
A Load-Balanced Parallel and Distributed Sorting
Algorithm Implemented with PGX.D

∗Zahra Khatami1,2, Sungpack Hong1, Jinsoo Lee1, Siegfried Depner1,
Hassan Chafi1, J. Ramanujam2, and Hartmut Kaiser2

1Oracle Labs, USA
2Center for Computation and Technology, Louisiana State University

Abstract—Sorting has been one of the most challenging stud-
ied problems in different scientific researches. Although many
techniques and algorithms have been proposed on the theory of
having efficient parallel sorting implementation, however achiev-
ing desired performance on different types of the architectures
with large number of processors is still a challenging issue.
Maximizing parallelism level in applications can be achieved
by minimizing overheads due to load imbalance and waiting
time due to memory latencies. In this paper, we present a
distributed sorting algorithm implemented in PGX.D, a fast
distributed graph processing system, which outperforms the
Spark’s distributed sorting implementation by around 2x-3x
by hiding communication latencies and minimizing unnecessary
overheads. Furthermore, it shows that the proposed PGX.D
sorting method handles dataset containing many duplicated
data entries efficiently and always results in keeping balanced
workloads for different input data distribution types.

Index Terms—Distributed sorting method, PGX.D distributed
graph framework, Graph.

I. INTRODUCTION

Having efficient and scalable distributed sorting method has
been one of the most studied problems in computer science,
since it is of importance for many algorithms and also part
of widely adopted benchmarks for parallel supercomputers
[1], [2]. There have been many different parallel sorting
techniques proposed, however, improving the scalability of
a distributed sorting algorithm with conventional techniques
is still one of the major challenges. Overall, the scalability
of the parallel distributed sorting technique mostly depends
on how well overheads, synchronizations and latencies are
scheduled in both algorithm and the framework that the
algorithm is implemented in. It is usually hard to achieve
the optimum performance with existing frameworks since
they often impose large overheads for scheduling, introduce
unnecessary synchronization steps and are not able to handle
large amount of memory consumption [3]–[6]. In addition to
these problems the system needs to partition the data entries
between the machines equally, otherwise, it results in having
workload imbalance, which in fact would prevent the system
from scaling when dealing with large data. The communication
overhead is another big challenge in these systems that needs
to be taken in account when designing an efficient sorting
technique.

*This work was done during the author’s internship at Oracle Labs.

In this research, we propose a new distributed sorting
method, which overcomes these challenges by keeping bal-
anced load and minimizes the overheads by fetching data
efficiently in the partitioning and merging steps. The new
handler is proposed that results in having a balanced merging
while parallelizing merging steps, which improves the paral-
lel performance. Moreover, the new investigator is proposed
that results in keeping a balanced workloads among the
distributed processors while dealing with dataset containing
many duplicated data entries. This method is implemented in
PGX.D, which is a scalable framework for various distributed
implementations. PGX.D [7], [8] is a fast, parallel and dis-
tributed graph analytic framework that is able to process large
graphs in distributed environments while keeping workloads
well balanced among distributed machines. It improves the
performance of the proposed sorting technique by exposing
programming model that intrinsically reduces poor utilization
of the resources by maintaining balanced workloads, min-
imizes latencies by managing parallel tasks efficiently and
provides asynchronous task execution for sending/receiving
data to/from the remote processors. The results presented in [7]
show that PGX.D has low overhead and a bandwidth efficient
communication framework, which easily supports remote data
pulling patterns and is about 3x-90x faster than the other dis-
tributed graph systems such as GraphLab. Moreover, PGX.D
decreases communication overheads by delaying unnecessary
computations until the end of the current step, which allows
the other processes to be continued without waiting for the
completion of all the previous computations. Also it allows
having asynchronous local and remote requests that avoids
unnecessary synchronization barriers that helps in increasing
scalability of the distributed sorting method [9].

In this paper, we show the performance improvements using
distributed sorting method implemented in PGX.D to hide
the communication latencies and to achieve better scalability.
The performance of the proposed sorting framework shows
around 2x-3x faster performance compared to the Spark’s
distributed sorting implementation. Spark is a fast engine for
processing large-scale data and it is widely used for processing
large amount of data in parallel and distributed. Moreover, the
results of the proposed technique confirm maintaining load
balance regardless of the data distribution type.

