ParalleX: An Advanced Parallel Execution Model for Scaling-
Impaired Applications

Hartmut Kaiser
Center for Computation and
Technology
Louisiana State University

hkaiser@cct.lsu.edu

1. ABSTRACT

High performance computing (HPC) is experiencing
a phase change with the challenges of programming
and management of heterogeneous multicore sys-
tems architectures and large scale system configu-
rations. It is estimated that by the end of the next
decade Exaflops computing systems requiring hun-
dreds of millions of cores demanding multi-billion-
way parallelism with a power budget of 50
Gflops/watt may emerge. At the same time, there
are many scaling-challenged applications that al-
though taking many weeks to complete, cannot
scale even to a thousand cores using conventional
distributed programming models. This paper de-
scribes an experimental methodology, ParalleX, that
addresses these challenges through a change in the
fundamental model of parallel computation from
that of the communicating sequential processes
(e.g., MPI) to an innovative synthesis of concepts
involving message-driven work-queue execution in
the context of a global address space. The focus of
this work is a new runtime system required to test,
validate, and evaluate the use of ParalleX concepts
for extreme scalability. This paper describes the
ParalleX model and the HPX runtime system and
discusses how both strategies contribute to the goal
of extreme computing through dynamic asynchron-
ous execution. The paper presents the first early
experimental results of tests using a proof-of-
concept runtime-system implementation. These
results are very promising and are guiding future
work towards a full scale parallel programming and
runtime environment.

2. INTRODUCTION

An important class of parallel applications is emerging
as scaling impaired. These are problems that require
substantial execution time, sometimes exceeding a
month, but which are unable to make effective use of
more than a few hundred processors. One such example

Maciej Brodowicz
Center for Computation and
Technology
Louisiana State University

maciek@cct.lsu.edu

Thomas Sterling
Center for Computation and
Technology
Department of Computer Science
Louisiana State University

tron@cct.lsu.edu

is numerical relativity used to model colliding neutron
stars to simulate gamma ray bursts (GRB) and simulta-
neously identify the gravitational wave signature for
detection with such massive instruments as LIGO (Laser
Interferometer Gravitational Observatory). These codes
exploit the efficiencies of Adaptive Mesh Refinement
(AMR) algorithms to concentrate processing effort at
the most active parts of the computation space at any
one time. However, conventional parallel programming
methods using MPI [1] and systems such as distributed
memory MPPs and Linux clusters exhibit poor efficiency
and constrained scalability, severely limiting scientific
advancement. Many other applications exhibit similar
properties. To achieve dramatic improvements for such
problems and prepare them for exploitation of Peta-
flops systems comprising millions of cores, a new execu-
tion model and programming methodology is required
[2]. This paper briefly presents such a model, ParalleX,
and provides early results from an experimental im-
plementation of the HPX runtime system that suggests
the future promise of such a computing strategy.

It is recognized that technology trends have forced high
performance system architectures into the new regime
of heterogeneous multicore structures. With multicore
becoming the new Moore’s Law, performance advances
even for general commercial applications are requiring
parallelism in what was once the domain of purely se-
quential computing. In addition, accelerators including,
but not limited, to GPUs are being applied for significant
performance gains, at least for certain applications
where inner loops exhibit numeric intensive operation
on relatively small data. Future high end systems will
integrate thousands of “nodes”, each comprising many
hundreds of cores by means of system area networks.
Future applications like AMR algorithms will involve the
processing of large time-varying graphs with embedded
meta-data. Also of this general class are informatics
problems that are of increasing importance for know-
ledge management and national security.

Critical bottlenecks to the effective use of new genera-
tion HPC systems include:

e Starvation - due to lack of usable application paral-
lelism and means of managing it,

e QOverhead - reduction to permit strong scalability,
improve efficiency, and enable dynamic resource
management,

e Latency - from remote access across system or to
local memories,

e (ontention - due to multicore chip I/0 pins, memo-
ry banks, and system interconnects.

