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Abstract In the prospect of the upcoming exa-scale
era with millions of execution units, the question of
how to deal with this level of parallelism efficiently is of
time-critical relevance. State-of-the-Art parallelization
techniques such as OpenMP and MPI are not guaran-
teed to solve the expected problems of starvation, grow-
ing latencies, overheads, and contention. On the other
hand, new parallelization paradigms promise to effi-
ciently hide latencies and contain starvation and con-
tention.

In this paper we analyze the performance of one
novel parallelization strategy for shared and distributed
memory machines. We will focus on shared memory ar-
chitectures and compare the performance of the Par-
alleX execution model against the quasi-standard Open-
MP for a standard stencil-based problem. We compare
in detail the OpenMP implementation of two applica-
tions of Jacobi solvers (one based on regular grid and
one based on an irregular grid structure) with the cor-
responding implementation of these applications using
HPX (High Performance ParalleX), the first feature-
complete, open-source implementation of ParalleX, and
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1 Introduction

High Performance Computing (HPC) is currently un-
dergoing major changes, provoked by the increasing
challenges of programming and managing increasingly
heterogeneous multicore architectures and large scale
systems. Estimates show that at the end of this decade
Exaflops computing systems consisting of hundreds of
millions of cores and exposing billion-way parallelism
may emerge. This paper describes an experimental exe-
cution model, ParalleX, that addresses these challenges
through changes in the fundamental model of parallel
computation from that of the communicating sequential
processes (e.g. MPI) to an innovative synthesis of con-
cepts involving message-driven work-queue execution in
the context of a global address space [1].

The focus of this paper is the description of a novel
approach for the implementation of iterative solvers of
linear systems of equations, based on methods such
as Jacobi- or Gauss-Seidel algorithms using the HPX
runtime system. HPX is the first open source imple-
mentation of the concepts of ParalleX for conventional
systems (SMPs and commodity clusters). While HPX
is still experimental and moving at a fast pace with
a broad range of optimization possibilities, we present
early performance results on a NUMA architecture. The
approach presented in this paper can easily be extended
to use distributed, heterogeneous systems.
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Since the interplay of hardware and software en-
vironment is quickly becoming one of the dominant
factors in the design of well integrated, energy effi-
cient, large-scale systems, we also explore the impli-
cations of the ParalleX model on the organization of
parallel computing on today’s NUMA architectures. We
present scaling and performance results of two imple-
mentations of the Jacobi Method, written based on
HPX and using the well known OpenMP parallel pro-
gramming paradigm.

The remainder of this paper is structured as fol-
lowing: Sec. 2 gives an introduction to the ParalleX
execution model and its implementation in the HPX
runtime system. Sec. 3 briefly introduces the Jacobi
Method and gives a description of the problem that
is solved by our implementations. Sec. 4 introduces the
reference OpenMP implementation and Sec. 5 gives a
detailed explanation of the Jacobi Method implemen-
tation with HPX. Sec. 6 summarizes the platform on
which we analyzed the performance aspects. Sec. 7 pro-
vides an analysis of the performance behavior of the im-
plementations discussed in the previous sections, before
Sec. 8 concludes the paper and provides suggestions for
future work.

2 The ParalleX Execution Model and its
Implementation using HPX

The main objective of the ParalleX execution model [1]
is to address the key challenges of efficiency, scalabil-
ity, sustained performance, and power consumption of
applications with respect to the limitations of conven-
tional programming practices (e.g., OpenMP or MPI).

2.1 The ParalleX Execution Model

ParalleX tries to improve efficiency by reducing aver-
age synchronization and scheduling overhead, improve
utilization through asynchrony of workflow, and em-
ploy adaptive scheduling and routing to mitigate con-
tention (e.g., memory bank conflicts). Scalability will
be increased, at least for certain classes of problems,
through data directed computing using message-driven
computation and lightweight synchronization mecha-
nisms that will exploit the parallelism intrinsic to dy-
namic directed graphs through their meta-data. As a
consequence, sustained performance will be improved
both in absolute terms through extended scalability for
those applications currently constrained, and in rela-
tive terms due to enhanced efficiency achieved. Finally,
power reductions will be achieved by reducing extrane-
ous calculations and data movements. The key aims of

