Abstract

The major challenge : the difficulty of improving
application scalability with conventional techniques.
One of the solutions : prefetching data before its
actual access is executed.

The generic prefetching scheme proposed in HPX,
which results in:

v improving the parallel performance by leveraging
the abstraction capabilities,

vutilizing asynchronous task-based execution flow,
v'exploiting execution policies for the fine-grained
control.

Results

auto ctx = hpx::parallel::make_prefetcher_context (
loop_range.begin(), loop_range.end(),
prefetch_distance_factor,
container_1, container_2, ..., container_n);
hpx::parallel::for_each(policy,
ctx.begin(), ctx.end(),
[&) (std::size_t i)
{
container_1[i]
container_2([i] Sed

]

container_n[i] = ...;
hi

Figure 2: The prefetching method used in for_each|

N-Body
(100 million data points)
——With Prefetching - 2 NUMA
== =With Prefetching - | NUMA

=== Without Prefetching - 2 NUMA
‘Without Prefeiching - 1 NUMA

12000

10000

RO00

G000

Bandwidth [MB/s]

4000

2000

0 1 2 4 5 6 7 8 9

Number of Cores per NUMA Domain

Figure 3: The data transfer rate of for_each with

the standard random access iterator versus

HPX Data Prefetching Iterator

Zahra Khatami, Hartmut Kaiser, and J. Ramanujam
Center for Computation and Technology, Louisiana State University, The STE||AR Group, http://stellar-group.org

Locality 1 Figure 1: The principle of the operation of future in
HPX. Thread 1 is suspended only if the results from
locality 2 are not readily available. Thread 1 access the H P X
folare cc future value by performing a future:get(). If the results
e are available Thread 1 continues to complete execution. T+ i
i Data of the next chunk is prefetched for each thread as >para||e| c runtime
oy leamn2 well. system . .
! >enables fine-grained task
H o Policy Descripti Impl d by parallelism
i exedite thread 2 seq i ; P TS, HPX . .
| par Parallelism TS, HPX >fully generic higher-level
_______________ par_vec a Parallelism TS API
vectorized execution f
seq(task) sequential and HPX >eXten_S|_b|e fran:]eVV.Ork for
reacfivate thread 1 asynchronous execution parallelizing application
par (task) parallel and HPX
asynchronous execution
Table 1: The execution policies defined by the
Parallelism TS and implemented in HPX.

Introduction
Data prefetching methods:
*Hardware prefetching method: predicting the future cache misses by using the past access pattern with
considering the data stream.
*Software prefetching method: prefetching data before the execution of its actual access by using the
prefetch directives into the code.
*Thread based prefetching method: executing code in the prefetcher thread context and bringing the
data of the next cache line into the shared cache before the main thread accesses it:
v" Precomputing the load addresses accurately.
v" Following more complex pattern compared to the other methods.
However, scaling can be degrade with
Thread based prefetching: Cache misses, Global barriers
and Resource competition.
The cache prefetcher used in HPX aids prefetching that
v'reduces the memory accesses latency, and
v'inhibits the global barrier.

m)r_each helps creating sufficient parallelism by determining the number of the iterationsm
run on each HPX thread.
v'HPX threads makes the invocation of the loop asynchronous, while the data of all containers
within the loop of the next step is prefetched in each iteration.
v'HPX is able to prefetch data in sequential or in parallel with applying an execution policy.
v'HPX prefetcher works with any data type of the containers and even if each container has

foerent data type. J

prefetching iterator

N-Body
(100 million data points)
prefetcher distance = 5
8000

® prefetcher distance = 20 ® prefetcher distance = 100

7000

6000

I
G

2’ E o
gdmm N N
=
2 3000]
g N
mznun Y |
P
1000 = § §
. B B
1 2 3 4 5 6 7 8

Number of Cores per NUMA Domain

Figure 4: 1 NUMA Domain-The data transfer rate

N-Body
(100 million data points)
prefetcher distance = 5
12000

= prefetcher distance = 20

10000

8000

6000

Bandwidth [MB/s]

4000

2000

prefetcher distance = 100
0 % |]

i | i é
1 2 3 4 5 o 7 8

Number of Cores per NUMA Domain

Prefetching Iterator Implemented in HPX

«for_each is one of the HPX parallel algorithms used to evaluate the proposed prefetching method.
*Data of the next iteration step is prefetched in the cache memory with the prefetching iterator called in
each iteration within the for_each .

*HPX combines prefetching method with the asynchronous task execution by providing a new future
instance representing the result of the function execution (Figure 1).

*The program execution is divided into several chunks within for_each (Figure 2) and its iterator is
developed to prefetch the data of the next chunk size in either sequential or in parallel.

*The prefetching iterator is initialized in make_prefetcher_context and it executes with ctx.begin().
ctx is the struct that references to all container in the

*The distance between each two prefetching operations is computed based on the value of
prefetch_distance_factor, which is the factor of the length of the cache line.

Experimental Results

In an N-Body problem, there are N particles moving under the influence of the gravitational attraction.
Prefetching iterator increases bandwidth vs. standard random access iterator by 30% on average using
two NUMA domains with 8 threads each (figure 3).

The results of the performance of the prefetching iterator with different prefetch_distance_factor are
shown in figure 4 and 5 for 1 and 2 NUMA domains respectively:

For the large distance, data prefetching cannot improve the parallel performance.

*Very small prefetcher distances make more data to be prefetched,
which become more expensive and dominate the gains from prefetching.

Figure 5: 2 NUMA Domain-The data transfer rate

We would like to thank Antoine Tran Tan and Adrian Serio from Louisiana State
University for the invaluable and helpful suggestions to improve the quality of the

research. This works was supported by the NSF award 1447831.

