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Abstract In the prospect of the upcoming exa-scale

era with millions of execution units, the question of

how to deal with this level of parallelism efficiently is of

time-critical relevance. State-of-the-Art parallelization

techniques such as OpenMP and MPI are not guaran-

teed to solve the expected problems of starvation, grow-

ing latencies, overheads, and contention. On the other

hand, new parallelization paradigms promise to effi-

ciently hide latencies and contain starvation and con-

tention.

In this paper we analyze the performance of one

novel parallelization strategy for shared and distributed

memory machines. We will focus on shared memory ar-

chitectures and compare the performance of the Par-

alleX execution model against the quasi-standard Open-

MP for a standard stencil-based problem. We compare

in detail the OpenMP implementation of two applica-

tions of Jacobi solvers (one based on regular grid and

one based on an irregular grid structure) with the cor-

responding implementation of these applications using

HPX (High Performance ParalleX), the first feature-

complete, open-source implementation of ParalleX, and
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1 Introduction

High Performance Computing (HPC) is currently un-

dergoing major changes, provoked by the increasing

challenges of programming and managing increasingly

heterogeneous multicore architectures and large scale

systems. Estimates show that at the end of this decade

Exaflops computing systems consisting of hundreds of

millions of cores and exposing billion-way parallelism

may emerge. This paper describes an experimental exe-

cution model, ParalleX, that addresses these challenges

through changes in the fundamental model of parallel

computation from that of the communicating sequential

processes (e.g. MPI) to an innovative synthesis of con-

cepts involving message-driven work-queue execution in

the context of a global address space [1].

The focus of this paper is the description of a novel

approach for the implementation of iterative solvers of

linear systems of equations, based on methods such

as Jacobi- or Gauss-Seidel algorithms using the HPX

runtime system. HPX is the first open source imple-

mentation of the concepts of ParalleX for conventional

systems (SMPs and commodity clusters). While HPX

is still experimental and moving at a fast pace with

a broad range of optimization possibilities, we present

early performance results on a NUMA architecture. The

approach presented in this paper can easily be extended

to use distributed, heterogeneous systems.
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Since the interplay of hardware and software en-

vironment is quickly becoming one of the dominant

factors in the design of well integrated, energy effi-

cient, large-scale systems, we also explore the impli-

cations of the ParalleX model on the organization of

parallel computing on today’s NUMA architectures. We

present scaling and performance results of two imple-

mentations of the Jacobi Method, written based on

HPX and using the well known OpenMP parallel pro-

gramming paradigm.

The remainder of this paper is structured as fol-

lowing: Sec. 2 gives an introduction to the ParalleX

execution model and its implementation in the HPX

runtime system. Sec. 3 briefly introduces the Jacobi

Method and gives a description of the problem that

is solved by our implementations. Sec. 4 introduces the

reference OpenMP implementation and Sec. 5 gives a

detailed explanation of the Jacobi Method implemen-

tation with HPX. Sec. 6 summarizes the platform on

which we analyzed the performance aspects. Sec. 7 pro-

vides an analysis of the performance behavior of the im-

plementations discussed in the previous sections, before

Sec. 8 concludes the paper and provides suggestions for

future work.

2 The ParalleX Execution Model and its

Implementation using HPX

The main objective of the ParalleX execution model [1]

is to address the key challenges of efficiency, scalabil-

ity, sustained performance, and power consumption of

applications with respect to the limitations of conven-

tional programming practices (e.g., OpenMP or MPI).

2.1 The ParalleX Execution Model

ParalleX tries to improve efficiency by reducing aver-

age synchronization and scheduling overhead, improve

utilization through asynchrony of workflow, and em-

ploy adaptive scheduling and routing to mitigate con-

tention (e.g., memory bank conflicts). Scalability will

be increased, at least for certain classes of problems,

through data directed computing using message-driven

computation and lightweight synchronization mecha-

nisms that will exploit the parallelism intrinsic to dy-

namic directed graphs through their meta-data. As a

consequence, sustained performance will be improved

both in absolute terms through extended scalability for

those applications currently constrained, and in rela-

tive terms due to enhanced efficiency achieved. Finally,

power reductions will be achieved by reducing extrane-

ous calculations and data movements. The key aims of

ParalleX are a) to expose new forms of program paral-

lelism to increase the total amount of concurrent oper-

ations; b) to reduce overheads improving efficiency of

operation and, in particular, to make effective use of fine

grain parallelism where it should occur (this includes,

where possible, the elimination of global barriers), and

c) to facilitate the use of dynamic methods of resource

management and task scheduling to exploit runtime in-

formation about the execution state of the application

and permit continuing adaptive control for best causal

operation. ParalleX is solidly rooted in the following

governing principles:

– The utilization of an Active Global Address Space

(AGAS) spanning the whole machine, without the

assumption of cache coherence. This implies the pref-

erence of using adaptive locality management over

purely static data placement strategies.

– The exposure of new forms of program parallelism,

including fine grain parallelism, a fundamental para-

digm shift from communicating sequential processes

(CSP [2]), MPI [3] and OpenMP [4] as today’s preva-

lent programming models.

– The preference for mechanisms, which allow to hide

latencies over methods for latency avoidance.

– The preference to move work to the data over mov-

ing data to the work.

– The elimination of global barriers, replacing them

with constraint-based synchronization techniques

built on Local Control Objects (LCOs) to enable

the efficient use of fine-grain parallelism.

2.2 The High Performance ParalleX Runtime System

High Performance ParalleX (HPX [1][5][6]) is the first

open-source implementation of the ParalleX execution

model. HPX is a state-of-the-art runtime system devel-

oped for conventional architectures and, currently, Win-

dows and Linux-based systems; e.g. large Non Uniform

Memory Access (NUMA) machines and clusters. Strict

adherence to Standard C++11 and the utilization of

the Boost C++ Libraries [7] makes HPX both portable

and highly optimized. It is modular, feature-complete

and designed for optimal performance. This modular

framework facilitates simple compile- or runtime config-

uration and minimizes the runtime footprint. HPX sup-

ports both dynamically loaded modules and static pre-

binding at link time. The design of HPX is focused on

overcoming conventional limitations such as global bar-

riers, poor latency hiding and lack of support for fine-

grain parallelism. The current implementation of HPX

supports all of the key ParalleX paradigms; Parcels,

PX-threads, Local Control Objects (LCOs), the Active
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Fig. 1 Architecture of the HPX runtime system. HPX im-
plements the supporting functionality for all of the ele-
ments needed for the ParalleX model: Parcels (parcel-port
and parcel-handlers), HPX-threads (thread-manager), LCOs,
AGAS, HPX-processes, performance counters and a means
of integrating application specific components. An incoming
parcel (delivered over the interconnect) is received by the par-
cel port. One or more parcel handlers are connected to a single
parcel port, optionally allowing to distinguish different parts
of the system as the parcel’s final destination. An example
for such different destinations is to have both normal cores
and special hardware (such as a GPGPU) in the same local-
ity. The main task of the parcel handler is to buffer incoming
parcels for the action manager. The action manager decodes
the parcel, which contains an action. An action is either a
global function call or a method call on a globally address-
able object. The action manager creates a PX-thread based
on the encoded information.

Global Address Space (AGAS), and PX-processes (see

Fig. 1).

Many HPX applications, including the linear alge-

bra applications detailed here, utilize Local Control Ob-

jects (LCOs) to simplify parallelization and synchro-

nization. Simple, but useful examples of LCOs are Fu-

tures [8][9] and Dataflow objects [10]. The linear algebra

applications detailed in this paper make extensive use

of both types of LCOs.

As shown in Fig. 2, a Dataflow object encapsulates

a delayed computation. It acts as a proxy for a result

initially not known, most of the time because the input

arguments required for the computation of the result

have not been computed yet. The Dataflow object syn-

chronizes the computation of an output value by defer-

ring its evaluation until all input values are available.

Thus a Dataflow object is a very convenient means of

constraint-based synchronization of the overall execu-

tion. We leverage the inherent meta information of the

used data structures (i.e. the structure of the computa-

tional grid) by creating a structurally matching network

of Dataflow objects. For this reason the execution of the

dataflow network will always yield the correct result

while the existing compute resources are optimally uti-

lized as every particular calculation of any intermediate

result will happen ’at its own pace’. The main advan-

tage of such a dataflow-based execution is that it en-

ables minimizing the total synchronization and schedul-

ing overheads.

