
HPX by example

Thomas Heller (thomas.heller@cs.fau.de)
25.10.2014
FAU

HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU 2

HPX – A general purpose parallel runtime system

HPX is a parallel runtime system which extends the C++11/14 standard to
facilitate distributed operations, enable fine-grained constraint based
parallelism, and support runtime adaptive resource management.

HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU 3

HPX – A general purpose parallel runtime system

Memory

Locality 0

Memory

Locality 1

Memory

Locality i

Memory

Locality N-1

HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU 4

HPX – A general purpose parallel runtime system

Global Address Space

Memory

Locality 0

Memory

Locality 1

Memory

Locality i

Memory

Locality N-1

Parcelport

Active Global Address Space (AGAS) Service

Thread-
Scheduler

Thread-
Scheduler

Thread-
Scheduler

Thread-
Scheduler

HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU 5

HPX – A general purpose parallel runtime system

Global Address Space

Memory

Locality 0

Memory

Locality 1

Memory

Locality i

Memory

Locality N-1

Parcelport

Active Global Address Space (AGAS) Service

Thread-
Scheduler

Thread-
Scheduler

Thread-
Scheduler

Thread-
Scheduler

Thread
Thread
Thread
Thread

Thread

Thread
Thread
Thread
Thread

Thread

Thread
Thread
Thread
Thread

Thread

Thread
Thread
Thread
Thread

Thread

HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU 6

HPX – A general purpose parallel runtime system

Global Address Space

Memory

Locality 0

Memory

Locality 1

Memory

Locality i

Memory

Locality N-1

Parcelport

Active Global Address Space (AGAS) Service

Thread-
Scheduler

Thread-
Scheduler

Thread-
Scheduler

Thread-
Scheduler

Thread
Thread
Thread
Thread

Thread

Thread
Thread
Thread
Thread

Thread

Thread
Thread
Thread
Thread

Thread

Thread
Thread
Thread
Thread

Thread

future <id_type > id =
new_ <Component >(locality , ...);

future <R> result =
async(id.get(), action , ...);

HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU 7

HPX – A general purpose parallel runtime system

Locality 0 Locality 1 Locality i Locality N-1

Parcelport

Active Global Address Space (AGAS) Service

Thread-
Scheduler

Thread-
Scheduler

Thread-
Scheduler

Thread-
Scheduler

HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU 8

Governing Principles

• Active global address space (AGAS)
• Message driven
• Lightweight Control Objects
• Adaptive locality control
• Moving work to data
• Fine grained parallelism of lightweight threads

HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU 9

HPX Threads

HPX

C++ Standard Library

C++

R f(p...) Synchronous Asynchronous Fire & Forget
(returns R) (returns future<R>) (returns void)

Functions f(p...) async(f, p...) apply(f, p...)
(direct)

Functions bind(f, p...)(...) async(bind(f, p...), ...) apply(bind(f, p...), ...)
(lazy)

Actions HPX_ACTION(f, a) HPX_ACTION(f, a) HPX_ACTION(f, a)
(direct) a()(id, p...) async(a(), id, p...) apply(a(), id, p...)

Actions HPX_ACTION(f, a) HPX_ACTION(f, a) HPX_ACTION(f, a)
(lazy) bind(a(), id, p...)

(...)
async(bind(a(), id, p...),
...)

apply(bind(a(), id, p...),
...)

HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU 10

Future composability

Composable futures
• hpx::when_all, hpx::when_any, hpx::when_n

• hpx::future<T>::then

• hpx::dataflow

Expressing locality
• Executors let you specify where your tasks run and how they are

scheduled

HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU 11

Components Interface: Writing a component

struct hello_world_component;
struct hello_world;

int main()
{

hello_world hw(hpx:: find_here ());

hw.print();
}

HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU 12

Components Interface: Writing a component

// Component implementation
struct hello_world_component

: hpx:: components :: simple_component_base <
hello_world_component

>
{

// ...
};

HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU 13

Components Interface: Writing a component

// Component implementation
struct hello_world_component

: hpx:: components :: simple_component_base <
hello_world_component

>
{

void print() { std::cout << "Hello World!\n"; }
// define print_action
HPX_DEFINE_COMPONENT_ACTION(hello_world_component , print);

};

HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU 14

Components Interface: Writing a component

// Component implementation
struct hello_world_component

: hpx:: components :: simple_component_base <
hello_world_component

>
{

// ...
};

// Register component
typedef hpx:: components :: managed_component <

hello_world_component
> hello_world_type;

HPX_REGISTER_MINIMAL_COMPONENT_FACTORY(hello_world_type , hello_world);

HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU 15

Components Interface: Writing a component

// Component implementation
struct hello_world_component

: hpx:: components :: simple_component_base <
hello_world_component

>
{

// ...
};

// Register component ...

// Register action
HPX_REGISTER_ACTION(print_action);

HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU 16

Components Interface: Writing a component

struct hello_world_component;

// Client implementation
struct hello_world

: hpx:: components :: client_base <hello_world , hello_world_component >
{

// ...
};

int main()
{

// ...
}

HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU 17

Components Interface: Writing a component

struct hello_world_component;

// Client implementation
struct hello_world

: hpx:: components :: client_base <hello_world , hello_world_component >
{

typedef
hpx:: components :: client_base <hello_world , hello_world_component >
base_type;

hello_world(hpx:: id_type where)
: base_type(

hpx::new_ <hello_world_component >(where)
)

{}
};

int main()
{

// ...
}

HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU 18

Components Interface: Writing a component

struct hello_world_component;

// Client implementation
struct hello_world

: hpx:: components :: client_base <hello_world , hello_world_component >
{

// base_type

hello_world(hpx:: id_type where);

hpx::future <void > print()
{

hello_world_component :: print_action act;
return hpx:: async(act , get_gid ());

}
};

int main()
{

// ...
}

HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU 19

Components Interface: Writing a component

struct hello_world_component;

// Client implementation
struct hello_world

: hpx:: components :: client_base <hello_world , hello_world_component >
{

hello_world(hpx:: id_type where);
hpx::future <void > print();

};

int main()
{

hello_world hw(hpx:: find_here ());
hw.print();

}

HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU 20

Example 1: Matrix Transpose

B = AT ⇒ =

HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU 21

Example 1: Matrix Transpose

std::vector <double > A(order * order);
std::vector <double > B(order * order);

for(std:: size_t i = 0; i < order; ++i)
{

for(std:: size_t j = 0; j < order; ++j)
{

B[i + order * j] = A[j + order * i];
}

}

HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU 22

Example 1: Matrix Transpose

std::vector <double > A(order * order);
std::vector <double > B(order * order);

auto range = irange(0, order);
// parallel for
for_each(par , begin(range), end(range),

[&](std:: size_t i)
{

for(std:: size_t j = 0; j < order; ++j)
{

B[i + order * j] = A[j + order * i];
}

}
);

HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU 23

Example 1: Matrix Transpose

std:: size_t my_id = hpx:: get_locality_id ();
std:: size_t num_blocks = hpx:: get_num_localities ().get();
std:: size_t block_order = order / num_blocks;
std::vector <block > A(num_blocks);
std::vector <block > B(num_blocks);

HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU 24

Example 1: Matrix Transpose

for(std:: size_t b = 0; b < num_blocks; ++b) {
if(b == my_id) {

A[b] = block(block_order * order);
hpx:: register_id_with_basename("A", get_gid (), b);
B[b] = block(block_order * order);
hpx:: register_id_with_basename("B", get_gid (), b);

}
else {

A[b] = hpx:: find_id_from_basename("A", b);
B[b] = hpx:: find_id_from_basename("B", b);

}
}

HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU 25

Example 1: Matrix Transpose

std::vector <hpx::future <void >> phases(num_blocks);
auto range = irange(0, num_blocks);
for_each(par , begin(range), end(range),