The ParalleX model has been devised to address these
challenges by enabling a new computing dynamic
through the application of message-driven computation
in a global address space context with lightweight syn-
chronization. This paper describes the ParalleX model
through the syntax of the PXI API and presents a run-
time system architecture that delivers the middleware
mechanisms required to support the parallel execution,
synchronization, resource allocation, and name space
management. Section 3 describes the ParalleX model
and the performance drivers motivating it. Section 4
describes the HPX runtime system architecture and par-
ticular implementation details important to the results.
Section 5 describes early experiments that demonstrate
key functional attributes of the runtime system. Section
6 presents and discusses the results, with concluding
comments and future work presented in Section 7.

3. THE PARALLEX MODEL OF PARALLEL
EXECUTION

A phase change in high performance computing is dri-
ven by significant advances in enabling technologies
requiring new computer architectures to exploit the
performance benefits of the technologies, while com-
pensating for the challenges they present. Fundamental
to such effective change, the architectures that reflect
them, and the programming models that enable access
and user exploitation of them is the transformative ex-
ecution model that establishes the semantic framework
tying all levels together. Historically, HPC has expe-
rienced at least five such phase changes in models of
computation over the last six decades each enabling a
successive technology generation. Currently significant
advances in technology are forcing dramatic changes in
their usage as reflected by early multicore heterogene-
ous architectures suggesting the need for new ap-
proaches to application programming.

The goal of the ParalleX model of computation is to ad-
dress the key challenges of efficiency, scalability, sus-
tained performance, and power consumption with re-
spect to the limitations of conventional programming
practices (e.g., MPI). ParalleX will improve efficiency by
reducing average synchronization and scheduling over-
head, improve utilization through asynchrony of work

flow, and employ adaptive scheduling and routing to
mitigate contention (e.g., memory bank conflicts). Sca-
lability will be dramatically increased, at least for cer-
tain classes of problems, through data directed compu-
ting using message-driven computation and lightweight
synchronization mechanisms that will exploit the paral-
lelism intrinsic to dynamic directed graphs through
their meta-data. As a consequence, sustained perfor-
mance will be dramatically improved both in absolute
terms through extended scalability for those applica-
tions currently constrained, and in relative terms due to
enhanced efficiency achieved. Finally, power reductions
will be achieved by reducing extraneous calculations
and data movements. Speculative execution and specul-
ative prefetching are largely eliminated while dynamic
adaptive methods and multithreading in combination
serve many of the purposes these conventionally pro-
vide.

ParalleX replaces the conventional communicating se-
quential processes model to address the challenges im-
posed by post-Petascale computing, multicore arrays,
heterogeneous accelerators, and the specific class of
dynamic graph problems while exploiting the opportun-
ities of multithreaded multicore technologies and archi-
tectures. Instead of statically allocated processes using
message-passing for communication and synchroniza-
tion, dynamically scheduled multiple threads using
message-driven mechanisms for moving the work to the
data and local control objects for synchronization are
employed. The result is a new dynamic based on local
synchrony and global asynchronous operation. Key to
the efficiency and latency hiding of ParalleX is the mes-
sage-driven work-queue methodology of applying user
tasks to physical processing resources. This separates
the work from the resources and given sufficient paral-
lelism allows the processor cores to continue to do use-
ful work even in the presence of remote service re-
quests and data accesses. This results in system-wide
latency hiding intrinsic to the paradigm.

Global barriers are essentially eliminated as the prin-
cipal means of synchronization, and instead replaced by
lightweight Local Control Objects (LCOs) that can be
used for a plethora of purposes from simple mutex con-
structs to sophisticated futures semantics for anonym-
ous producer-consumer operation. LCOs enable event-
driven thread creation and can support in-place data
structure protection and on-the-fly scheduling. One
consequence of this is the elimination of conventional
critical sections with equivalent functionality achieved
local to the data structure contended for by embedded
local control objects and dynamic futures. The paral-
lelism implicit in the topology of the directed graphs is
exposed and exploited to address starvation by enabling
more concurrency, dynamic scheduling, and adaptive

2

control. Local Control Objects may be embedded within
the graph structures themselves guiding contention of
concurrent actions on the same data helping to expose
fine grained parallelism.