The remainder of this paper is structured as follows: in
section II, the related researches and the methods for dis-

tributed sorting are briefly explained; background informa-
tion about PGX.D is provided in section III; the proposed
PGX.D distributed sorting method and its implementation are
explained in more details in section IV, and the experimental
results and the comparison between the proposed distributed
sorting method with Spark’s distributed sorting technique
implemented for different data distributions are presented in
section V. Conclusions can be found in section VI.

II. RELATED WORKS

In this section, we briefly discuss about the implementation
of some of the existing sorting techniques and their challenges.
Different parallel algorithms have been studied for many years
to achieve an efficient distributed sorting method implemented
on distributed machines. Keeping balanced load is usually
difficult while implementing most of these algorithms when
facing dataset containing many duplicated data entries, which
usually results in having some machines holding larger amount
of data than the others. Most of these techniques consist of
two main steps: (a) partitioning, and (b) merging. The big
challenge in the partitioning step is to maintain the load
balancing on different distributed machines in addition to
distribute data among them in a sorting order [10], [11]. Also,
the big challenge in the merging step is decreasing latencies
and keeping the desired scalability during all merging steps
till the end. The performance of the merging step is usually
scalable when having a small number of machines. However,
while utilizing larger number of machines, the synchroniza-
tions reduce its parallel scalability. Moreover, most of these
existing techniques require a significant communication band-
width, which increases overheads and degrades the parallel
performance [12].

Batcher’s bitonic sorting [13] is basically a parallel merge-
sort and was considered as one of the most practical sorting
algorithms for many years. In this algorithm, data on each
local is sorted, then for each processors pair, the data sequence
is merged into ascending order while on the other pair, the
data sequence is merged into descending order. This algorithm
is popular because of its simple communication pattern [14],
[15]. However, it usually suffers from high communication
overhead as its merging step highly depends on the data
characteristics and it often needs to exchange the entire data
assigned to each processor [16].

Radix sort [17] is also used for implementing parallel and
distributed sorting algorithms in many different applications
due to the simplicity of its implementation [18]. This algorithm
is not based on data comparison for sorting purposes. It is
implemented by considering bit representation of the data.
The algorithm starts by examining the least significant bit
in each data entry. Then, in each time step, data entries are
being sorted by considering their r-bit values. One of the big
challenges in implementing this sorting technique is having
unequal number of input keys [2], [19]. It usually suffers in
irregularity in communication and computation. Since it also
highly depends on the data characteristics, the computation
on each processor and the communication between different

processors are not known in the very first steps, which can
negatively affect its parallel performance.

In order to increase the parallel performance of the sorting
algorithm, its structure and design should be independent of
the data characteristics to decrease communication overheads.
Therefore, sample sort is often chosen for implementing
distributed sorting. It is a fast sorting algorithm that keeps the
load balancing better than the quick sort and doesn’t have the
mentioned communication problem faced in Batcher’s bitonic
sort and radix sort [20], [21]. The runtime in this algorithm
is almost independent of the input data distribution types. It
works by choosing some samples regularly from the locally
sorted data of each processor and selecting final splitters from
these samples to split data into different number of processors
for the sorting purpose. However, in addition to having scal-
ability challenge in its merging step, its performance highly
depends on choosing sufficient amount of samples from each
processor and picking the efficient final splitters from them. If
this step is not efficiently designed, the algorithm may result
in having load imbalance when facing dataset containing many
duplicated data entries.

Nowadays, Spark is widely used for processing large data
as it provides the scalable framework for analyzing large
input data on distributed machines. Spark provides a resilient
distributed dataset (RDD), which is a collection of tasks
that are partitioned across distributed machines and they can
be processed in parallel. The distributed sorting algorithm
implemented in Spark uses three main stages: sample, map
and reduce [22], [23]. In the sample stage, samples from the
data is chosen for having balanced data partitioned among the
distributed machines. In the map stage, data is partitioned on
distributed machines and is locally sorted and being merged
in the reduce stage. TimSort [24] is chosen as a sorting
technique in Spark and the experimental results show that
it performs better when the data is partially sorted. This
algorithm starts by finding subsequences of the elements in
descending or ascending order and performs balanced merges
on them in each merging step. For this purpose, it proceeds
on the chosen minimum run sizes that are bulked up by using
insertion sort and partially merge them in place, which helps
its implementation to fetch data efficiently.