Dataflow Object 

x1 
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…
 

Inputs 
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Fig. 2 Schematic of a Dataflow object. A Dataflow object
encapsulates a (customizable) function F (x1, x2, ..., xN ). This
function takes N input arguments and produces an output
result. The dataflow object is receiving each of the required
input arguments separately from different data sources (i.e.
other dataflow objects). As soon as the last input argument
has been received, the function is scheduled for execution and,
after the result has been calculated, it is sent to all objects
connected to the output of the Dataflow object.

3 The Jacobi Method

The Jacobi Method is a numerical stationary iterative

method. It is one example of stencil-based iterative meth-

ods. It is used to solve the linear system of equations

given by:

Ax = b, A ∈ RNxN , x and b ∈ RN

The Jacobi Method is a well-known numerical algo-

rithm with well known techniques to parallelize it with

OpenMP.

The algorithm can be formulated in the following

way:

A = D + R where

D =


a11 0 · · · 0

0 a22 · · · 0
...

...
. . .

...

0 0 · · · ann

 R =


0 a12 · · · a1N
a21 0 · · · a2N
...

...
. . .

...

aN1 aN2 · · · 0

 ,

⇒ x(k+1) = D−1(b−Rx(k))

The exact derivation and algorithm can be found in [11].

3.1 Problem 1: Uniform Grid

As the first problem we are solving we chose a uniform

grid, which is derived by discretizing the diffusion equa-

tion for a scalar function u(x, y)

4u = f
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on a rectangular grid with Dirichlet boundary condi-

tions. After discretizing the differential operator, we can

derive the five-point stencil (without the loss of gener-

icity, we restrict ourselves to 2D in this paper and a

right-hand-side of constant zero) to be used for updat-

ing one point:

unew(x, y) =
uold(x + 1, y) + uold(x− 1, y)

4

+
uold(x, y + 1) + uold(x, y − 1)

4

Listing 1 shows an example implementation in C++

for that particular update. The type grid<double> is a

user defined type to represent the discretized solution.

It is a straightforward implementation of a linearized

two-dimensional data structure.

Listing 1 Example kernel for the Jacobi Method

1 typedef pair <size_t , size_t > range_t;

2 void jacobi_kernel(

3 vector <grid <double > > & u

4 , range_t x, range_t y

5 , size_t dst , size_t src)

6 {

7 for(size_t j = y.first; j < y.second; ++j)

8 {

9 for(size_t i = x.first; i < x.second; ++i)

10 {

11 u[src](i,j)

12 = (u[dst](i+1,j) + u[dst](i-1,j)

13 + u[dst](i,j+1) + u[dst](i,j-1))

14 * 0.25

15 }

16 }

17 }

This implementation of the kernel counts 4 double pre-

cision floating point operations (three additions and
one multiplication). We assume that the cache is large

enough, such that three rows of the grid are resident in

the cache. According to that assumption, three mem-

ory transfers have to be done for every iteration. This

implies that this specific algorithm is memory bound.

In this example implementation of the kernel we don’t

care about Low-Level optimizations. Those optimiza-

tions are heavily discussed in the literature [12], and

have no effect on the outcome of this comparison. Ad-

ditionally, no convergence test is performed in order to

have a fixed number of iterations for both implementa-

tions.

3.2 Problem 2: Non-Uniform Grid

The second problem is chosen to show how different

workloads on an element update influences our target

implementations. We choose a matrix obtained from a

Finite Element Method. The matrix is obtained from

a structural problem discretizing a gas reservoir with

tetrahedral Finite Elements [13][14]. The matrix is saved

in a compressed row storage format to efficiently tra-

verse it in the Jacobi Method Kernel. For simplicity

an implementation of the sparse matrix data structure

and the concrete kernel implementation is not shown.

As Problem 1, this problem is memory bound. The re-

sulting stencil is dynamic, and dependent on how many

entries the row of the element to update has. The chose

n matrix has a minimum of one entry per row, and a

maximum of 228 entries. The mean are 23.69 entries,

with at least one element on the diagonal. We assume

that the diagonal element of the chosen matrix, and

the element of the source grid are cache resident. Based

on these numbers, the mean memory transfers for this

problem are 47.38 (2 for the destination grid and the

right hand side, 22.69 for the matrix elements and 22.69

for the source grid). These numbers are the baseline for

the performance discussion in Sec. 7.