Unlike conventional distributed memory practices, Pa-
ralleX exhibits an active global address space (AGAS)
that is an extension of experimental partitioned global
address space (PGAS [3]). The key value of AGAS is that
it allows virtual objects to be moved in physical space
(across localities) without having to change the virtual
name. In some applications, this is of no value as static
distribution of data is sufficient. But where dynamic
load balancing or dynamic directed graph problems are
important to extreme scale application execution, then
the ability to employ a more flexible shared global name
management scheme can greatly simplify and make
more efficient resource allocation over time.

ParalleX establishes a new relationship between virtual
processes and the physical processing resources. Con-
ventional practices assign a given process to a specified
processor (or core). “Parallel processes” means multiple
processes operating concurrently. ParalleX parallel
processes incorporate substantial parallelism within a
given process, map to multiple cores, and provide
shared name space across multiple localities or nodes. A
ParalleX parallel process can define a name space
shared across several localities supporting many con-
current threads and child processes. It allows applica-
tion modules to be defined with a shared name space
and exploit many layers of parallelism within the same
context.

ParalleX will support the phase change in HPC that is
required to extend the value of future technology trends
as embodied in the increase in the number of cores and
variability of core structures and ISAs. Multicore is the
new Moore’s Law. Post-Petascale computing towards
Exascale will demand millions of cores and hundreds of
million-way parallelism. New classes of applications
based on dynamic graph structures from Science, Tech-
nology, Engineering and Mathematics (STEM) to infor-
matics problems will require effective execution in form
and functionality very different from conventional vec-
tor-like problems (for typical problems). ParalleX pro-
vides semantics and mechanisms that will support mul-
ticore systems performing graph-based problems for
extremes in scalability

4. HPX

The HPX (High Performance ParalleX) runtime system
presented in this paper leverages the experience ob-
tained from developing earlier versions of runtime sys-
tems for parallel execution models. This implementa-
tion in C++ represents a first attempt to develop a com-
prehensive API for a parallel runtime system supporting

the ParalleX model. It provides a target for the devel-
opment and implementation of the PXI specification,
which is meant to define a low level API for ParalleX
applications, very much as MPI [1] defines an API for
communicating sequential processes. The implementa-
tion has a number of key features, described later in
detail:

e Itis a modular, feature-complete, and performance
oriented representation of the ParalleX model tar-
geted at conventional architectures and, currently,
Linux based systems.

e Its modular architecture allows for easy compile
time customization and minimizes the runtime
memory footprint.

e It enables dynamically loaded application-specific
modules to extend the available functionality, at
runtime. Static pre-binding at link time is also sup-
ported.

e Its strict adherence to Standard-C++ [4] and the
utilization of Boost [5] enables it to combine power-
ful compile time optimization techniques and op-
timal code generation with excellent portability and
a modular library structure.

e It has been designed for distributed applications
handling very large dynamic graphs.

We designed HPX as a runtime system providing an al-
ternative to conventional computation models, such as
MPI, while attempting to overcome limitations: such as
global barriers, insufficient and too coarse grained par-
allelism, and poor latency hiding capabilities. The Paral-
leX model is intrinsically latency hiding, delivering an
abundance of parallelism within a hierarchical distri-
buted global shared name-space environment. This al-
lows HPX to provide a multi-threaded, message-driven,
split-phase transaction, non-cache coherent distributed
shared memory programming model using futures
based synchronization on large distributed system ar-
chitectures.

4.1 General Design

The implementation level requirements of the HPX li-
brary as described in the previous section directly mo-
tivate a number of design objectives. Our most impor-
tant objective was to design a state-of-the-art parallel
runtime system providing a solid foundation for Paral-
leX applications while remaining as efficient, as porta-
ble, and as modular as possible. This efficiency and
modularity of the implementation, is then central to the
design, and dominates the overall architecture of the
library (see Figure 1).