ParalleX are a) to expose new forms of program paral-
lelism to increase the total amount of concurrent oper-
ations; b) to reduce overheads improving efficiency of
operation and, in particular, to make effective use of fine
grain parallelism where it should occur (this includes,
where possible, the elimination of global barriers), and
c) to facilitate the use of dynamic methods of resource
management and task scheduling to exploit runtime in-
formation about the execution state of the application
and permit continuing adaptive control for best causal
operation. ParalleX is solidly rooted in the following
governing principles:

— The utilization of an Active Global Address Space
(AGAS) spanning the whole machine, without the
assumption of cache coherence. This implies the pref-
erence of using adaptive locality management over
purely static data placement strategies.

— The exposure of new forms of program parallelism,
including fine grain parallelism, a fundamental para-
digm shift from communicating sequential processes
(CSP [2]), MPI [3] and OpenMP [4] as today’s preva-
lent programming models.

— The preference for mechanisms, which allow to hide
latencies over methods for latency avoidance.

— The preference to move work to the data over mov-
ing data to the work.

— The elimination of global barriers, replacing them
with constraint-based synchronization techniques
built on Local Control Objects (LCOs) to enable
the efficient use of fine-grain parallelism.

2.2 The High Performance ParalleX Runtime System

High Performance ParalleX (HPX [1][5][6]) is the first
open-source implementation of the ParalleX execution
model. HPX is a state-of-the-art runtime system devel-
oped for conventional architectures and, currently, Win-
dows and Linux-based systems; e.g. large Non Uniform
Memory Access (NUMA) machines and clusters. Strict
adherence to Standard C+4+11 and the utilization of
the Boost C++ Libraries [7] makes HPX both portable
and highly optimized. It is modular, feature-complete
and designed for optimal performance. This modular
framework facilitates simple compile- or runtime config-
uration and minimizes the runtime footprint. HPX sup-
ports both dynamically loaded modules and static pre-
binding at link time. The design of HPX is focused on
overcoming conventional limitations such as global bar-
riers, poor latency hiding and lack of support for fine-
grain parallelism. The current implementation of HPX
supports all of the key ParalleX paradigms; Parcels,
PX-threads, Local Control Objects (LCOs), the Active
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Fig. 1 Architecture of the HPX runtime system. HPX im-
plements the supporting functionality for all of the ele-
ments needed for the ParalleX model: Parcels (parcel-port
and parcel-handlers), HPX-threads (thread-manager), LCOs,
AGAS, HPX-processes, performance counters and a means
of integrating application specific components. An incoming
parcel (delivered over the interconnect) is received by the par-
cel port. One or more parcel handlers are connected to a single
parcel port, optionally allowing to distinguish different parts
of the system as the parcel’s final destination. An example
for such different destinations is to have both normal cores
and special hardware (such as a GPGPU) in the same local-
ity. The main task of the parcel handler is to buffer incoming
parcels for the action manager. The action manager decodes
the parcel, which contains an action. An action is either a
global function call or a method call on a globally address-
able object. The action manager creates a PX-thread based
on the encoded information.

Global Address Space (AGAS), and PX-processes (see
Fig. 1).

Many HPX applications, including the linear alge-
bra applications detailed here, utilize Local Control Ob-
jects (LCOs) to simplify parallelization and synchro-
nization. Simple, but useful examples of LCOs are Fu-
tures [8][9] and Dataflow objects [10]. The linear algebra
applications detailed in this paper make extensive use
of both types of LCOs.

As shown in Fig. 2, a Dataflow object encapsulates
a delayed computation. It acts as a proxy for a result
initially not known, most of the time because the input
arguments required for the computation of the result
have not been computed yet. The Dataflow object syn-
chronizes the computation of an output value by defer-
ring its evaluation until all input values are available.
Thus a Dataflow object is a very convenient means of
constraint-based synchronization of the overall execu-
tion. We leverage the inherent meta information of the
used data structures (i.e. the structure of the computa-
tional grid) by creating a structurally matching network
of Dataflow objects. For this reason the execution of the
dataflow network will always yield the correct result
while the existing compute resources are optimally uti-
lized as every particular calculation of any intermediate
result will happen ’at its own pace’. The main advan-

tage of such a dataflow-based execution is that it en-
ables minimizing the total synchronization and schedul-
ing overheads.
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Fig. 2 Schematic of a Dataflow object. A Dataflow object
encapsulates a (customizable) function F(z1,z2,...,zx). This
function takes N input arguments and produces an output
result. The dataflow object is receiving each of the required
input arguments separately from different data sources (i.e.
other dataflow objects). As soon as the last input argument
has been received, the function is scheduled for execution and,
after the result has been calculated, it is sent to all objects
connected to the output of the Dataflow object.