In this paper, the sample sorting technique is chosen as
the base method for implementing a distributed sorting tech-
nique in PGX.D, which solves the mentioned challenges by
implementing improvement in choosing splitters and managing
communications between different processors efficiently. In
addition, the performance optimizations considered in TimSort
are also applied in the proposed sorting technique. A sorting
library is generated in PGX.D that performs efficiently by:

✓ maintaining load balance on different number of
processors, even when having a dataset containing many
duplicated data entries,
✓ reducing overheads in the merging step by keeping
balanced merging and fetching data efficiently,
✓ reading/writing data from/to the remote processors
asynchronously, which avoids the unnecessary synchro-

Figure 1: Three important mangers in PGX.D

nizations in each step, and
✓ keeping bandwidth-efficient communication imple-
mented in PGX.D.

Our sorting technique is modeled by considering problem
size, number of processors and type of the data distribution for
improving load balancing. Section III discusses how PGX.D
framework helps distributed sorting to reduce the synchro-
nizations and the latencies during the sorting implementation.
The programming model of the distributed sorting method is
explained in more details in section IV.

III. BACKGROUND INFORMATION

In this section the overview of PGX.D is presented to
show its capability in providing scalable framework for imple-
menting efficient distributed sorting. PGX.D is a fast, parallel
and distributed graph analytic framework and it is able to
process large graphs in distributed environments while keeping
workloads well balanced among multiple distributed machines
[7], [8]. It uses a fast context switching mechanism that
results in having low overhead in task scheduling as well
as a bandwidth efficient communication process. It guaran-
tees low communication overhead by applying ghost nodes
selection that results in decreasing number of the crossing
edges as well as decreasing communication between different
processors. Also, a new edge chunking strategy is implemented
that improves task scheduling and results in having balanced
workload between the processors in each machine. Moreover,
it relaxes the unnecessary synchronizations while applying
local/remote write requests. Figure 1 shows the architecture
of PGX.D. The layers of the system are explained as follows:
● Task Manager: A list of tasks is created within a task

manager at the beginning of each parallel step. The task
manager initializes a set of worker threads and each of these
threads grab a task from the list and executes it. If the task
is requested from the remote machine, the execution of the
process is continued until the data becomes available, which
relaxes the synchronization barriers. Also, it determines the
schedules for sending messages to the remote machines by
considering size of the messages stored in the request buffer
and sending them whenever that buffer reaches to its maximum
size or the worker thread has completed all its scheduled tasks.

● Data Manger: Graph data across different machines is
maintained within the data manager and they are stored in
the Compressed Sparse Row (CSR) data structure on each
machine. Whenever a message has to be sent to the re-
mote machine, the data manager buffers it up in the request
buffers for the task manager while keeping corresponding data
structure. Also, the partitioning step, choosing ghost nodes
and edge chunking on the graph data is applied within this
manager during the graph loading. These implementations
reduce communication overheads significantly and result in
improving load balancing [7]. The location of each node is
identified with this manager as well, which allows to handle
a data transformation and to determine the destined machine
for the messages within the request buffers.
● Communication Manager: The response messages to

the remote machines are managed with the communication
manager. The main goal of the communication manager is
to provide communication primitives which allow for low
overhead communication. It provides a fast and a low over-
head mechanism while processing incoming request messages
and applies the atomic instructions while processing writing
requests. Also, it is able to handle large amount of small sized
communication between different machines efficiently.

PGX.D takes care of the synchronizations between each step
and provides both write and read requests within the same
parallel region. As a result, PGX.D framework is more relaxed
compared to the bulk-synchronization model used in the
MapReduce models. The previous analysis and experiments
show a good performance on the certain types of the graph
algorithms. For more details about PGX.D, we recommend
the reader to refer to [7]. In this research, we choose PGX.D
to implement the distributed sorting techniques, which helps
the algorithm to perform efficiently and scales desirably.
Moreover, by adding this distributed sorting method in PGX.D,
user can also easily sort data of their multiple graphs with
different types and implement more analysis on them, such as
retrieving top values from their graph data or implementing
binary search on the sorted data. The programming model of
the PGX.D distributed sorting technique is explained in more
details in the next section.