Figure 1 shows a block diagram of our HPX implementa-
tion. It exposes the necessary modules and an API to
create, manage, connect, and delete any ParalleX parts
from an application; it is generally responsible for re-

3

source management. The current implementation of
HPX provides the infrastructure for the following Paral-
leX concepts:

AGAS (active global address space)
Parcel transport and parcel management
Threads and thread management

LCO’s (local control objects), and
Parallel Processes.

Locality
rocess N
Process 1 H
AGAS LCO's

Parcelport

=
=na [ol
f $ ¢ ¢ components
Parcelhandler |
\

Thread Manager |

Figure 1: Modular structure of the current HPX im-
plementation. HPX implements the supporting functionali-
ty for all of the elements needed for the ParalleX model: AGAS
(active global address space), parcel port and parcel handlers,
thread manager, ParalleX threads, ParalleX processes, LCO’s
(local control objects), and the means of integrating applica-
tion specific components.

The following sections will describe design considera-
tions and implementation specific details for those ele-
ments.

4.2 AGAS - The Active Global Address
Space

The requirements for dynamic load balancing and the
support for dynamic graph related problems define the
necessity for a single global address space across the
system. The abstraction of localities is introduced as a
means of defining a border between controlled syn-
chronous (intra-locality) and fully asynchronous (inter-
locality) operations. A locality is a contiguous physical
domain, managing intra-locality latencies, while guaran-
teeing compound atomic operations on local state. Dif-
ferent localities may expose diverse temporal locality
attributes. Our implementation interprets a locality to
be equivalent to a node in a conventional system.

Everything in ParalleX needs to be movable to a differ-
ent locality without ever changing its name. At the same
time, conventional SMP systems often don’t have a uni-
form address space. The Partitioned Global Address
Space [6] as a current attempt to solve this problem
lacks the global immutability of names. The Active
Global Address Space (AGAS) assigns global names (ids,
unstructured 128 bit integers) to all entities managed
by HPX. It provides a means of resolving these global ids

into the corresponding local virtual addresses (LVA’s),
while assuming no coherence between localities. LVA's
consist of the locality id, the type of the entity, and its
local memory address. Moving an entity to a different
locality updates this mapping, keeping all references to
the moved item valid.

Our current implementation is based on centralized
server/client architecture. As measurements showed
this to be a bottleneck for larger numbers of localities
we implemented a local caching policy minimizing the
number of required network roundtrips as much as
possible. The current implementation allows the crea-
tion of the globally unique id’s autonomously in the lo-
cality where the entity is created, avoiding additional
overhead. The modular system architecture will make
possible the future replacement of the server/client
architecture with a more scalable solution without
touching any of the other parts of the runtime system.

4.3 Parcel Transport and Management

Any inter-locality messaging is based on Parcels. In Pa-
ralleX, parcels are an extended form of active messages.
They consist of 4 parts: the global address of their des-
tination, the action to perform, the arguments to pass
on to the invoked action, and a continuation, which is a
list of local control objects to be triggered after the ac-
tion is executed. The continuation implements distri-
buted flow control as it specifies the sequence of opera-
tions across localities.

Parcels are generated and sent whenever an operation
has to be applied on a remote locality and are either
used to move the work to the data or to gather small
pieces of data back to the caller. Parcels enable message
passing for distributed control flow and dynamic re-
source management, implementing a split phase trans-
action based execution model.

In the HPX implementation, parcels are represented as
polymorphic C++ objects. They are serialized and de-
serialized using a sophisticated serialization scheme,
binding the actions to execute at compile time. This
highly optimal implementation removes the need to
look up the function to invoke based on the action de-
scription stored in the parcel.

Parcels are sent to their destination using the imple-
mented parcel transport layer. Currently, it establishes
asynchronous P2P connections between the source and
destination localities. The parcel transport layer not
only buffers incoming and outgoing parcels, but it au-
tomatically resolves the global destination address of a
parcel to send to the id of the destination locality. Addi-
tionally it either dispatches the incoming parcels to the
local thread manager or forwards them in case the des-
tination entity has been moved to a different locality.

4

While HPX is currently based on TCP/IP, we will im-
prove the performance of the parcel transport layer by
incorporating existing high performance messaging li-
braries, such as GASNet [7] and Converse [8].