3 The Jacobi Method

The Jacobi Method is a numerical stationary iterative
method. It is one example of stencil-based iterative meth-
ods. It is used to solve the linear system of equations
given by:

Az =0, Aec RV*N zand b e RY

The Jacobi Method is a well-known numerical algo-
rithm with well known techniques to parallelize it with
OpenMP.

The algorithm can be formulated in the following
way:

A = D + R where

a;; 0 - 0 0 a2 -+ ain
0 azg -+ O a1 0 -+ asn

D = R = . . . . )
0 0 - ann ani ang -+ 0

= 2+t = p~1(p — Rz®))

The exact derivation and algorithm can be found in [11].
3.1 Problem 1: Uniform Grid

As the first problem we are solving we chose a uniform
grid, which is derived by discretizing the diffusion equa-
tion for a scalar function u(z,y)

Au=f
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on a rectangular grid with Dirichlet boundary condi-
tions. After discretizing the differential operator, we can
derive the five-point stencil (without the loss of gener-
icity, we restrict ourselves to 2D in this paper and a
right-hand-side of constant zero) to be used for updat-
ing one point:
Ufold(']j + 17?]) + uold(x — 17y)
4
Uord(z,y + 1) + uga(z,y — 1)
+
4
Listing 1 shows an example implementation in C++
for that particular update. The type grid<double> is a
user defined type to represent the discretized solution.
It is a straightforward implementation of a linearized
two-dimensional data structure.

Unew ($, y) =

Listing 1 Example kernel for the Jacobi Method

typedef pair<size_t,
void jacobi_kernel(
vector<grid<double> > & u
, range_t X, range_t y
size_t dst, size_t src)

size_t> range_t;

{
for(size_t j =

{
for(size_t i =

{

y.first; j < y.second; ++j)

x.first; i < x.second; ++1i)
ulsrcl(i,j)
= (uldst](i+1,j) + uldstl(i-1,j)

+ uldst](i,j+1) + uldst](i,j-1))

* 0.25

}
}

This implementation of the kernel counts 4 double pre-
cision floating point operations (three additions and
one multiplication). We assume that the cache is large
enough, such that three rows of the grid are resident in
the cache. According to that assumption, three mem-
ory transfers have to be done for every iteration. This
implies that this specific algorithm is memory bound.
In this example implementation of the kernel we don’t
care about Low-Level optimizations. Those optimiza-
tions are heavily discussed in the literature [12], and
have no effect on the outcome of this comparison. Ad-
ditionally, no convergence test is performed in order to
have a fixed number of iterations for both implementa-
tions.

3.2 Problem 2: Non-Uniform Grid

The second problem is chosen to show how different
workloads on an element update influences our target
implementations. We choose a matrix obtained from a
Finite Element Method. The matrix is obtained from
a structural problem discretizing a gas reservoir with

tetrahedral Finite Elements [13][14]. The matrix is saved
in a compressed row storage format to efficiently tra-
verse it in the Jacobi Method Kernel. For simplicity
an implementation of the sparse matrix data structure
and the concrete kernel implementation is not shown.
As Problem 1, this problem is memory bound. The re-
sulting stencil is dynamic, and dependent on how many
entries the row of the element to update has. The chose
n matrix has a minimum of one entry per row, and a
maximum of 228 entries. The mean are 23.69 entries,
with at least one element on the diagonal. We assume
that the diagonal element of the chosen matrix, and
the element of the source grid are cache resident. Based
on these numbers, the mean memory transfers for this
problem are 47.38 (2 for the destination grid and the
right hand side, 22.69 for the matrix elements and 22.69
for the source grid). These numbers are the baseline for
the performance discussion in Sec. 7.

