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1. ABSTRACT 

High performance computing (HPC) is experiencing 
a phase change with the challenges of programming 
and management of heterogeneous multicore sys-
tems architectures and large scale system configu-
rations. It is estimated that by the end of the next 
decade Exaflops computing systems requiring hun-
dreds of millions of cores demanding multi-billion-
way parallelism with a power budget of 50 
Gflops/watt may emerge. At the same time, there 
are many scaling-challenged applications that al-
though taking many weeks to complete, cannot 
scale even to a thousand cores using conventional 
distributed programming models. This paper de-
scribes an experimental methodology, ParalleX, that 
addresses these challenges through a change in the 
fundamental model of parallel computation from 
that of the communicating sequential processes 
(e.g., MPI) to an innovative synthesis of concepts 
involving message-driven work-queue execution in 
the context of a global address space. The focus of 
this work is a new runtime system required to test, 
validate, and evaluate the use of ParalleX concepts 
for extreme scalability. This paper describes the 
ParalleX model and the HPX runtime system and 
discusses how both strategies contribute to the goal 
of extreme computing through dynamic asynchron-
ous execution. The paper presents the first early 
experimental results of tests using a proof-of-
concept runtime-system implementation. These 
results are very promising and are guiding future 
work towards a full scale parallel programming and 
runtime environment. 

2. INTRODUCTION 

An important class of parallel applications is emerging 
as scaling impaired. These are problems that require 
substantial execution time, sometimes exceeding a 
month, but which are unable to make effective use of 
more than a few hundred processors. One such example 

is numerical relativity used to model colliding neutron 
stars to simulate gamma ray bursts (GRB) and simulta-
neously identify the gravitational wave signature for 
detection with such massive instruments as LIGO (Laser 
Interferometer Gravitational Observatory). These codes 
exploit the efficiencies of Adaptive Mesh Refinement 
(AMR) algorithms to concentrate processing effort at 
the most active parts of the computation space at any 
one time. However, conventional parallel programming 
methods using MPI [1] and systems such as distributed 
memory MPPs and Linux clusters exhibit poor efficiency 
and constrained scalability, severely limiting scientific 
advancement. Many other applications exhibit similar 
properties. To achieve dramatic improvements for such 
problems and prepare them for exploitation of Peta-
flops systems comprising millions of cores, a new execu-
tion model and programming methodology is required 
[2]. This paper briefly presents such a model, ParalleX, 
and provides early results from an experimental im-
plementation of the HPX runtime system that suggests 
the future promise of such a computing strategy. 

It is recognized that technology trends have forced high 
performance system architectures into the new regime 
of heterogeneous multicore structures. With multicore 
becoming the new Moore’s Law, performance advances 
even for general commercial applications are requiring 
parallelism in what was once the domain of purely se-
quential computing. In addition, accelerators including, 
but not limited, to GPUs are being applied for significant 
performance gains, at least for certain applications 
where inner loops exhibit numeric intensive operation 
on relatively small data. Future high end systems will 
integrate thousands of “nodes”, each comprising many 
hundreds of cores by means of system area networks. 
Future applications like AMR algorithms will involve the 
processing of large time-varying graphs with embedded 
meta-data. Also of this general class are informatics 
problems that are of increasing importance for know-
ledge management and national security.  

Critical bottlenecks to the effective use of new genera-
tion HPC systems include: 



2 

 

 Starvation – due to lack of usable application paral-
lelism and means of managing it, 

 Overhead – reduction to permit strong scalability, 
improve efficiency, and enable dynamic resource 
management, 

 Latency – from remote access across system or to 
local memories, 

 Contention – due to multicore chip I/O pins, memo-
ry banks, and system interconnects. 