4.4 PX-Threads and their Management

PX-threads are first class HPX objects in the sense that
they have an immutable name enabling their manage-
ment, even from remote localities. Although theoretical-
ly possible, we avoid moving threads to different locali-
ties. The preferred method is to send a parcel which
creates a new thread continuing to work on the task at
hand. We believe this scheme to be more efficient, espe-
cially on heterogeneous systems where moving threads
is a very expensive operation. PX-threads maintain a
thread state, an execution frame, and a (operation spe-
cific) set of registers. Allowed thread states are: pend-
ing, running, suspended, and terminated.

PX-threads are implemented as user level threads.
These are cooperatively (non-preemptively) scheduled
in user mode by the thread manager on top of one oper-
ating systems thread (e.g., Pthread) per core. The
threads can be scheduled without a kernel transition,
which provides a performance boost. Additionally the
full use of the OS’s time quantum per OS-thread can be
achieved even if a PX-thread blocks for any reason. The
scheduler is cooperative in the sense that it will not
preempt a running PX-thread until it finishes execution
or that thread cooperatively yields its execution on be-
half of other tasks. This is particularly important since it
avoids context switches and cache thrashing due to
randomization introduced by preemption.

The thread manager is currently implemented as a ‘First
Come First Served’ scheduler, where all OS threads
work from a single (global) queue of tasks. Measure-
ments showed this to be sufficient for a relatively small
amount of concurrent OS threads, but the contention
arising during push/pop operations on this queue
quickly start to limit scalability. We are working on a
more scalable work stealing scheduler using one queue
per OS thread (core) combined with a single global
queue (very similar to Intel’s Thread Building Blocks
[9], CILK++ [10], or Microsoft’s Concurrency Runtime
[11]). At creation time the thread manager captures the
machine topology and is parameterized with the num-
ber of resources it should use, the number of OS threads
mapped to its allocated resources, its resource alloca-
tion policy, and whether it should give priority to ex-
ecute threads to increase cache hits or improve fairness
across threads. By default it will use all available cores
and will create one static OS-thread per core.

The thread manager additionally keeps a map of all ex-
isting PX-threads of a locality. It exposes a set of func-

tions to query and manipulate any of the attributes of
the PX-threads.

4.5 LCO’s - Local Control Objects

A local control object is an abstraction of a multitude of
different functionalities for event driven PX-thread cre-
ation, protection of data structures from inconsistent
concurrent access (race conditions) and automatic on-
the-fly scheduling of work with the goal of letting every
single computation strand proceed as far as possible.
Every object which may create (or reactivate) a PX-
thread as a result of receiving a parcel from a remote
locality or of being invoked locally exposes the neces-
sary functionality of a LCO.

As mentioned in section 4.3, LCO’s are being used to
organize flow control. Parcel continuations are imple-
mented as lists of LCO’s enabling remote thread crea-
tion/reactivation combined with the delivery of a result
or an error condition after the remote operation is fi-
nished. Figure 2 depicts a simple usage of continuations
implementing the remote creation/reactivation and
synchronization of two PX-threads using an eager fu-
ture (a future refers to an object that acts as a proxy for
a result that is initially not known, usually because the
computation of its value has not yet completed) [12],
[13].

Locality 1 ; Locality 2
Future: creation -
i ~ Remote
&) | © .
}'é i E operation
Future: get | £ L =
= o
o

Figure 2: Schematic Flow Diagram of a Future. At the
point of its creation the future sends a parcel to initiate the
remote operation. This parcel carries the id of the future itself
as its continuation. As the result of the remote operation is
automatically sent to the specified continuations the future
simply waits for the result in its get() function.

HPX provides specialized implementations of a full set
of synchronization primitives (mutexes, conditions, se-
maphores, full-empty bits, etc.) usable to cooperatively
block a PX-thread, while informing the thread manager
that other work can be run on the OS-thread (core).