4 OpenMP Implementation

OpenMP is the dominant shared-memory programming
standard today. Developed since 1997 as a joint effort
of compiler vendors, OpenMP has been used even prior
to the multicore era as a platform independent paral-
lelization tool.

Listing 2 shows the OpenMP-parallel implementa-
tion of the Jacobi solver for Problem 1 (Sec. 3.1). For
the sake of simplicity, only the implementation of Prob-
lem 1 is shown, not Problem 2 (Sec. 3.2). Initially, the
two grids are initialized with 1 according to the Dirich-
let boundary conditions. We iterate over the grid in a
block-wise fashion in order to use the cache efficiently.
In every inner loop, the function outlined in Listing 1
is executed on each single block.

Listing 2 OpenMP - Jacobi Method

vector< grid<double> >
u( 2, grid<double>(N_x, N_y, 1) );
size_t src = 0;
size_t dst = 1;
for(size_t iter = 0; iter < max_iter; ++iter){
#pragma omp parallel for shared(u) schedule(
static)
for(size_t y=1; y < N_y-1; y+=block_size)
{
for(size_t x=1; x < N_x-1; x+=block_size)
{
jacobi_kernel(
u
, range_t(x, min(x+block_size, N_x))
, range_t(y, min(y+block_size, N_y))
, src, dst);
}
}
swap (src, dst);

}
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This algorithm uses standard C++ facilities almost
exclusively and hints the compiler to create a parallel
section with #pragma omp parallel for. Due to the nature
of the Jacobi method, this algorithm does not contain
any data races. It is worth noting that with the di-
rective #pragma omp parallel for an implicit global bar-
rier is introduced. This barrier has the effect that every
thread completed the calculation and the grids can be
swapped to initiate the next iteration. However, as the
workload of the calculation is equally distributed among
each thread, this barrier should have little to no effect.

Since the Jacobi method is a memory-bound algo-
rithm, performance of this implementation is expected
to scale well until the maximum memory bandwidth is
exhausted.

In case of applications that are memory-bound, lo-
cality and contention problems can occur on NUMA
systems if no special care is taken for the memory ini-
tialization. Memory-bound code must be designed to
employ proper page placement, for instance by first
touch [12]. In order to accommodate both use-cases,
we use an interleaved memory policy. That means that
pages will be allocated using round robin on nodes. This
decreases the overall performance for Problem 1, but is
the most practical way of placing memory for Problem
2. Additionally, thread migration was prevented by an
explicit pinning of all active threads via the Likwid tool
suite [15]. Without applying these techniques, OpenMP
would fail to scale properly on NUMA architectures.

5 HPX Implementation

The HPX implementation of Problem 1 (Sec. 3.1) elim-
inates the implicit global barriers introduced by par-
allelizing the iteration loops using OpenMP. This is
achieved by using LCOs introduced by ParalleX (see
Sec. 2.1) and implemented in HPX (see Sec. 2.2). For
the sake of simplicity, only the implementation of Prob-
lem 1 is shown, not Problem 2 (Sec. 3.2).

In particular the Dataflow LCO is used to ensure a
fluid flow of computation. The Jacobi Method can then
be formulated with the help of Dataflow by explicitly
specifying the dependencies. In the case of the algo-
rithm outlined above (See Listing 1), the constraints
are that the elements of the old grid had been com-
puted so that we don’t create a data race. In the case
of the OpenMP Listing, this has been ensured by the
implicit global barrier (See Listing 2). The HPX im-
plementations solves this by explicitly calculating the
block-wise dependencies.

Listing 3 HPX - Calculating dependencies

1 typedef hpx::lcos::dataflow<void> dataflow_t;
2

35
36

vector<dataflow_t > get_deps(
grid<dataflow_t> const & deps
size_t x, size_t y)

vector<dataflow_t> r;
r.push_back(deps(x,y));

if (x>0) r.push_back(deps(x-1,y));
if (x+1<deps.N_x) r.push_back(deps(x+1,y));
if (y>0) r.push_back (deps(x,y-1));
if (y+1<deps.N_y) r.push_back(deps(x,y+1));
return r;

In Listing 3 the block-wise dependency calculation is
shown: The current item has to be calculated in order
to be able to continue (Line 8); The left item, iff we
are not at the left boundary (Line 9); The right item,
iff we are not at the right boundary (Line 10); The top
item, iff we are not at the top boundary (Line 11); The
bottom item, iff we are not at the bottom boundary
(Line 12); The dependencies can be trivially derived by
looking at the stencil.