4 OpenMP Implementation

OpenMP is the dominant shared-memory programming

standard today. Developed since 1997 as a joint effort

of compiler vendors, OpenMP has been used even prior

to the multicore era as a platform independent paral-

lelization tool.

Listing 2 shows the OpenMP-parallel implementa-

tion of the Jacobi solver for Problem 1 (Sec. 3.1). For

the sake of simplicity, only the implementation of Prob-

lem 1 is shown, not Problem 2 (Sec. 3.2). Initially, the

two grids are initialized with 1 according to the Dirich-

let boundary conditions. We iterate over the grid in a

block-wise fashion in order to use the cache efficiently.

In every inner loop, the function outlined in Listing 1

is executed on each single block.

Listing 2 OpenMP - Jacobi Method

1 vector < grid <double > >

2 u( 2, grid <double >(N_x , N_y , 1) );

3 size_t src = 0;

4 size_t dst = 1;

5 for(size_t iter = 0; iter < max_iter; ++iter){

6 #pragma omp parallel for shared(u) schedule(

static)

7 for(size_t y=1; y < N_y -1; y+= block_size)

8 {

9 for(size_t x=1; x < N_x -1; x+= block_size)

10 {

11 jacobi_kernel(

12 u

13 , range_t(x, min(x+block_size , N_x))

14 , range_t(y, min(y+block_size , N_y))

15 , src , dst);

16 }

17 }

18 swap(src , dst);

19 }
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This algorithm uses standard C++ facilities almost

exclusively and hints the compiler to create a parallel

section with #pragma omp parallel for. Due to the nature

of the Jacobi method, this algorithm does not contain

any data races. It is worth noting that with the di-

rective #pragma omp parallel for an implicit global bar-

rier is introduced. This barrier has the effect that every

thread completed the calculation and the grids can be

swapped to initiate the next iteration. However, as the

workload of the calculation is equally distributed among

each thread, this barrier should have little to no effect.

Since the Jacobi method is a memory-bound algo-

rithm, performance of this implementation is expected

to scale well until the maximum memory bandwidth is

exhausted.

In case of applications that are memory-bound, lo-

cality and contention problems can occur on NUMA

systems if no special care is taken for the memory ini-

tialization. Memory-bound code must be designed to

employ proper page placement, for instance by first

touch [12]. In order to accommodate both use-cases,

we use an interleaved memory policy. That means that

pages will be allocated using round robin on nodes. This

decreases the overall performance for Problem 1, but is

the most practical way of placing memory for Problem

2. Additionally, thread migration was prevented by an

explicit pinning of all active threads via the Likwid tool

suite [15]. Without applying these techniques, OpenMP

would fail to scale properly on NUMA architectures.

5 HPX Implementation

The HPX implementation of Problem 1 (Sec. 3.1) elim-

inates the implicit global barriers introduced by par-

allelizing the iteration loops using OpenMP. This is

achieved by using LCOs introduced by ParalleX (see

Sec. 2.1) and implemented in HPX (see Sec. 2.2). For

the sake of simplicity, only the implementation of Prob-

lem 1 is shown, not Problem 2 (Sec. 3.2).

In particular the Dataflow LCO is used to ensure a

fluid flow of computation. The Jacobi Method can then

be formulated with the help of Dataflow by explicitly

specifying the dependencies. In the case of the algo-

rithm outlined above (See Listing 1), the constraints

are that the elements of the old grid had been com-

puted so that we don’t create a data race. In the case

of the OpenMP Listing, this has been ensured by the

implicit global barrier (See Listing 2). The HPX im-

plementations solves this by explicitly calculating the

block-wise dependencies.