The thread manager can then make a scheduling deci-
sion to run other work. PX-threads require these spe-
cial, cooperative synchronization primitives as it is not
possible to use existing synchronization primitives as
provided by the operating system because these are
designed for OS-threads. While PX-threads are user lev-

el threads running on top of OS-threads, blocking on
such a primitive stalls the whole OS-thread, inhibiting
other PX-threads to be executed while waiting. We will
explain the usage of other LCO’s in section 5: dataflow
templates. It is interesting to note that suspended PX-
threads are LCO’s as well, as they “produce” an active
thread when triggered (reactivated).

5. EXPERIMENTS

This section describes the setup of two experiments
conducted for this paper. First, we compared results of
Fibonacci number calculations using different pro-
gramming environments. Second, we compared the run-
time behavior of a synthetic MPI program doing single-
level evolution on a one-dimensional periodic grid with
an equivalent program written using HPX.

The implementation of the Fibonacci calculation uses a
recursive algorithm expecting positive numbers. All
written test programs (using Java native threads,
Pthreads, and PX-threads) instantiate one thread per
invocation of the function fib() (see Figure 4), while
joining the threads before returning the result value.

int fib(int x)
{
if (n==1]| n==2)
return n;
return fib(n-1) + fib(n-2);
}

Figure 4: Algorithm of used Fibonacci calculation.
Despite its poor performance the recursive Fibonacci algo-
rithm has been chosen because the code is trivial and allows
performing good analysis of the respective overheads intro-
duced by the different programming models.

To evaluate the efficiency of HPX in dealing with asym-
metric parallel workloads (such as those characterizing
GRB code), a synthetic MPI program was developed to
perform a single-level evolution on a one-dimensional
periodic grid, mirroring typical programming practices
adopted by the scientific computing community. This
application equally distributes the grid points across
the available MPI processes and assigns a predefined
amount of work to each fixed-sized zone grouping adja-
cent points. The amount of work in each zone is distri-
buted randomly; with mean and standard deviation
specified by the user (a uniform probability distribution
function was used). It needs to be emphasized, that such
a model is only a vastly simplified representation of
real-world astrophysics simulations, in which 10-level
AMR in three dimensions could produce as much as
1610 times the computational effort per data point of
that performed at the base grid level. At the end of each

time step, the MPI program performs a boundary up-
date involving explicit message passing between the
processes, acting effectively as a barrier. Special care
has been taken to assure that the cumulative workloads
in both MPI and HPX implementation discussed below
are identical despite the randomization.

Outy; iy Out,; ; Outy iy
- A \ Ed - / A Ed
e e
Stage 1
Fiia Fi,i Fiin1
A 7
Stage 0
FU i-1 FO,i FO i+l
e Bl o w ol
- Pt) T T .
INgi i1 g, i Ny i1

Figure 3: Schematic structure of a two stage static
dataflow graph used for one dimensional adaptive
mesh refinement (AMR) calculations. Each of the func-
tional elements F corresponds to a single data point at a cer-
tain time step. Each functional element takes the 3 outputs
generated at the previous time step by the adjacent elements,
calculates the current time step, and provides the value to the
adjacent functional elements responsible for the next time
step. The outputs Outy,ii-1, Outsi;, and Outyii+1, are connected
to the inputs loj-1,-1, loii, and lo,+1,i+1, forming a closed execu-
tion loop. Adaptive mesh refinement is achieved by instantiat-
ing a new static dataflow graph replacing several functional
elements with a finer resolution graph.

The HPX test program uses a completely different ap-
proach of representing an equivalent data grid. Each
data point is implemented as a separate dataflow tem-
plate having 3 inputs and 3 outputs, where the inputs
are connected to outputs of adjacent data points in a
way mirroring the required data transfer between data
points after each time step. Figure 3 shows a schematic
overview of the layout. The implemented two stage
pipeline is configured such that the outputs of stage 1
are connected back to the inputs of stage 0, minimizing
the required amount of dataflow templates to 2N (with
N being the number of data points). This approach
completely avoids global barriers as each data point can
proceed as soon as the adjacent previous data points
calculated their result values.