Listing 4 HPX - Jacobi Method

typedef dataflow<void> dataflow_t;
typedef

vector<grid<double> > vector_t;
hpx::components::dataflow_object<vector_t>

u = new_<vector_t>(hpx::find_here(),

2, grid<double>(N_x, N_y, 1));

grid<dataflow_t>

deps (N_x/block_size,
size_t dst = 0;
1
iter =

N_y/block_size);

size_t src =

for(size_t
{

for(size_t y = 1,

y < N_y-1; y

0; iter < max_iter; ++iter)
y_block = 0;
+= block_size, ++y_block)

{
for(size_t x = 1, x_block = 0;
x < N_x-1; x += block_size, ++x_block)
{
vector<dataflow_t>
iteration_deps = get_deps(
deps, x_block, y_block);
deps (x_block, y_block)
= u.apply(
hpx::bind (jacobi_kernel,
hpx::placeholder::_1
, range_t(x, min(x+block_size,
, range_t(y, min(y+block_size,
, dst, src
)
, iteration_deps

)

N_x))
N_y))

¥
}
swap (dst,
}
hpx::wait (deps);

src);

Listing 4 shows the full implementation of the Jacobi
Method with HPX. It is still 100% C++ Standard com-
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pliant, but implements a complete novel approach to
parallelism. Instead of hinting the compiler to paral-
lelize the loop, we have the parallelism hidden inside the
Dataflow LCO. This Dataflow LCO is responsible for
activating a new thread once all dependencies have been
met (see Listing 3). On Line 6 a new object is created
and registered with AGAS (see Sec. 2.2) and wrapped
behind a special datatype. The iterations look exactly
like in Listing 2 but are now used to create the Dataflow
tree. At first, we need to determine the dependencies
of the current iteration (Line 21). The call to u.apply
(Line 23) creates the dataflow object. With npx::bind
(Line 24) a function object is created that will be exe-
cuted once the passed dependencies (Line 30) are met.
This complies to the “moving work to data” paradigm
imposed by the ParalleX execution model (see Section
2). For what it matters, whether the object lives on the
current system, or on a remote location is completely
irrelevant for this code to work.

It is important to note that after the loops are fin-
ished, the system already started working in the back-
ground. What we achieved here is to remove the im-
plicit global barrier imposed by OpenMP with con-
straint based LCOs, which control, with the help of the
runtime system, all the introduced parallelism.

As the OpenMP implementation, the HPX imple-
mentation is memory bound. Except for pinning the op-
erating system threads to the according cores, no other
precautions to accommodate NUMA architectures have
been done. Due to the aggressive thread stealing of the
HPX thread-manager (see Sec. 2.2) an optimal NUMA
memory placement strategy is yet to be found. Although,
this thread stealing also implies the possibility to hide
latencies induced by inter-node memory traffic, it can-
not compensate the intrinsic bandwidth limits of cur-
rent computing platforms.

6 Benchmark Platform

In order to evaluate the performance properties of the
Jacobi Method implementations, we use a multi-socket
AMD Istanbul platform. The nominal specifications of
this machine are:

8 Sockets, one AMD Opteron 8431 each socket (48
Cores in total) 6 Cores per socket, 2.4 GHz Base
speed; per Core: L1 Cache Size: 128 KB, L2 Cache
Size: 512 KB, shared: L3 Cache Size: 6144 KB

— 2 GB RAM per Core (96 GB RAM in total)

— Maximum 8.5 GB/s Memory Bandwidth per socket.
Theoretical double precision peak performance: 230
GFLOPS/s

Apart from the nominal numbers, we run the STREAM
benchmark [16] to measure the maximum memory band-

Measured Memory Bandwidth
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Number of Sockets

Fig. 3 Measured memory bandwidth on the benchmark plat-
form. The shown data allows to derive that the best possible
speedup when scaling from 1 to 48 cores on this particular
system is 4.88 (25%155) Further, this figure shows that increas-
ing the number of utilized cores per socket beyond four does
not yield any performance benefit (the scaling numbers for

six cores per socket are smaller than those for four cores).