IV. PROGRAMMING MODEL

The PGX.D distributed sorting technique is designed based
on sample sort algorithm, which is one of the most popu-
lar sorting algorithms and is usually faster than than other
techniques by better maintaining load balance and minimizing
communication overheads [20], [21]. As discussed in section
II, this algorithm works by choosing samples from the locally
sorted data of each processor and selecting final splitters from
these samples to split data into different number of processors
for the sorting purpose. However, one of the big challenges that
can easily impact the performance of this sorting algorithm is
having non-efficient splitters. In other words, if the splitters
do not spilt data into the equal pieces, applying this algorithm
may result in having larger amount of data on some processors
compared to the others, which can degrade the performance

significantly. Therefore this sampling step can be considered
as the critical step for this algorithm that has received a
wide attention for the development to obtain the expected
workload on distributed processors. The performance of this
step depends on the number of samples received on Master
from the other processors, which arises two different scenarios
that should be considered:

A) If a large amount of samples is sent to Master from
each processor, Master will get a good idea about a data
distribution on each processor, which helps it to choose the
efficient splitters from the received samples that results in
having better load balance. However, sending large amounts of
data from each processor to Master, increases communication
overheads as well as increasing the time needed for merging
received data on Master.

B) If a small amount of samples is chosen from each
processor, the communication overheads will be decreased.
However, Master may be unable to choose splitters which
cause an equal distribution which results in having load
imbalance issues.

PGX.D distributed sorting method manages this issue by
designing scalable framework that efficiently uses the band-
width efficient as well as providing large enough number of
samples for keeping balanced workloads. In addition, handling
balanced merging and providing asynchronous task executions
in sending/receiving data to/from the other processors are
another features that are provided with the proposed sorting
technique in PGX.D to achieve a desired parallelism level.
These features are considered while implementing proposed
sorting technique that mainly consists of six steps, which will
be briefly outlined here and explained in more detail later.

1) Each processor sorts its data locally by using parallel
quick sort.

2) The regular samples are chosen from the sorted data and
they are sent to Master.

3) Master selects the final splitters from the received sam-
ples and it broadcasts them to all processors.

4) Each processor determines the range of the data to be
sent to the remote processor by implementing binary
search of these splitters on their local sorted data.

5) After setting up the senders and the receivers, each pro-
cessor starts sending and receiving data simultaneously.

6) After receiving data from different remote processors,
all data is merged together while keeping information
regards to their previous processors and locations.

A. Handling Balanced Merging

In step (1), data is sorted locally on each processor by
implementing parallel quick sort in such a way that data
is divided equally among a number of the worker threads
on each processor. Then, each worker thread sorts its data
locally. Sorted data from each thread is merged together
by keeping balanced merging. For this purpose, the new
handler is proposed in this section that manages the merging
implementation to keep the balanced merging in each step,
which avoids the cache misses. For example in figure 2 with

Figure 2: Keeping balanced merging in PGX.D distributed sorting
method.

8 threads, in the first step, the data in thread 1 is merged with
the data in thread 0, the data in thread 3 is merged with the
data in thread 2, the data in thread 5 is merged with the data
in thread 4, and the data in thread 7 is merged with the data
in thread 6. So, at the end of the first step, data on the threads
with odd ID are merged with data on the threads with even
ID and they have almost the equal sizes. In the next step, the
data in thread 2 is merged with the data in thread 0 and the
data in thread 6 is merged with the data in thread 4. In the
last step, the data in thread 4 is merged with the data in thread
0. Also, this handler implements each of these merging steps
in parallel which improves the parallel performance of this
sorting technique.

B. Providing Large Enough Number of samples

PGX.D distributed sorting method is designed in such a
away that it keeps the communication overheads as less as
possible while letting the largest possible amount of samples
to be sent from each processor destined to the Master in step
(2) to achieve a better load balance. The amount of data is
chosen by considering number of processors and the size of
a read buffer defined in the PGX.D data manager. The size
of this buffer is assigned 256 Kbyte in PGX.D based on
measuring different performances and choosing the best one
[7]. So if there are p number of processors in the system,
each processor has to send only 256/p Kbyte data to Master,
which results in sending only one buffer data entries from each
processor to Master and gathering all received data entries
in one receiving buffer on Master. The experimental results
of this algorithm on different types of data confirm that the
overheads are significantly reduced and the amount of data
provided to the Master is large enough to choose the efficient
splitters.