6. RESULTS

For the sake of consistency, all experiments were per-
formed on a dedicated dual-Opteron workstation con-
taining 4 execution cores and 8 GB of memory. Note that
this configuration sensibly limits the number of the un-
derlying OS-threads executing the concurrent work-

6

loads in HPX to the maximum of four. The performance
data were collected using multithreaded programs cal-
culating the Fibonacci sequence written in HPX, Java,
and Linux Pthreads (NPTL). While both HPX and Java
applications used their respective implementations of
futures to handle the asynchrony, the Pthreads code
relied on explicit child thread joins to extract the result
of lower level calculations, thus preserving the tree-like
structure of computation.

Comparison of Different Implementations
of Fibonacci Sequence Calculations

=+=lava
—#-PThreads

Runtime [s]

~#—HPX 1 0S5-Thread
HPX 4 OS-Threads

0.001 ™ .

0.0001
5/15 10/ 177 15/1973 20/21891 25/242785 30/ 2692537

x: fib(x) / Number of Threads

Figure 6: Runtimes for different implementations of
the Fibonacci sequence. This figure depicts the depen-
dency of the wallclock time (logarithmic scale) needed for cal-
culation of a Fibonacci number using equivalent implemen-
tations based on different programming environments: HPX,
Java, and Pthreads.

The graph of execution time shown in Figure 6 was ob-
tained starting with the argument value of 5 and con-
tinuing until the system exhausted its physical memory
(HPX), or application crashes started to occur due to
violation of preset physical resource limits (Java,
Pthreads). As can be seen, HPX user-level threads con-
sistently outperform the other two implementations
because of much lower overhead of thread creation and
context switches, even when executing only on top of
one 0OS-thread. Moreover, the per-thread memory re-
quirements of HPX are substantially lower, shifting the
“knee” of the performance curve towards greater argu-
ment values. This means that the point at which a sub-
stantial fraction of the working set is relegated to the
main memory (as opposed to running mostly from
caches) occurs for much higher number of concurrent
threads in HPX, indicating greater scalability. However,
HPX still has a room for improvement, as the speedup
obtained with four versus one worker OS thread was
smaller than 4, which suggests some scheduling ineffi-
ciencies.

The graph of the execution times comparing the MPI
and HPX AMR programs collected for 50 iterations on
100 grid points and normalized to unit mean workload

Comparison of Non-uniform Workload
Execution in MPl and HPX

=
Q
E 0¥
=
5 , —+—HPX
e 15
-=-MPI

1] 0.1 02 03 04 05 06

Standard Deviation of Execution Time
for Single Data Point

Figure 5: Runtimes for equivalent MPI and HPX test
model runs. This figure shows the dependency between the
overall runtime of a test model run and the standard devia-
tion of a non-uniform workload executed at each of the data
points of the data grid.

per point, is shown in Figure 5. Normalization was done
to eliminate the skewing of results by the communica-
tion and scheduling overheads, as the amount of work
per point in a single time step was substantial (few tens
of milliseconds). As expected, the performance of both
applications is identical when the standard deviation is
zero (MPI processes don’t have to wait for each other in
the update phase, as they execute the same amount of
work). The situation changes radically when workload
variation is introduced; since the increase in execution
time of the busiest MPI process in each of the iterations
is proportional to the standard deviation of the work-
load, the performance of the MPI application drops li-
nearly with the standard deviation. The HPX implemen-
tation performed evenly in all cases (the run times re-
mained constant to two significant digits), which proves
the validity of ParalleX asynchronous execution model
for this class of applications.

7. FUTURE WORK

This paper presents results drawn from using an early
version of HPX. Our future work will concentrate on
implementing ParalleX processes. These will be first
class HPX objects defining a distributed, not necessarily
contiguous execution environment. They are used to
specify a broad task while transcending multiple locali-
ties and providing a namespace for the execution of
threads.

As a parallel effort, we currently work on a specification
of a ParalleX API (called PXI), which will define lan-
guage bindings for C, Fortran and C++ for ParalleX ap-

plications very much like MPI specifies an API for com-
municating sequential processes. Implementation wise,
this environment will comprise a preprocessor and a set
of support libraries referred to in combination as PXlib
that will permit the integration of PXI/C codes with the
existing HPX runtime system, native C compilers, and
Unix (including Linux) operating system calls.