width. Fig. 3 shows the result of the STREAM bench-
mark Copy test. Due to memory bound nature of the
discussed algorithm (see Sec. 3), we use those experi-
mental results as the basis of our considerations. De-
riving from theses numbers, the maximum achievable
speedup is 4.88 and scaling beyond four cores cannot be
expected. Additionally, the implications of non-optimal
memory placement can be observed by considering the
difference between the theoretical bandwidth and the
measured. By placing the allocated memory pages in
a round-robin fashion (interleaved) we get a good esti-
mate on how much performance can be expected in our
benchmarks.

7 Results

We benchmark our implementations using the example
problems introduced in Sec. 3. For the uniform prob-
lem (Sec. 3.1), we performed weak scaling and strong
scaling tests. For weak scaling, the number of points
on the y-axis were kept constant at 100000, and for ev-
ery core 1000 grid points on the x-axis were added. For
strong scaling, we chose a problem size of 10000x100000
(N_x = 10000 and N_y = 100000). The block_size has been
chosen to be 1000 such that one tile calculation fits eas-
ily into the level-2 cache of our platform. Additionally,
the problem size has been chosen big enough such that
enough work for all processors can be assumed. The
algorithm has been run for 100 iterations. The Jacobi
Solver for the irregular grid discussed in Sec. 3.2 was
run for 1000 iterations and a block_size of 50000 has
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Fig. 4 Weak scaling of the uniform problem on one socket.
The measured results for the OpenMP and HPX applications
are compared with the measured maximum bandwidth (as de-
rived from Fig. 3). Both, the OpenMP and HPX applications
have similar qualitative scaling behavior. All three implemen-
tations show good weak scaling.

been chosen such that the level-2 cache is employed ap-
propriately.

The performance is measured in Mega Lattice Site
Updates per second (MLUPS). One lattice site is one
element of the grid. Based on the performance char-
acteristics of the benchmark platform (Sec. 6), we can
calculate the maximal achievable performance. The up-
date of one lattice in the uniform grid needs three mem-
ory transfers, thus 24 bytes are transferred. In the case
of the non-uniform grid, we assume the mean num-
ber of memory transfers of 47.38, which means that
379.04 bytes are transferred for one lattice update. Di-
viding the measured peak memory bandwidth by those
numbers, leads to an expected maximum performance
(shown as blue lines in all figures). For the OpenMP
implementations we measure the achieved performance
with static and dynamic work scheduling.

All of our benchmarks shows the same weak scaling
behavior for the uniform testcase. It can be observed
that the HPX implementation is able to perform and
scale as good as the OpenMP implementation (Fig. 4).

Weak scaling on the entire system (Fig. 5) is sim-
ilar to scaling on one core. When utilizing the com-
plete machine, the presented implementations are able
to reach the expected performance almost everywhere.
HPX performance starts to decline after using more
than 5 sockets. This is due to the currently non-optimized
NUMA placement (a maximum of 9% slower).

As expected for the uniform workload, OpenMP is
able to perfectly use the resources of the system, while
HPX is around 15% slower (Fig. 6). This is due to run-
time overheads of the HPX runtime system, which can-

Weak Scaling of Uniform Problem on Entire System
(Running 6 Cores per Socket)

1.25
=+Expected

-#-0penMP, static

1 =<0penMP, dynamic
+=HPX

0.25

0 1 2 3 4 5 6 7 8
Number of Sockets

Fig. 5 Weak scaling of the uniform problem on the entire sys-
tem. The measured results for the OpenMP and HPX applica-
tions are compared with the measured maximum bandwidth
for the whole system (as derived from Fig. 3). These num-
bers are qualitatively consistent with the results presented in
Fig. 4.

Strong Scaling of Uniform Problem on One Socket
300
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v
a
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+HPX
100
0 1 2 3 4 5 6
Number of Cores

Fig. 6 Strong scaling of the uniform problem on the entire
system. The measured results for the OpenMP and HPX ap-
plications are compared with the measured maximum band-
width for the whole system (as derived from Fig. 3). These
numbers are qualitatively consistent with the results pre-
sented in Fig. 6.

not be amortized by such a highly regular workload.
The scaling behavior however is consistent for both im-
plementations.

