
  

Performance Monitoring in Distributed ParalleX Applications
Katelyn Kufahl1, Bryce Lelbach2, Hartmut Kaiser2,3

1Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wis.
2Center for Computation & Technology, Louisiana State University, Baton Rouge, La.

3Department of Computer Science, Louisiana State University, Baton Rouge, La.

References
1Number of Processors share for 06/2011
TOP500 Supercomputing Site
http://www.top500.org/stats/list/37/procclass

2H. Kaiser, et al., ParalleX: An Advanced Parallel Execution 
Model for Scaling-Impaired Applications
ICPPW '09 Proceedings of the 2009 International 
Conference on Parallel Processing Workshops, 394-401

Performance Counters
Performance counters allow for the benchmarking of HPX, 
the C++-based runtime system by which ParalleX is 
implemented.  They function as an internal diagnostic tool in 
the development of HPX source code, because they expose 
the quantitative behavior of the system during or after 
execution of user applications.

Performance counters are written into HPX runtime source 
code, and any time-dependent data collected during 
execution of a user application is done using an HPX 
application titled “Heartbeat”. 

Acknowledgements
This material is based upon work supported by the National 

Science Foundation under Grant OCI-1005165.

Results
Figure 1 exhibits the behavior of the thread 
management subsystem as measured by 
performance-counting code in the main thread 
manager loop.  When a PX-Thread is not being 
executed, the thread manager performs maintenance 
such as creating and scheduling new threads into a 
queue.

The data in Figure 1 was collected while the system 
was work-starved, because the user application 
required too little computation for the number of 
localities in the cluster. The data thus suggests that 
increasing the number of processors only increases 
overhead of the system when the computational 
problem is too small.  The source of the oscillatory 
behavior and “flooring” effect is currently unknown 
and in need of further investigation.

Future Work
There are dozens of possibilities for other useful 
performance counters and their statistical analysis in HPX, 
including but not limited to:

● Work-queue lengths in the Active Global Address Base
● Average time elapsed between the sending and receiving of 

a parcel between localities
● Waiting time for PX thread-queues in the thread manager
● Variance in thread-queue lengths when aggressive work-

stealing is enabled versus disabled

Further Information
On the World Wide Web:

http://px.cct.lsu.edu

Contact the ParalleX group:

gopx@cct.lsu.edu

Introduction
  Moore's Law suggests that within the next decade, 
supercomputing systems will achieve performance in the 
range of exaFLOPS, nearly doubling the combined 
computational power of today's top 500 high performance 
systems1. Yet, despite progress in the capabilities of 
hardware, some classes of  applications are limited in their 
scalability because of inefficiency in conventional parallel 
programming methods.  Such scaling-impaired applications, 
like those used in scientific simulations that have non-
uniform resolution, are unable to effectively use more than a 
few hundred processors2.

 The ParalleX model is designed to circumvent such 
problems by avoiding synchronized communication and 
implementing workload-balancing among processors at 
runtime.  Eventually, the associated overhead will be 
reduced by new hardware solutions tailored to ParalleX. 

Implementation
The principles of design around which HPX is built are:
● The Active Global Address Space (AGAS)

Dynamic workload-balancing among localities in a cluster 
necessitates a common address space across the system.

● Local Control Objects

To organize flow, specialized synchronization primitives 
such as LCOs are required.  For example, a future  is an 
LCO that postpones a calculation until the value is 
needed.

● Parcel Transport and Parcel Management

Messages are exchanged between localities by parcels, 
and carry the work to the data.

● PX-Threads and Thread Management

User-level threads called PX-Threads are scheduled into 
work queues managed by operating system (OS) threads..

Figure 1: Behavior of Thread Management Subsystem in a Work-Starved Environment


	Slide 1