After receiving p − 1 splitters from step (3), in step (4),
the ranges of data for sending to the other processors are
determined by implementing binary search on data for each
splitter. Then data from the splitter[j − 1] to the splitter[j]
is sent to the processor j − 1, as it is illustrated in figure 3a.

(a) Non-duplicated data

(b) Duplicated data

(c) Dividing range between duplicated splitters

Figure 3: Determining range of data to be sent to the remote
processor by implementing binary search for the received splitters
on locally sorted data.

However, if there exists dataset containing many duplicated
data entries on the processors, this method results in having
load imbalance by sending large data range to one processor
and not sending any data to the others as shown in figure
3b. To solve this problem, we propose the investigator to be
implemented during searching for each splitter on local data
entries, which makes a binary search to be executed for only
non-duplicated splitters, then it divides the determined range
between the duplicated splitters equally. For example in figure
3c, the range is divided equally between 4 duplicated splitters
with the same a value.

C. Asynchronous Task Execution

After determining ranges for each destination in step (4),
these information are broadcasted to all processors. So each
processor knows how much data it will receive from the
other processors. This strategy enables the sorting technique
to receive data from multiple processors at the same time by
applying offsets for each received data entry from the neighbor
lists, which allows writing in the local data list simultaneously.
Also each processor is able to send data while receiving data,
which avoids the unnecessary synchronizations between these
steps as well. In the last step, the new arriving data is merged
together in parallel by applying same method described in
figure 2.

At the end, data is sorted in such a way that smaller
data entries is stored and gathered in the processor with the
smaller ID and the bigger data is stored and gathered in

Category Item Detail
SW OS Linux 2.6.32

compiler gcc 4.8.2
CPU Type Intel Xeon E5-2660

Frequency 2.40 GHz
Parallelism 2 socket with 8 cores

DRAM Type DDR3-1600
Size 256 GB

Size # Machines 32
Network Card Mellanox Connect-IB

Switch Mellanox SX6512
Raw BW 56Gb/s (per port)

Table I: Experimental Environment

(a) Uniform distribution (b) Normal distribution

(c) Right-skewed distribution (d) Exponential distribution

Figure 4: Different types of data distribution

the processor with the bigger ID. This sorting library also
provides an API for the users to implement a binary search
on data as well as finding information regards to the previous
processors and the previous indexes of the new received data
entry of each processor. Also it is able to sort multiple different
data simultaneously and keeping the balanced load while
having a dataset containing many duplicated data entries. The
experimental results of PGX.D’s distributed sorting technique
is studied in more details in section V.

V. EXPERIMENTAL RESULTS

The proposed PGX.D distributed sorting mechanism has
been implemented for different types of data on our cluster,
which is summarized in Table I. Its performance is com-
pared with the Spark’s distributed sorting implementation with
version 1.6.1 that is publicly available. For our evaluation,
first we study the proposed sorting technique performance
on four different input datasets shown in figure 4 with the
uniform, normal, right-skewed, and exponential distribution
type. The implementation of our proposed sorting technique
on data with the right-skewed and the exponential distribution
type are specially intended to confirm its ability to maintain
load balancing in a case of having a dataset containing
many duplicated data entries. All of these input datasets have
one billion entries and the sorting is performed on 8 up to
52 processors with using 32 threads per each for in-node
parallelization purposes. Distributed sorting method in Spark

Figure 5: PGX.D distributed sorting method total execution times
for data from figure 4.

Figure 6: Comparison results of strong scaling of the distributed
sorting method implemented in PGX.D and Spark for data from figure
4.

is executed by implementing sortByKey() in the MapReduce
operation.

Figure 5 shows the execution time of the distributed sorting
methods on data from figure 4. It illustrates that PGX.D
sorts data efficiently regardless of the input data distribution
type. Since the communication latencies between different
processors increase with an increasing number of processors,
it is usually hard to achieve a good scaling behavior. However,
figure 6 shows a better speedup of PGX.D distributed sorting
technique compared to the sorting technique in Spark.