The ParalleX model has been devised to address these 
challenges by enabling a new computing dynamic 
through the application of message-driven computation 
in a global address space context with lightweight syn-
chronization. This paper describes the ParalleX model 
through the syntax of the PXI API and presents a run-
time system architecture that delivers the middleware 
mechanisms required to support the parallel execution, 
synchronization, resource allocation, and name space 
management. Section 3 describes the ParalleX model 
and the performance drivers motivating it. Section 4 
describes the HPX runtime system architecture and par-
ticular implementation details important to the results. 
Section 5 describes early experiments that demonstrate 
key functional attributes of the runtime system. Section 
6 presents and discusses the results, with concluding 
comments and future work presented in Section 7. 

3. THE PARALLEX MODEL OF PARALLEL 
EXECUTION 

A phase change in high performance computing is dri-
ven by significant advances in enabling technologies 
requiring new computer architectures to exploit the 
performance benefits of the technologies, while com-
pensating for the challenges they present. Fundamental 
to such effective change, the architectures that reflect 
them, and the programming models that enable access 
and user exploitation of them is the transformative ex-
ecution model that establishes the semantic framework 
tying all levels together. Historically, HPC has expe-
rienced at least five such phase changes in models of 
computation over the last six decades each enabling a 
successive technology generation. Currently significant 
advances in technology are forcing dramatic changes in 
their usage as reflected by early multicore heterogene-
ous architectures suggesting the need for new ap-
proaches to application programming.  

The goal of the ParalleX model of computation is to ad-
dress the key challenges of efficiency, scalability, sus-
tained performance, and power consumption with re-
spect to the limitations of conventional programming 
practices (e.g., MPI). ParalleX will improve efficiency by 
reducing average synchronization and scheduling over-
head, improve utilization through asynchrony of work 

flow, and employ adaptive scheduling and routing to 
mitigate contention (e.g., memory bank conflicts). Sca-
lability will be dramatically increased, at least for cer-
tain classes of problems, through data directed compu-
ting using message-driven computation and lightweight 
synchronization mechanisms that will exploit the paral-
lelism intrinsic to dynamic directed graphs through 
their meta-data. As a consequence, sustained perfor-
mance will be dramatically improved both in absolute 
terms through extended scalability for those applica-
tions currently constrained, and in relative terms due to 
enhanced efficiency achieved. Finally, power reductions 
will be achieved by reducing extraneous calculations 
and data movements. Speculative execution and specul-
ative prefetching are largely eliminated while dynamic 
adaptive methods and multithreading in combination 
serve many of the purposes these conventionally pro-
vide. 

ParalleX replaces the conventional communicating se-
quential processes model to address the challenges im-
posed by post-Petascale computing, multicore arrays, 
heterogeneous accelerators, and the specific class of 
dynamic graph problems while exploiting the opportun-
ities of multithreaded multicore technologies and archi-
tectures. Instead of statically allocated processes using 
message-passing for communication and synchroniza-
tion, dynamically scheduled multiple threads using 
message-driven mechanisms for moving the work to the 
data and local control objects for synchronization are 
employed. The result is a new dynamic based on local 
synchrony and global asynchronous operation. Key to 
the efficiency and latency hiding of ParalleX is the mes-
sage-driven work-queue methodology of applying user 
tasks to physical processing resources. This separates 
the work from the resources and given sufficient paral-
lelism allows the processor cores to continue to do use-
ful work even in the presence of remote service re-
quests and data accesses. This results in system-wide 
latency hiding intrinsic to the paradigm. 

Global barriers are essentially eliminated as the prin-
cipal means of synchronization, and instead replaced by 
lightweight Local Control Objects (LCOs) that can be 
used for a plethora of purposes from simple mutex con-
structs to sophisticated futures semantics for anonym-
ous producer-consumer operation. LCOs enable event-
driven thread creation and can support in-place data 
structure protection and on-the-fly scheduling. One 
consequence of this is the elimination of conventional 
critical sections with equivalent functionality achieved 
local to the data structure contended for by embedded 
local control objects and dynamic futures. The paral-
lelism implicit in the topology of the directed graphs is 
exposed and exploited to address starvation by enabling 
more concurrency, dynamic scheduling, and adaptive 
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control. Local Control Objects may be embedded within 
the graph structures themselves guiding contention of 
concurrent actions on the same data helping to expose 
fine grained parallelism. 