Listing 3 HPX - Calculating dependencies

1 typedef hpx::lcos::dataflow <void > dataflow_t;

2

3 vector <dataflow_t > get_deps(

4 grid <dataflow_t > const & deps

5 , size_t x, size_t y)

6 {

7 vector <dataflow_t > r;

8 r.push_back(deps(x,y));

9 if(x>0) r.push_back(deps(x-1,y));

10 if(x+1<deps.N_x) r.push_back(deps(x+1,y));

11 if(y>0) r.push_back(deps(x,y-1));

12 if(y+1<deps.N_y) r.push_back(deps(x,y+1));

13 return r;

14 }

In Listing 3 the block-wise dependency calculation is

shown: The current item has to be calculated in order

to be able to continue (Line 8); The left item, iff we

are not at the left boundary (Line 9); The right item,

iff we are not at the right boundary (Line 10); The top

item, iff we are not at the top boundary (Line 11); The

bottom item, iff we are not at the bottom boundary

(Line 12); The dependencies can be trivially derived by

looking at the stencil.

Listing 4 HPX - Jacobi Method

1 typedef dataflow <void > dataflow_t;

2 typedef

3 vector <grid <double > > vector_t;

4 hpx:: components :: dataflow_object <vector_t >

5 u = new_ <vector_t >(hpx:: find_here (),

6 2, grid <double >(N_x , N_y , 1));

7 grid <dataflow_t >

8 deps(N_x/block_size , N_y/block_size);

9 size_t dst = 0;

10 size_t src = 1;

11 for(size_t iter = 0; iter < max_iter; ++iter)

12 {

13 for(size_t y = 1, y_block = 0;

14 y < N_y -1; y += block_size , ++ y_block)

15 {

16 for(size_t x = 1, x_block = 0;

17 x < N_x -1; x += block_size , ++ x_block)

18 {

19 vector <dataflow_t >

20 iteration_deps = get_deps(

21 deps , x_block , y_block);

22 deps(x_block , y_block)

23 = u.apply(

24 hpx::bind(jacobi_kernel ,

25 hpx:: placeholder ::_1

26 , range_t(x, min(x+block_size , N_x))

27 , range_t(y, min(y+block_size , N_y))

28 , dst , src

29 )

30 , iteration_deps

31 );

32 }

33 }

34 swap(dst , src);

35 }

36 hpx::wait(deps);

Listing 4 shows the full implementation of the Jacobi

Method with HPX. It is still 100% C++ Standard com-
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pliant, but implements a complete novel approach to

parallelism. Instead of hinting the compiler to paral-

lelize the loop, we have the parallelism hidden inside the

Dataflow LCO. This Dataflow LCO is responsible for

activating a new thread once all dependencies have been

met (see Listing 3). On Line 6 a new object is created

and registered with AGAS (see Sec. 2.2) and wrapped

behind a special datatype. The iterations look exactly

like in Listing 2 but are now used to create the Dataflow

tree. At first, we need to determine the dependencies

of the current iteration (Line 21). The call to u.apply

(Line 23) creates the dataflow object. With hpx::bind

(Line 24) a function object is created that will be exe-

cuted once the passed dependencies (Line 30) are met.

This complies to the “moving work to data” paradigm

imposed by the ParalleX execution model (see Section

2). For what it matters, whether the object lives on the

current system, or on a remote location is completely

irrelevant for this code to work.

It is important to note that after the loops are fin-

ished, the system already started working in the back-

ground. What we achieved here is to remove the im-

plicit global barrier imposed by OpenMP with con-

straint based LCOs, which control, with the help of the

runtime system, all the introduced parallelism.

As the OpenMP implementation, the HPX imple-

mentation is memory bound. Except for pinning the op-

erating system threads to the according cores, no other

precautions to accommodate NUMA architectures have

been done. Due to the aggressive thread stealing of the

HPX thread-manager (see Sec. 2.2) an optimal NUMA

memory placement strategy is yet to be found. Although,

this thread stealing also implies the possibility to hide

latencies induced by inter-node memory traffic, it can-

not compensate the intrinsic bandwidth limits of cur-

rent computing platforms.

6 Benchmark Platform

In order to evaluate the performance properties of the

Jacobi Method implementations, we use a multi-socket

AMD Istanbul platform. The nominal specifications of

this machine are:

– 8 Sockets, one AMD Opteron 8431 each socket (48

Cores in total) 6 Cores per socket, 2.4 GHz Base

speed; per Core: L1 Cache Size: 128 KB, L2 Cache

Size: 512 KB, shared: L3 Cache Size: 6144 KB

– 2 GB RAM per Core (96 GB RAM in total)

– Maximum 8.5 GB/s Memory Bandwidth per socket.