Figure 7 shows the execution time of each steps for the
experiments on the normal and right skewed distribution types
studied in figure 5. It can be seen that sending/receiving
data costs less time than the other steps, which validates
the efficient-bandwidth communication and the asynchronous
execution provided in PGX.D that remove the unnecessary
barriers and allow to have a low communication overhead to
achieve a better parallelization performance.

Table II shows the size of data on each processor after
PGX.D distributed sorting implementation having 10 proces-
sors. It illustrates data is distributed equally on the processors,
in the case of having a dataset containing many duplicated data
entries in both right-skewed and exponential distribution types.

Figure 7: PGX.D distributed sorting method execution times of each
different steps for the normal and right skewed distribution types from
figure 4.

Also, these information generally shows how the proposed
investigator works during a binary search implementation on
the duplicated splitters. For example, the results according to
the sizes of data in the right-skewed distribution show having
the exact equal sized 9.998% for each data on the processors
2 − 9.

We also evaluate the performance of our sorting technique
on the Twitter graph dataset, which has 41.6 million vertices
and 1.5 million edges in a 25GB dataset. Figure 8 shows
the execution time compared to Spark’s distributed sorting
implementation, which illustrates that it is faster than Spark
by around 2.6x on 52 processors. The ranges of data on
each processor after sorting with 8, 12 and 16 processors
are included in Table III, which confirms the accuracy of the
proposed technique that data with the smaller value are located
on the processor with the smaller ID and data with the bigger
value are located on the processor with the bigger ID.

In figure 9, we study about the impact of sample sizes on
the communication overheads and the total execution time.
Seven different sample sizes are used: 0.004X , 0.04X , 0.4X ,
X , 1.004X , 1.04X , and 1.4X , where X = 256KB/number of
processors (256KB is equal to the size of the read buffer in
PGX.D). It shows that the small number of samples not only
results in having load imbalance, but it also increases com-
munication overheads, which is due to having non-efficient
splitters that result in sending more data to some number of
processors. Also, the total execution time for the cases of
having very small amount of samples and large amount of
samples are both greater than the execution time of having X
samples.

In figure 10, we study about the impact of sample sizes
on the load balance from figure 9 for three different sam-
ples sizes as 0.004X , X , and 1.4X . The minimum and the
maximum size of data is illustrated in using different number
of processors. It shows that 0.004X number of samples is
not large enough to keep balanced workloads between the
processors, as it results having the load difference by an
average 133192278 while using 52 processors. However, both

Distribution type proc0 proc1 proc2 proc3 proc4 proc5 proc6 proc7 proc8 proc9
Uniform 9.984% 9.989% 9.998% 10.003% 10.022% 10.000% 9.993% 9.994% 10.018% 9.993%
Normal 10.011% 10.003% 10.000% 10.000% 9.981% 9.999% 9.992% 10.008% 9.999% 10.002%

Right-skewed 10.020% 9.990% 9.998% 9.998% 9.998% 9.998% 9.998% 9.998% 9.998% 9.998%
Exponential 9.998% 9.998% 9.998% 9.998% 9.997% 9.997% 9.997% 9.996% 9.996% 10.020%

Table II: The ratio of data sizes on each processor after implementing balanced PGX.D distributed sorting method using 10 processors on
1 billion data from figure 4.

Figure 8: Execution time of distributed sorting method implemented
in PGX.D compared to Spark’s distributed sorting implementation on
Twitter graph dataset.

X and 1.4X result in having balanced loads in all experiments.
By considering results from the figures 9 and 10, X is
chosen as the sample size in the distributed sorting method
implemented in PGX.D, which results in having load balance
while keeping low communication overhead.

Since the main purpose of this sorting technique is to
distribute and to sort large amount of data efficiently, it
is very important to avoid using extra memory during the
implementation. The average memory consumptions using
different number of processors for Twitter graph dataset are
shown in figure 11. Resident Set Size (RSS) is the RAM
memory that is allocated for the process and it is shown in dark
blue. Light blue illustrates the total temporary memory usage
during the process except RSS usage, which is allocated during
the process and becomes free at the end. It is shown that the
maximum memory needed for sorting on 20 processors is less
than 300MB, which is used for keeping previous information
of each data’s previous processor and location.