Unlike conventional distributed memory practices, Pa-
ralleX exhibits an active global address space (AGAS) 
that is an extension of experimental partitioned global 
address space (PGAS [3]). The key value of AGAS is that 
it allows virtual objects to be moved in physical space 
(across localities) without having to change the virtual 
name. In some applications, this is of no value as static 
distribution of data is sufficient. But where dynamic 
load balancing or dynamic directed graph problems are 
important to extreme scale application execution, then 
the ability to employ a more flexible shared global name 
management scheme can greatly simplify and make 
more efficient resource allocation over time. 

ParalleX establishes a new relationship between virtual 
processes and the physical processing resources. Con-
ventional practices assign a given process to a specified 
processor (or core). “Parallel processes” means multiple 
processes operating concurrently. ParalleX parallel 
processes incorporate substantial parallelism within a 
given process, map to multiple cores, and provide 
shared name space across multiple localities or nodes. A 
ParalleX parallel process can define a name space 
shared across several localities supporting many con-
current threads and child processes. It allows applica-
tion modules to be defined with a shared name space 
and exploit many layers of parallelism within the same 
context. 

ParalleX will support the phase change in HPC that is 
required to extend the value of future technology trends 
as embodied in the increase in the number of cores and 
variability of core structures and ISAs. Multicore is the 
new Moore’s Law. Post-Petascale computing towards 
Exascale will demand millions of cores and hundreds of 
million-way parallelism. New classes of applications 
based on dynamic graph structures from Science, Tech-
nology, Engineering and Mathematics (STEM) to infor-
matics problems will require effective execution in form 
and functionality very different from conventional vec-
tor-like problems (for typical problems). ParalleX pro-
vides semantics and mechanisms that will support mul-
ticore systems performing graph-based problems for 
extremes in scalability 

4. HPX  

The HPX (High Performance ParalleX) runtime system 
presented in this paper leverages the experience ob-
tained from developing earlier versions of runtime sys-
tems for parallel execution models. This implementa-
tion in C++ represents a first attempt to develop a com-
prehensive API for a parallel runtime system supporting 

the ParalleX model. It provides a target for the devel-
opment and implementation of the PXI specification, 
which is meant to define a low level API for ParalleX 
applications, very much as MPI [1] defines an API for 
communicating sequential processes. The implementa-
tion has a number of key features, described later in 
detail: 

 It is a modular, feature-complete, and performance 
oriented representation of the ParalleX model tar-
geted at conventional architectures and, currently, 
Linux based systems.  

 Its modular architecture allows for easy compile 
time customization and minimizes the runtime 
memory footprint.   

 It enables dynamically loaded application-specific 
modules to extend the available functionality, at 
runtime. Static pre-binding at link time is also sup-
ported. 

 Its strict adherence to Standard-C++ [4] and the 
utilization of Boost [5] enables it to combine power-
ful compile time optimization techniques and op-
timal code generation with excellent portability and 
a modular library structure.  

 It has been designed for distributed applications 
handling very large dynamic graphs.  

We designed HPX as a runtime system providing an al-
ternative to conventional computation models, such as 
MPI, while attempting to overcome limitations: such as 
global barriers, insufficient and too coarse grained par-
allelism, and poor latency hiding capabilities. The Paral-
leX model is intrinsically latency hiding, delivering an 
abundance of parallelism within a hierarchical distri-
buted global shared name-space environment. This al-
lows HPX to provide a multi-threaded, message-driven, 
split-phase transaction, non-cache coherent distributed 
shared memory programming model using futures 
based synchronization on large distributed system ar-
chitectures.  

4.1 General Design 

The implementation level requirements of the HPX li-
brary as described in the previous section directly mo-
tivate a number of design objectives. Our most impor-
tant objective was to design a state-of-the-art parallel 
runtime system providing a solid foundation for Paral-
leX applications while remaining as efficient, as porta-
ble, and as modular as possible. This efficiency and 
modularity of the implementation, is then central to the 
design, and dominates the overall architecture of the 
library (see Figure 1). 

