Introduction

Moore's Law suggests that within the next decade,
supercomputing systems will achieve performance Iin the
range of exaFLOPS, nearly doubling the combined
computational power of today's top 500 high performance
systems'. Yet, despite progress in the capabilities of
hardware, some classes of applications are limited Iin their
scalability because of Inefficiency in conventional parallel
programming methods. Such scaling-impaired applications,
like those used In scientific simulations that have non-
uniform resolution, are unable to effectively use more than a
few hundred processors®.

The ParalleX model Is designed to circumvent such
problems by avoiding synchronized communication and
Implementing workload-balancing among processors at
runtime.  Eventually, the associated overhead will be
reduced by new hardware solutions tailored to ParalleX.

Performance Counters

Performance counters allow for the benchmarking of HPX,
the C++-based runtime system by which ParalleX s
Implemented. They function as an internal diagnostic tool In
the development of HPX source code, because they expose
the quantitative behavior of the system during or after
execution of user applications.

Performance counters are written into HPX runtime source
code, and any time-dependent data collected during
execution of a user application iIs done using an HPX
application titled “Heartbeat”.

References

‘Number of Processors share for 06/2011
TOP500 Supercomputing Site
http://www.top500.org/stats/list/37/procclass

°H. Kaiser, et al., ParalleX: An Advanced Parallel Execution
Model for Scaling-Impaired Applications

ICPPW '09 Proceedings of the 2009 International
Conference on Parallel Processing Workshops, 394-401

Results Implementation

Figure 1 exhibits the behavior of the thread The principles of design around which HPX Is bullt are:

management  subsystem as  measured by  The Active Global Address Space (AGAS)

performance-counting code In the main thread _ . L
Dynamic workload-balancing among localities in a cluster

manager loop. When a PX-Thread Is not being .
executed, the thread manager performs maintenance necessitates a common address space across the system.

such as creating and scheduling new threads into a * Local Control Objects

queue. To organize flow, specialized synchronization primitives

The data in Figure 1 was collected while the system such as LCOs are required. For example, a future Is an
was work-starved, because the user application LCO that postpones a calculation untl the value Is
required too little computation for the number of needed.

localities In the cluster. The data thus suggests that  Parcel Transport and Parcel Management

InCI’eI?Slrég t?etr?umbert of prohcessct:)rzs only mc;ret_asesi Messages are exchanged between localities by parcels,
overhead of the system when the computationa and carry the work to the data.

problem Is too small. The source of the oscillatory

behavior and “flooring” effect is currently unknown * PX-Threads and Thread Management

and In need of further investigation. User-level threads called PX-Threads are scheduled into
work queues managed by operating system (OS) threads..

Idle Ratio of HPX Threading Subsystem Future Work

(depending on number of OS Threads on AGAS Server)

There are dozens of possibilities for other useful
performance counters and their statistical analysis in HPX,
Including but not limited to:

» Work-gueue lengths in the Active Global Address Base

* Average time elapsed between the sending and receiving of
2408 Threads a parcel between localities
——32 0S Threads

1005 Thresds » Walting time for PX thread-queues In the thread manager

* Variance In thread-queue lengths when aggressive work-
stealing is enabled versus disabled

Acknowledgements

This material Is based upon work supported by the National
Science Foundation under Grant OCI-1005165.

Further Information

On the World Wide Web: o
http://px.cct.Isu.edu "_m Ls u CENTER FOR COMPUTATION
& TECHNOLOGY
Contact the ParalleX group:
gopx@cct.Isu.edu

- .




	Slide 1