VI. CONCLUSIONS

Implementing sample sort is straightforward and simple
and can be faster than the other techniques if it is designed
efficiently. In another words, despite its simplicity, it causes a
load imbalance and increases communication overheads if it is
not able to handle having a dataset containing many duplicated
data entries and if it is performed within a framework without
the capability of exploiting bandwidth efficiently. In this paper,
we have developed a distributed sorting technique with PGX.D
that eliminates the load balancing problem when sorting

procs 8 12 16
proc0 0 - 12.58 0 - 8.39 0 - 6.29
proc1 12.58 - 25.07 8.39 - 16.68 6.29 - 12.58
proc2 25.07 - 37.55 16.68 - 25.07 12.58 - 18.78
proc3 37.55 - 50.04 25.07 - 33.36 18.78 - 25.06
proc4 50.04 - 62.53 33.36 - 41.66 25.06 - 31.26
proc5 62.53 - 75.02 41.66 - 50.04 31.26 - 37.55
proc6 75.02 - 87.50 50.04 - 58.33 37.55 - 43.75
proc7 87.50 - 95 58.33 - 66.63 43.75 - 50.04
proc8 66.63 - 75.02 50.04 - 56.24
proc9 75.02 - 83.31 56.24 - 62.52
proc10 83.31 - 91.61 62.52 - 68.73
proc11 91.61 - 95 68.73 - 75.01
proc12 75.01 - 81.21
proc13 81.21 - 87.50
proc14 87.50 - 93.70
proc15 93.70 - 95

Table III: Range of data on each processors after implementing
balanced PGX.D distributed sorting method on Twitter graph dataset.

Figure 9: Communication overhead and total execution time com-
parison of distributed sorting method implemented for Twitter graph
dataset using different sample sizes, where X = 256KB/number of
processors.

dataset containing many duplicated data entries on distributed
machines. This technique is implemented by considering num-
ber of processors and the maximum buffer size provided with
PGX.D, which helps gathering enough information from dif-
ferent machines without increasing communication overheads.
Also, the new handler is proposed that results in having a
balanced merging while parallelizing merging steps, which
improves the parallel performance. Moreover, this technique
is able to keep the workload balanced among the distributed
processors by applying proposed investigator during a binary
search. One of the other advantages of this sorting technique

Figure 10: Work load comparison on each processor using different
sample sizes on Twitter graph dataset, where X = 256KB/number of
processors .

Figure 11: Average memory consumptions of PGX.D distributed
sorting method on Twitter graph dataset using different number of
processors.

is the high-level API exposed to the user, which is a generic
and works with any data type and is able to sort different data
simultaneously.

To evaluate the performance of the proposed distributed
sorting technique, we have measured it with different input
datasets having various distribution types: uniform, normal,
right-skewed and exponential distributions. We were able to
sort one billion data on up to 52 machines by maintaining
load balance on all processors. In addition, a balanced PGX.D
distributed sorting method has been compared with Spark’s
distributed sorting implementation on the same input data and
the experimental results illustrated that our technique is by
around 2x−3x faster than Spark’s distributed sorting method.
Also, it was shown that it uses as less memory as possible to
avoid increasing memory usage while facing big data.

REFERENCES

[1] Michael C Loui. The complexity of sorting on distributed systems.
Information and Control, 60(1):70–85, 1984.

[2] Zhang Qian, Ge Yufei, Liang Hong, and Shi Jin. A load balancing
task scheduling algorithm based on feedback mechanism for cloud
computing. International Journal of Grid and Distributed Computing,
9(4):41–52, 2016.

[3] Rolf Rabenseifner, Georg Hager, Gabriele Jost, and Rainer Keller.
Hybrid MPI and OpenMP parallel programming. In PVM/MPI, page 11,
2006.

[4] Ashay Rane and Dan Stanzione. Experiences in tuning performance of
hybrid MPI/OpenMP applications on quad-core systems. In Proc. of
10th LCI Int’l Conference on High-Performance Clustered Computing,
2009.

[5] Zahra Khatami, Hartmut Kaiser, and J Ramanujam. Using hpx and
op2 for improving parallel scaling performance of unstructured grid
applications. In Parallel Processing Workshops (ICPPW), 2016 45th
International Conference on, pages 190–199. IEEE, 2016.