Figure 1 shows a block diagram of our HPX implementa-
tion. It exposes the necessary modules and an API to 
create, manage, connect, and delete any ParalleX parts 
from an application; it is generally responsible for re-
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source management. The current implementation of 
HPX provides the infrastructure for the following Paral-
leX concepts: 

 AGAS (active global address space) 
 Parcel transport and parcel management 
 Threads and thread management 
 LCO’s (local control objects), and 
 Parallel Processes. 

The following sections will describe design considera-
tions and implementation specific details for those ele-
ments. 

4.2 AGAS – The Active Global Address 
Space 

The requirements for dynamic load balancing and the 
support for dynamic graph related problems define the 
necessity for a single global address space across the 
system. The abstraction of localities is introduced as a 
means of defining a border between controlled syn-
chronous (intra-locality) and fully asynchronous (inter-
locality) operations. A locality is a contiguous physical 
domain, managing intra-locality latencies, while guaran-
teeing compound atomic operations on local state. Dif-
ferent localities may expose diverse temporal locality 
attributes. Our implementation interprets a locality to 
be equivalent to a node in a conventional system. 

Everything in ParalleX needs to be movable to a differ-
ent locality without ever changing its name. At the same 
time, conventional SMP systems often don’t have a uni-
form address space. The Partitioned Global Address 
Space [6] as a current attempt to solve this problem 
lacks the global immutability of names.  The Active 
Global Address Space (AGAS) assigns global names (ids, 
unstructured 128 bit integers) to all entities managed 
by HPX. It provides a means of resolving these global ids 

into the corresponding local virtual addresses (LVA’s), 
while assuming no coherence between localities. LVA’s 
consist of the locality id, the type of the entity, and its 
local memory address. Moving an entity to a different 
locality updates this mapping, keeping all references to 
the moved item valid.  

Our current implementation is based on centralized 
server/client architecture. As measurements showed 
this to be a bottleneck for larger numbers of localities 
we implemented a local caching policy minimizing the 
number of required network roundtrips as much as 
possible. The current implementation allows the crea-
tion of the globally unique id’s autonomously in the lo-
cality where the entity is created, avoiding additional 
overhead. The modular system architecture will make 
possible the future replacement of the server/client 
architecture with a more scalable solution without 
touching any of the other parts of the runtime system.  

4.3 Parcel Transport and Management 

Any inter-locality messaging is based on Parcels. In Pa-
ralleX, parcels are an extended form of active messages. 
They consist of 4 parts: the global address of their des-
tination, the action to perform, the arguments to pass 
on to the invoked action, and a continuation, which is a 
list of local control objects to be triggered after the ac-
tion is executed. The continuation implements distri-
buted flow control as it specifies the sequence of opera-
tions across localities.  

Parcels are generated and sent whenever an operation 
has to be applied on a remote locality and are either 
used to move the work to the data or to gather small 
pieces of data back to the caller. Parcels enable message 
passing for distributed control flow and dynamic re-
source management, implementing a split phase trans-
action based execution model.  

In the HPX implementation, parcels are represented as 
polymorphic C++ objects. They are serialized and de-
serialized using a sophisticated serialization scheme, 
binding the actions to execute at compile time. This 
highly optimal implementation removes the need to 
look up the function to invoke based on the action de-
scription stored in the parcel. 

Parcels are sent to their destination using the imple-
mented parcel transport layer. Currently, it establishes 
asynchronous P2P connections between the source and 
destination localities. The parcel transport layer not 
only buffers incoming and outgoing parcels, but it au-
tomatically resolves the global destination address of a 
parcel to send to the id of the destination locality. Addi-
tionally it either dispatches the incoming parcels to the 
local thread manager or forwards them in case the des-
tination entity has been moved to a different locality. 