8. ACKNOWLEDGMENTS

We would like to acknowledge the sponsorship in the
context of different programs from DoE, NSF, and DoD.
Additionally we would like to thank Steve Brandt for the
constructive discussions and for helping with the per-
formance measurements for the Fibonacci example.

9. REFERENCES

1 Message Passing Interface Forum. MPI: A Message-
Passing Interface Standard, V2.1. [Internet]. 2008
Available from: http://www.mpi-
forum.org/docs/mpi21-report.pdf.

2 Kogge P, Bergman K, Borkar S, Campbell D, Carlson
W, Dally W, Denneau M, Franzon P, Harrod W, Hil
K, et al. ExaScale Computing Study: Technology
Challenges in Achieving Exascale Systems. DARPA
IPTO; 2008.

3 Yelick K, Bonachea D, Chen WY, Colella P, Datta K,
Duell], Graham SL, Hargrove P, Hilfinger P,
Husbands P, et al. Productivity and performance
using partitioned global address space languages.
In: International Conference on Symbolic and
Algebraic Computation, Proceedings of the 2007
international workshop on Parallel symbolic
computation; 2007; London, Ontario, Canada.

4 The C++ Standards Committee. Working Draft,
Standard for Programming Language C++.
[Internet]. 2008 Available from:
http://www.open-
std.org/jtcl/sc22/wg21/docs/papers/2008/n279

8.pdf.

10

11

12

13

Boost: a collection of free peer-reviewed portable
C++ source libraries. [Internet]. 2009 Available
from: http://www.boost.org/.

UPCConsortium. UPC Language Specifications,
v1.2. Lawrence Berkeley National Lab; 2005
October. Tech Report LBNL-59208. Available from:

http://upc.gwu.edu.
Bonachea D. GASNet Specification. 2002. U.C.

Berkeley Tech Report (UCB/CSD-02-1207).
Available from: http://gasnet.cs.berkeley.edu/.

Department of Computer Science, University of
lllinois at Urbana Champaign. CONVERSE
Programming Manual. [Internet]. 2009 Available
from:

http://charm.cs.uiuc.edu/manuals/html/converse

/manual-1p.html.

TBB: Intel® Thread Building Blocks. [Internet].
2009 Available from:

http://www.threadingbuildingblocks.org/.

CILK++: Parallelism for the Masses. [Internet].
2009 Available from: http://www.cilk.com/.

Microsoft Parallel Computing Platform Team. The
Concurrency Runtime: Fine Grained Parallelism
for C++. [Internet]. 2009 Available from:
http://channel9.msdn.com/posts/Charles/The-
Concurrency-Runtime-Fine-Grained-Parallelism-

for-C/.

Friedman D. CONS should not evaluate its
arguments. Automata, Languages and
Programming. 1976 257-284.

Baker H. The Incremental Garbage Collection of
Processes. In: Proceedings of the Symposium on
Artificial Intelligence Programming Languages,
SIGPLAN Notices 12; 1977.

http://www.mpi-forum.org/docs/mpi21-report.pdf
http://www.mpi-forum.org/docs/mpi21-report.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2798.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2798.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2798.pdf
http://www.boost.org/
http://upc.gwu.edu/
http://gasnet.cs.berkeley.edu/
http://charm.cs.uiuc.edu/manuals/html/converse/manual-1p.html
http://charm.cs.uiuc.edu/manuals/html/converse/manual-1p.html
http://www.threadingbuildingblocks.org/
http://www.cilk.com/
http://channel9.msdn.com/posts/Charles/The-Concurrency-Runtime-Fine-Grained-Parallelism-for-C/
http://channel9.msdn.com/posts/Charles/The-Concurrency-Runtime-Fine-Grained-Parallelism-for-C/
http://channel9.msdn.com/posts/Charles/The-Concurrency-Runtime-Fine-Grained-Parallelism-for-C/