– Theoretical double precision peak performance: 230

GFLOPS/s

Apart from the nominal numbers, we run the STREAM

benchmark [16] to measure the maximum memory band-
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Fig. 3 Measured memory bandwidth on the benchmark plat-
form. The shown data allows to derive that the best possible
speedup when scaling from 1 to 48 cores on this particular
system is 4.88 (26.15

5.35
) Further, this figure shows that increas-

ing the number of utilized cores per socket beyond four does
not yield any performance benefit (the scaling numbers for
six cores per socket are smaller than those for four cores).

width. Fig. 3 shows the result of the STREAM bench-

mark Copy test. Due to memory bound nature of the

discussed algorithm (see Sec. 3), we use those experi-

mental results as the basis of our considerations. De-

riving from theses numbers, the maximum achievable

speedup is 4.88 and scaling beyond four cores cannot be

expected. Additionally, the implications of non-optimal

memory placement can be observed by considering the

difference between the theoretical bandwidth and the

measured. By placing the allocated memory pages in

a round-robin fashion (interleaved) we get a good esti-

mate on how much performance can be expected in our

benchmarks.

7 Results

We benchmark our implementations using the example

problems introduced in Sec. 3. For the uniform prob-

lem (Sec. 3.1), we performed weak scaling and strong

scaling tests. For weak scaling, the number of points

on the y-axis were kept constant at 100000, and for ev-

ery core 1000 grid points on the x-axis were added. For

strong scaling, we chose a problem size of 10000x100000

(N_x = 10000 and N_y = 100000). The block_size has been

chosen to be 1000 such that one tile calculation fits eas-

ily into the level-2 cache of our platform. Additionally,

the problem size has been chosen big enough such that

enough work for all processors can be assumed. The

algorithm has been run for 100 iterations. The Jacobi

Solver for the irregular grid discussed in Sec. 3.2 was

run for 1000 iterations and a block_size of 50000 has
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The measured results for the OpenMP and HPX applications
are compared with the measured maximum bandwidth (as de-
rived from Fig. 3). Both, the OpenMP and HPX applications
have similar qualitative scaling behavior. All three implemen-
tations show good weak scaling.

been chosen such that the level-2 cache is employed ap-

propriately.

The performance is measured in Mega Lattice Site

Updates per second (MLUPS). One lattice site is one

element of the grid. Based on the performance char-

acteristics of the benchmark platform (Sec. 6), we can

calculate the maximal achievable performance. The up-

date of one lattice in the uniform grid needs three mem-

ory transfers, thus 24 bytes are transferred. In the case

of the non-uniform grid, we assume the mean num-

ber of memory transfers of 47.38, which means that

379.04 bytes are transferred for one lattice update. Di-

viding the measured peak memory bandwidth by those

numbers, leads to an expected maximum performance

(shown as blue lines in all figures). For the OpenMP

implementations we measure the achieved performance

with static and dynamic work scheduling.

All of our benchmarks shows the same weak scaling

behavior for the uniform testcase. It can be observed

that the HPX implementation is able to perform and

scale as good as the OpenMP implementation (Fig. 4).

Weak scaling on the entire system (Fig. 5) is sim-

ilar to scaling on one core. When utilizing the com-

plete machine, the presented implementations are able

to reach the expected performance almost everywhere.

HPX performance starts to decline after using more

than 5 sockets. This is due to the currently non-optimized

NUMA placement (a maximum of 9% slower).

As expected for the uniform workload, OpenMP is

able to perfectly use the resources of the system, while

HPX is around 15% slower (Fig. 6). This is due to run-

time overheads of the HPX runtime system, which can-
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Fig. 5 Weak scaling of the uniform problem on the entire sys-
tem. The measured results for the OpenMP and HPX applica-
tions are compared with the measured maximum bandwidth
for the whole system (as derived from Fig. 3). These num-
bers are qualitatively consistent with the results presented in
Fig. 4.
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Fig. 6 Strong scaling of the uniform problem on the entire
system. The measured results for the OpenMP and HPX ap-
plications are compared with the measured maximum band-
width for the whole system (as derived from Fig. 3). These
numbers are qualitatively consistent with the results pre-
sented in Fig. 6.

not be amortized by such a highly regular workload.