Figure 1: Modular structure of the current HPX im-
plementation. HPX implements the supporting functionali-
ty for all of the elements needed for the ParalleX model: AGAS 
(active global address space), parcel port and parcel handlers, 
thread manager, ParalleX threads, ParalleX processes, LCO’s 
(local control objects), and the means of integrating applica-
tion specific components. 
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While HPX is currently based on TCP/IP, we will im-
prove the performance of the parcel transport layer by 
incorporating existing high performance messaging li-
braries, such as GASNet [7] and Converse [8]. 

4.4 PX-Threads and their Management 

PX-threads are first class HPX objects in the sense that 
they have an immutable name enabling their manage-
ment, even from remote localities. Although theoretical-
ly possible, we avoid moving threads to different locali-
ties. The preferred method is to send a parcel which 
creates a new thread continuing to work on the task at 
hand. We believe this scheme to be more efficient, espe-
cially on heterogeneous systems where moving threads 
is a very expensive operation. PX-threads maintain a 
thread state, an execution frame, and a (operation spe-
cific) set of registers. Allowed thread states are: pend-
ing, running, suspended, and terminated.  

PX-threads are implemented as user level threads. 
These are cooperatively (non-preemptively) scheduled 
in user mode by the thread manager on top of one oper-
ating systems thread (e.g., Pthread) per core. The 
threads can be scheduled without a kernel transition, 
which provides a performance boost. Additionally the 
full use of the OS’s time quantum per OS-thread can be 
achieved even if a PX-thread blocks for any reason. The 
scheduler is cooperative in the sense that it will not 
preempt a running PX-thread until it finishes execution 
or that thread cooperatively yields its execution on be-
half of other tasks. This is particularly important since it 
avoids context switches and cache thrashing due to 
randomization introduced by preemption.  

The thread manager is currently implemented as a ‘First 
Come First Served’ scheduler, where all OS threads 
work from a single (global) queue of tasks. Measure-
ments showed this to be sufficient for a relatively small 
amount of concurrent OS threads, but the contention 
arising during push/pop operations on this queue 
quickly start to limit scalability. We are working on a 
more scalable work stealing scheduler using one queue 
per OS thread (core) combined with a single global 
queue (very similar to Intel’s Thread Building Blocks 
[9], CILK++ [10], or Microsoft’s Concurrency Runtime 
[11]). At creation time the thread manager captures the 
machine topology and is parameterized with the num-
ber of resources it should use, the number of OS threads 
mapped to its allocated resources, its resource alloca-
tion policy, and whether it should give priority to ex-
ecute threads to increase cache hits or improve fairness 
across threads. By default it will use all available cores 
and will create one static OS-thread per core. 

The thread manager additionally keeps a map of all ex-
isting PX-threads of a locality. It exposes a set of func-

tions to query and manipulate any of the attributes of 
the PX-threads. 

4.5 LCO’s – Local Control Objects 

A local control object is an abstraction of a multitude of 
different functionalities for event driven PX-thread cre-
ation, protection of data structures from inconsistent 
concurrent access (race conditions) and automatic on-
the-fly scheduling of work with the goal of letting every 
single computation strand proceed as far as possible. 
Every object which may create (or reactivate) a PX-
thread as a result of receiving a parcel from a remote 
locality or of being invoked locally exposes the neces-
sary functionality of a LCO.  

As mentioned in section 4.3, LCO’s are being used to 
organize flow control. Parcel continuations are imple-
mented as lists of LCO’s enabling remote thread crea-
tion/reactivation combined with the delivery of a result 
or an error condition after the remote operation is fi-
nished.  Figure 2 depicts a simple usage of continuations 
implementing the remote creation/reactivation and 
synchronization of two PX-threads using an eager fu-
ture (a future refers to an object that acts as a proxy for 
a result that is initially not known, usually because the 
computation of its value has not yet completed) [12], 
[13].  

HPX provides specialized implementations of a full set 
of synchronization primitives (mutexes, conditions, se-
maphores, full-empty bits, etc.) usable to cooperatively 
block a PX-thread, while informing the thread manager 
that other work can be run on the OS-thread (core).  

