written in C++ (see Figure 1, which outlines the architecture of HPX), EZ
targeting conventional clusters and operating systems. HPX provides an extensible % §
framework for developing parallel applications utilizing the ParalleX model. =0
1
Figure 1. HPX Architecture
Process Manager Migration Manager Performance 0.5
Monitor na

\/ Performance
P Counters -~ 0

- 8

Figure 3: Effect of AGAS Caching on Walltime

—

——
-

Worker OS-Threads

15 20

Ranged Caching
Caching
No Caching

STE||AR

~

o

LS

& TECHNOLOGY

AGAS Caching

AGAS'’s primary function is to translate global identifiers (GIDs) to global addresses. A global
address is the set of information required to remotely access an object; an object with a global address is
called a global object. GIDs are unique identifiers that reference global objects.

Global addresses managed by AGAS require the creation of address translation tables. These
tables are stored on a subset of the available localities (in conventional clusters, a compute node is a
locality). The locality or localities hosting AGAS data are called AGAS servers. All localities that are not
AGAS servers are called hosted localities.

Hosted localities can resolve GIDs by querying AGAS servers. The full resolution of a GID from a
hosted locality requires communication across localities, which implies multiple network turnarounds in
HPX. To reduce network traffic in HPX, we have implemented software caches for AGAS services, and we
are investigating hardware cache solutions via FPGAs.

Initially, HPX’'s AGAS cache stored single address entries. In large computations which
frequently reference millions of global objects throughout their execution, this naive method of caching
leads to cache thrashing. To alleviate this issue, range-based caching was introduced. Range-based
caching is based on HPX’s pre-existing support for the bulk allocation of GIDs and bulk registration of
global objects. These bulk operations use contiguous blocks of GIDs and contiguous blocks of local virtual
memory. Additionally, each bulk registration operates on a particular type of object (taken as a parameter to
the operation) with a fixed data size. Range-based caching optimizes the caching of global addresses that
fall into these blocks by storing bulk cache entries which describe entire blocks. Figure 2 depicts the
information needed to resolve a block. The interval [a, b) in Figure 2 is local virtual memory spanned by the
block. A similar scheme is used for storing the range of contiguous GIDs associated with block.

Range-based caching allows a relatively small cache to store very large regions of the global
address space. This greatly reduces cache evictions and cache misses, reducing HPX’s overhead and
improving HPX’s overall scalability. These performance improvements are demonstrated by results from a
standard HPX benchmark, shown in Figure 3 (overhead reduction) and Figure 4 (improvement in
scalability). The benchmark used was the HPX Eager Future Overhead (EFO) test, which is described in
more detail in one of our publications, Adaptive Mesh Refinement for Astrophysics Applications with

AGAS Address

Translation
%00
-

LCOs
/ T 45

Parcel Action
Port S Manager | | L ég é 4
TR Thread ,
Manager Thread .
Pool °
Parcel Transport Layer 8 3.5
c
|_
N 3
: O
My work in the STE||AR group focuses on the research and development of =
the Active Global Address Space (AGAS). AGAS is a set of addressing services %g 2.5
that form a hierarchical namespace that spans all resources in a particular § =
computation. AGAS aims to ease the difficulty of programming across local virtual (%‘;' 2
memory boundaries by exposing a global addressing system that can be used to h
address both local and remote objects. AGAS is an extension of the PGAS model N1s5
used by frameworks such as X10, Chapel, UPC and Co-Array Fortran. Unlike PGAS, TEU
which statically partitions a global address space into logical blocks, AGAS supports S
the dynamic addition or subtraction of hardware resources and the migration of £

globally named objects.

o
&

This poster outlines major AGAS developments from 2011. In addition to
expanding our understanding of the AGAS model, these developments have realized

substantial usability and performance benefits for HPX applications.

Figure 4: Effect of AGAS Caching on Speedup

?

/

——

=

=
|

Worker OS-Threads

Ranged Caching
Caching
No Caching

obtained from our website, stellar.cct.Ilsu.edu.

\\Parallex (arXiV:1110.1131, section V, subsection A). EFO is part of the main HPX codebase, and can be /

I ! Figure 5: AGAS V1 Communication Layers)
AGAS V2 : '

Locality 1 Locality 2

AGAS is the oldest HPX
subsystem, and was originally
written more than five years ago. As Parcel Transport
such, the first AGAS implementation
contained a number of design flaws
which ultimately required a
complete rewrite of the AGAS
subsystem. We call the original
AGAS implementation AGAS V1,
and the new implementation AGAS
V2.

Parcel Transport

AGAS Transport AGAS Transport

0 46

Figure 6: AGAS V2 Communication Layers

AGAS V1’s central flaw
was the use of a communication Locality 1 Locality 2
layer separate from the primary
HPX message protocol, the Parcel
Transport Layer. This out-of-band
AGAS transport only supported Parcel Transport
synchronous communication,
preventing the overlapping of
network latencies when making

AGAS queries (see Figure 5). NSF Grants 1117470, 1048019, 1029161
AGAS V2 uses the Parcel transport DARPA UHPC Funding
layer, facilitating latency hiding and LONI Allocation loni th

one-sided communication when ;
making AGAS requests (see Figure CCT HR, PR, Inventory and Sysadmins

6). AGAS V2 has greatly improved Steven Brandt
the overall scalability of HPX. Thomas Heller

AGAS Traffic AGAS Traffic

Parcel Transport

i