The scaling behavior however is consistent for both im-

plementations.

Fig. 7 shows the performance of both implementa-

tions for the entire system. For both runs, interleaved

memory placement is used. It can be seen that the

OpenMP implementation is able to almost reach the

expected performance. The HPX implementation show

the same scaling behavior. By using more parallel com-

pute resources, the HPX implementation is able to reach

the OpenMP performance. Changing the scheduling of

the OpenMP work chunks, only influences the results

minimally.



8 T. Heller et al.

0

0.25

0.5

0.75

1

1.25

0 1 2 3 4 5 6 7 8

G
LU

P
S 

Number of Sockets 

Strong Scaling of Uniform Problem on Entire System 
(Running 4 Cores per Socket) 

Expected

OpenMP, static

OpenMP, dynamic

HPX

Fig. 7 Strong scaling of the uniform problem on the entire
system. The measured results for the OpenMP and HPX ap-
plications are compared with the measured maximum band-
width for the whole system (as derived from Fig. 3). These
numbers are qualitatively consistent with the results pre-
sented in Fig. 6.
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Fig. 8 Strong scaling of the non-uniform problem on one
socket. Both, the OpenMP and HPX applications have sim-
ilar qualitative scaling behavior, while the HPX application
consistently shows slightly slower runtimes. However, the dif-
ference is much smaller than in the uniform case.

The performance behavior of the non-uniform prob-

lem on one socket (Fig. 8) shows similar properties as

the regular problem. Due to the workload imbalance,

the dataflow-based parallelization technique of HPX is

able to gain ground. It is now only 6% slower than the

OpenMP one.

In Fig. 9 the benefits of the dataflow-based imple-

mentation with HPX can be seen very clearly. The more

parallel resources are added to the system, the better

the HPX implementation is able to perform. It can be

observed that a maximum of 18% performance gain (24

cores) over the OpenMP implementation with static

scheduling can be reached. This can be explained by
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Fig. 9 Strong scaling of the non-uniform problem on the en-
tire system. This figure shows, that the HPX application per-
forms better than the OpenMP code. The advantage increases
with an increasing number of parallel resources utilized for the
runs.

the fact that every element update has different tim-

ing behaviors due to the irregular mesh. While HPX is

able to dynamically schedule work items, the implicit

global barrier of OpenMP needs to wait for all blocks

to finish. It can be seen that by using 5 Sockets (30

cores), the workload is balanced, and OpenMP is able

to reach a higher performance. By changing the work

scheduling algorithm of OpenMP to be dynamic, both

HPX and OpenMP show almost the same performance,

with slightly better results for OpenMP.

8 Conclusion

In this paper we compared the performance and scaling

characteristics of two different applications of a Jacobi

solver for a linear system of equations. One application

is using a very regular, uniform grid, whereas the other

solves the linear system of equations on a highly ir-

regular grid. Both applications have been implemented

using OpenMP and HPX. We present results confirm-

ing that the data driven, task-queue based, fine grain

parallelism and the constraint based synchronization

methods as implemented in HPX are highly beneficial

if the properties inherent to the tested algorithm cause

load imbalances in terms of execution time or data

distribution. Further, the implementation of a Jacobi

solver based on OpenMP exposes almost perfect perfor-

mance and scaling characteristics for a highly regular

use case. However, if the algorithm causes more irreg-

ular resource utilization, the performance and scaling

capabilities of the OpenMP solution degrade quickly,

unless the scheduling of work chunks is changed. At

the same time we see almost no degradation in terms

of performance or scaling for an equivalent HPX appli-
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cation, allowing to outperform and outscale the static

OpenMP based application for the analyzed, highly ir-

regular usage modes. While OpenMP and HPX are on

the same performance level when comparing the dy-

namic work scheduling algorithms where HPX is able

to provide a uniform solution and has a lot of potential

optimization possibilities.

While this paper didn’t discuss distributed memory

systems it should be noted that formulating an algo-

rithm with HPX that is able to run on clusters is easy to

implement. The exchange of ghost zones can be formu-

lated in terms of Data flow and the communication will

be automatically overlapped with computation. Such

an approach will lead to highly complex implementa-

tions if implemented with conventional methods such

as MPI and OpenMP.
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