The thread manager can then make a scheduling deci-
sion to run other work. PX-threads require these spe-
cial, cooperative synchronization primitives as it is not 
possible to use existing synchronization primitives as 
provided by the operating system because these are 
designed for OS-threads. While PX-threads are user lev-

Figure 2: Schematic Flow Diagram of a Future. At the 
point of its creation the future sends a parcel to initiate the 
remote operation. This parcel carries the id of the future itself 
as its continuation. As the result of the remote operation is 
automatically sent to the specified continuations the future 
simply waits for the result in its get() function. 
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el threads running on top of OS-threads, blocking on 
such a primitive stalls the whole OS-thread, inhibiting 
other PX-threads to be executed while waiting.  We will 
explain the usage of other LCO’s in section 5: dataflow 
templates. It is interesting to note that suspended PX-
threads are LCO’s as well, as they “produce” an active 
thread when triggered (reactivated). 

5. EXPERIMENTS  

This section describes the setup of two experiments 
conducted for this paper. First, we compared results of 
Fibonacci number calculations using different pro-
gramming environments. Second, we compared the run-
time behavior of a synthetic MPI program doing single-
level evolution on a one-dimensional periodic grid with 
an equivalent program written using HPX. 

The implementation of the Fibonacci calculation uses a 
recursive algorithm expecting positive numbers. All 
written test programs (using Java native threads, 
Pthreads, and PX-threads) instantiate one thread per 
invocation of the function fib() (see Figure 4), while 
joining the threads before returning the result value.  

To evaluate the efficiency of HPX in dealing with asym-
metric parallel workloads (such as those characterizing 
GRB code), a synthetic MPI program was developed to 
perform a single-level evolution on a one-dimensional 
periodic grid, mirroring typical programming practices 
adopted by the scientific computing community. This 
application equally distributes the grid points across 
the available MPI processes and assigns a predefined 
amount of work to each fixed-sized zone grouping adja-
cent points. The amount of work in each zone is distri-
buted randomly; with mean and standard deviation 
specified by the user (a uniform probability distribution 
function was used). It needs to be emphasized, that such 
a model is only a vastly simplified representation of 
real-world astrophysics simulations, in which 10-level 
AMR in three dimensions could produce as much as 
1610 times the computational effort per data point of 
that performed at the base grid level. At the end of each 

time step, the MPI program performs a boundary up-
date involving explicit message passing between the 
processes, acting effectively as a barrier. Special care 
has been taken to assure that the cumulative workloads 
in both MPI and HPX implementation discussed below 
are identical despite the randomization.  

The HPX test program uses a completely different ap-
proach of representing an equivalent data grid. Each 
data point is implemented as a separate dataflow tem-
plate having 3 inputs and 3 outputs, where the inputs 
are connected to outputs of adjacent data points in a 
way mirroring the required data transfer between data 
points after each time step. Figure 3 shows a schematic 
overview of the layout. The implemented two stage 
pipeline is configured such that the outputs of stage 1 
are connected back to the inputs of stage 0, minimizing 
the required amount of dataflow templates to 2N (with 
N being the number of data points). This approach 
completely avoids global barriers as each data point can 
proceed as soon as the adjacent previous data points 
calculated their result values. 

6. RESULTS  

For the sake of consistency, all experiments were per-
formed on a dedicated dual-Opteron workstation con-
taining 4 execution cores and 8 GB of memory. Note that 
this configuration sensibly limits the number of the un-
derlying OS-threads executing the concurrent work-

int fib(int x) 
{ 
    if (n == 1 || n == 2) 
        return n; 
    return fib(n-1) + fib(n-2); 
}  

Figure 4: Algorithm of used Fibonacci calculation. 
Despite its poor performance the recursive Fibonacci algo-
rithm has been chosen because the code is trivial and allows 
performing good analysis of the respective overheads intro-
duced by the different programming models. 