[6] Zahra Khatami, Hartmut Kaiser, Patricia Grubel, Adrian Serio, and
J Ramanujam. A massively parallel distributed n-body application
implemented with hpx. In Proceedings of the 7th Workshop on Latest
Advances in Scalable Algorithms for Large-Scale Systems, pages 57–64.
IEEE Press, 2016.

[7] Sungpack Hong, Siegfried Depner, Thomas Manhardt, Jan Van Der Lugt,
Merijn Verstraaten, and Hassan Chafi. Pgx. d: a fast distributed graph
processing engine. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
page 58. ACM, 2015.

[8] Raghavan Raman, Oskar van Rest, Sungpack Hong, Zhe Wu, Hassan
Chafi, and Jay Banerjee. Pgx. iso: parallel and efficient in-memory
engine for subgraph isomorphism. In Proceedings of Workshop on
GRAph Data management Experiences and Systems, pages 1–6. ACM,
2014.

[9] Oskar van Rest, Sungpack Hong, Jinha Kim, Xuming Meng, and Hassan
Chafi. Pgql: a property graph query language. In Proceedings of the
Fourth International Workshop on Graph Data Management Experiences
and Systems, page 7. ACM, 2016.

[10] Minsoo Jeon and Dongseung Kim. Parallelizing merge sort onto
distributed memory parallel computers. In International Symposium on
High Performance Computing, pages 25–34. Springer, 2002.

[11] Shmuel Zaks. Optimal distributed algorithms for sorting and ranking.
IEEE Transactions on computers, 100(4):376–379, 1985.

[12] KVS Ramarao. Distributed sorting on local area networks. IEEE
Transactions on Computers, 37(2):239–243, 1988.

[13] Yong Cheol Kim, Minsoo Jeon, Dongseung Kim, and Andrew Sohn.
Communication-efficient bitonic sort on a distributed memory parallel
computer. In Parallel and Distributed Systems, 2001. ICPADS 2001.
Proceedings. Eighth International Conference on, pages 165–170. IEEE,
2001.

[14] Mihai F Ionescu and Klaus E Schauser. Optimizing parallel bitonic
sort. In Parallel Processing Symposium, 1997. Proceedings., 11th
International, pages 303–309. IEEE, 1997.

[15] David Nassimi and Sartaj Sahni. Bitonic sort on a mesh-connected
parallel computer. IEEE Transactions on Computers, 100(1):2–7, 1979.

[16] Michael Hofmann and Gudula Runger. A partitioning algorithm for
parallel sorting on distributed memory systems. In High Performance
Computing and Communications (HPCC), 2011 IEEE 13th International
Conference on, pages 402–411. IEEE, 2011.

[17] Shin-Jae Lee, Minsoo Jeon, Dongseung Kim, and Andrew Sohn. Parti-
tioned parallel radix sort. Journal of Parallel and Distributed Computing,
62(4):656–668, 2002.

[18] Andrew Sohn and Yuetsu Kodama. Load balanced parallel radix sort.
In Proceedings of the 12th international conference on Supercomputing,
pages 305–312. ACM, 1998.

[19] Martina-Cezara Albutiu, Alfons Kemper, and Thomas Neumann. Mas-
sively parallel sort-merge joins in main memory multi-core database
systems. Proceedings of the VLDB Endowment, 5(10):1064–1075, 2012.

[20] Hanmao Shi and Jonathan Schaeffer. Parallel sorting by regular
sampling. Journal of Parallel and Distributed Computing, 14(4):361–
372, 1992.

[21] Peter Sanders and Sebastian Winkel. Super scalar sample sort. In
European Symposium on Algorithms, pages 784–796. Springer, 2004.

[22] Reynold Xin, Parviz Deyhim, Ali Ghodsi, Xiangrui Meng, and Matei
Zaharia. Graysort on apache spark by databricks. GraySort Competition,
2014.

[23] Juwei Shi, Yunjie Qiu, Umar Farooq Minhas, Limei Jiao, Chen Wang,
Berthold Reinwald, and Fatma Özcan. Clash of the titans: Mapreduce
vs. spark for large scale data analytics. Proceedings of the VLDB
Endowment, 8(13):2110–2121, 2015.

[24] Tim Peters. Timsort, 2002.