Fig. 7 shows the performance of both implementa-
tions for the entire system. For both runs, interleaved
memory placement is used. It can be seen that the
OpenMP implementation is able to almost reach the
expected performance. The HPX implementation show
the same scaling behavior. By using more parallel com-
pute resources, the HPX implementation is able to reach
the OpenMP performance. Changing the scheduling of
the OpenMP work chunks, only influences the results
minimally.
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Strong Scaling of Uniform Problem on Entire System
(Running 4 Cores per Socket)
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Fig. 7 Strong scaling of the uniform problem on the entire
system. The measured results for the OpenMP and HPX ap-
plications are compared with the measured maximum band-
width for the whole system (as derived from Fig. 3). These
numbers are qualitatively consistent with the results pre-
sented in Fig. 6.

Strong Scaling of Non-Uniform Problem on One Socket
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Fig. 8 Strong scaling of the non-uniform problem on one
socket. Both, the OpenMP and HPX applications have sim-
ilar qualitative scaling behavior, while the HPX application
consistently shows slightly slower runtimes. However, the dif-
ference is much smaller than in the uniform case.

The performance behavior of the non-uniform prob-
lem on one socket (Fig. 8) shows similar properties as
the regular problem. Due to the workload imbalance,
the dataflow-based parallelization technique of HPX is
able to gain ground. It is now only 6% slower than the
OpenMP one.

In Fig. 9 the benefits of the dataflow-based imple-
mentation with HPX can be seen very clearly. The more
parallel resources are added to the system, the better
the HPX implementation is able to perform. It can be
observed that a maximum of 18% performance gain (24
cores) over the OpenMP implementation with static
scheduling can be reached. This can be explained by

Strong Scaling of Non-Uniform Problem on Entire System
(Running 6 Cores per Socket)
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Fig. 9 Strong scaling of the non-uniform problem on the en-
tire system. This figure shows, that the HPX application per-
forms better than the OpenMP code. The advantage increases
with an increasing number of parallel resources utilized for the
runs.

the fact that every element update has different tim-
ing behaviors due to the irregular mesh. While HPX is
able to dynamically schedule work items, the implicit
global barrier of OpenMP needs to wait for all blocks
to finish. It can be seen that by using 5 Sockets (30
cores), the workload is balanced, and OpenMP is able
to reach a higher performance. By changing the work
scheduling algorithm of OpenMP to be dynamic, both
HPX and OpenMP show almost the same performance,
with slightly better results for OpenMP.

8 Conclusion

In this paper we compared the performance and scaling
characteristics of two different applications of a Jacobi
solver for a linear system of equations. One application
is using a very regular, uniform grid, whereas the other
solves the linear system of equations on a highly ir-
regular grid. Both applications have been implemented
using OpenMP and HPX. We present results confirm-
ing that the data driven, task-queue based, fine grain
parallelism and the constraint based synchronization
methods as implemented in HPX are highly beneficial
if the properties inherent to the tested algorithm cause
load imbalances in terms of execution time or data
distribution. Further, the implementation of a Jacobi
solver based on OpenMP exposes almost perfect perfor-
mance and scaling characteristics for a highly regular
use case. However, if the algorithm causes more irreg-
ular resource utilization, the performance and scaling
capabilities of the OpenMP solution degrade quickly,
unless the scheduling of work chunks is changed. At
the same time we see almost no degradation in terms
of performance or scaling for an equivalent HPX appli-
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cation, allowing to outperform and outscale the static
OpenMP based application for the analyzed, highly ir-
regular usage modes. While OpenMP and HPX are on
the same performance level when comparing the dy-
namic work scheduling algorithms where HPX is able
to provide a uniform solution and has a lot of potential
optimization possibilities.

While this paper didn’t discuss distributed memory
systems it should be noted that formulating an algo-
rithm with HPX that is able to run on clusters is easy to
implement. The exchange of ghost zones can be formu-
lated in terms of Data flow and the communication will
be automatically overlapped with computation. Such
an approach will lead to highly complex implementa-
tions if implemented with conventional methods such
as MPI and OpenMP.
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