Figure 3: Schematic structure of a two stage static 
dataflow graph used for one dimensional adaptive 
mesh refinement (AMR) calculations. Each of the func-
tional elements F corresponds to a single data point at a cer-
tain time step. Each functional element takes the 3 outputs 
generated at the previous time step by the adjacent elements, 
calculates the current time step, and provides the value to the 
adjacent functional elements responsible for the next time 
step. The outputs Out1,i,i-1, Out1,i,i, and Out1,i,i+1, are connected 
to the inputs I0,i-1,i-1, I0,i,i, and I0,i+1,i+1, forming a closed execu-
tion loop. Adaptive mesh refinement is achieved by instantiat-
ing a new static dataflow graph replacing several functional 
elements with a finer resolution graph. 
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loads in HPX to the maximum of four. The performance 
data were collected using multithreaded programs cal-
culating the Fibonacci sequence written in HPX, Java, 
and Linux Pthreads (NPTL). While both HPX and Java 
applications used their respective implementations of 
futures to handle the asynchrony, the Pthreads code 
relied on explicit child thread joins to extract the result 
of lower level calculations, thus preserving the tree-like 
structure of computation.  

The graph of execution time shown in Figure 6 was ob-
tained starting with the argument value of 5 and con-
tinuing until the system exhausted its physical memory 
(HPX), or application crashes started to occur due to 
violation of preset physical resource limits (Java, 
Pthreads). As can be seen, HPX user-level threads con-
sistently outperform the other two implementations 
because of much lower overhead of thread creation and 
context switches, even when executing only on top of 
one OS-thread. Moreover, the per-thread memory re-
quirements of HPX are substantially lower, shifting the 
“knee” of the performance curve towards greater argu-
ment values. This means that the point at which a sub-
stantial fraction of the working set is relegated to the 
main memory (as opposed to running mostly from 
caches) occurs for much higher number of concurrent 
threads in HPX, indicating greater scalability. However, 
HPX still has a room for improvement, as the speedup 
obtained with four versus one worker OS thread was 
smaller than 4, which suggests some scheduling ineffi-
ciencies. 

The graph of the execution times comparing the MPI 
and HPX AMR programs collected for 50 iterations on 
100 grid points and normalized to unit mean workload 

per point, is shown in Figure 5. Normalization was done 
to eliminate the skewing of results by the communica-
tion and scheduling overheads, as the amount of work 
per point in a single time step was substantial (few tens 
of milliseconds). As expected, the performance of both 
applications is identical when the standard deviation is 
zero (MPI processes don’t have to wait for each other in 
the update phase, as they execute the same amount of 
work). The situation changes radically when workload 
variation is introduced; since the increase in execution 
time of the busiest MPI process in each of the iterations 
is proportional to the standard deviation of the work-
load, the performance of the MPI application drops li-
nearly with the standard deviation. The HPX implemen-
tation performed evenly in all cases (the run times re-
mained constant to two significant digits), which proves 
the validity of ParalleX asynchronous execution model 
for this class of applications.  

7. FUTURE WORK  

This paper presents results drawn from using an early 
version of HPX. Our future work will concentrate on 
implementing ParalleX processes. These will be first 
class HPX objects defining a distributed, not necessarily 
contiguous execution environment. They are used to 
specify a broad task while transcending multiple locali-
ties and providing a namespace for the execution of 
threads. 

As a parallel effort, we currently work on a specification 
of a ParalleX API (called PXI), which will define lan-
guage bindings for C, Fortran and C++ for ParalleX ap-

Figure 6: Runtimes for different implementations of 
the Fibonacci sequence. This figure depicts the depen-
dency of the wallclock time (logarithmic scale) needed for cal-
culation of a Fibonacci number using equivalent implemen-
tations based on different programming environments: HPX, 
Java, and Pthreads. 

Figure 5: Runtimes for equivalent MPI and HPX test 
model runs. This figure shows the dependency between the 
overall runtime of a test model run and the standard devia-
tion of a non-uniform workload executed at each of the data 
points of the data grid. 
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plications very much like MPI specifies an API for com-
municating sequential processes. Implementation wise, 
this environment will comprise a preprocessor and a set 
of support libraries referred to in combination as PXlib 
that will permit the integration of PXI/C codes with the 
existing HPX runtime system, native C compilers, and 
Unix (including Linux) operating system calls.  
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