[&](std:: size_t phase)
{

std:: size_t block_size = block_order * block_order;
phases[b] = hpx::lcos:: dataflow(

transpose ,
A[phase]. get_sub_block(my_id * block_size , block_size)
B[my_id]. get_sub_block(phase * block_size , block_size)

);
});

hpx:: when_all(phases);

HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU 26

Example 1: Matrix Transpose

void transpose(hpx::future <sub_block > Af, hpx::future <sub_block > Bf)
{

sub_block A = Af.get();
sub_block B = Bf.get();
for(std:: size_t i = 0; i < block_order; ++i)
{

for(std:: size_t j = 0; j < block_order; ++j)
{

B[i + block_order * j] = A[j + block_order * i];
}

}
}

HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU 27

Example 1: Matrix Transpose

struct block_component
: hpx:: components :: simple_component_base <block_component >

{
block_component () {}
block_component(std:: size_t size)

: data_(size) {}
sub_block get_sub_block(std:: size_t offset , std:: size_t size)
{

return sub_block (& data_[offset], size);
}
HPX_DEFINE_COMPONENT_ACTION(block_component , get_sub_block);
std::vector <double > data_;

};

HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU 28

Example 1: Matrix Transpose

1 2 4 8 12 24
Number of Cores

0

50

100

150

200

250

B
a
n
d
w

id
th

 (
G

b
/s

)

Matrix Transpose (24kx24k doubles) on Edison

OpenMP
MPI
HPX parallel loop
HPX blocked

HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU 29

Example 1: Matrix Transpose

1 10 20 30 40 50 60
Number of Cores

0

50

100

150

200

250

300

B
a
n
d
w

id
th

 (
G

b
/s

)

Matrix Transpose (12kx12k doubles) on the Xeon Phi

OpenMP
MPI
HPX parallel loop
HPX blocked

HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU 30

Example 2: 1D Heat equation

Solving f = ∆u using finite differences with a Jacobi-Solver:

HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU 31

Example 2: 1D Heat equation

typedef hpx::future <double > partition;
std::vector <partition > grids [2];
std:: size_t old = 0;
std:: size_t cur = 1;
for(std:: size_t t = 0; t < nt; ++t)
{

for(std:: size_t x = 1; x < nx -1; ++x)
grids[cur] = hpx::lcos:: dataflow(

heat_diffusion
, grids[old][x-1], grids[old][x], grids[old][x+1]

);
std::swap(old , cur);

}
wait(grids[old]);

HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU 32

Example 2: 1D Heat equation

struct partition_component // component (details omitted for clarity)
{

typedef std::vector <double > partition_data;

partition_data get_data ();

partition_data data_;
};

HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU 33

Example 2: 1D Heat equation

std::vector <partition > grids [2];
hpx:: id_type left_neighbor , right_neighbor;
std:: size_t old = 0;
std:: size_t cur = 1;
for (std:: size_t t = 0; t != nt; ++t)
{

for(std:: size_t x = 1; x < num_parts -1; ++x)
grids[cur] = hpx::lcos:: dataflow(

heat_part
, grids[old][x-1], grids[old][x], grids[old][x+1]

);
}

HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU 34

Example 2: 1D Heat equation

partition heat_part(partition left , partition middle , partition right)
{

hpx::future <partition_data > middle_part = middle.get_part ();
// ...

}

HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU 35

Example 2: 1D Heat equation

partition heat_part(partition left , partition middle , partition right)
{

hpx::future <partition_data > middle_part;
hpx::future <partition > next_middle = middle_part.then(

hpx::util:: unwrapped ([](partition_data old) {
partition_data next(old.size());

for(std:: size_t x = 1; x < old.size() -1; ++x)
grids[cur] = hpx::lcos:: dataflow(

heat_diffusion
, old[x-1], old[x], old[x+1]
);

})
);

}

HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU 36

Example 2: 1D Heat equation

partition heat_part(partition left , partition middle , partition right)
{

hpx::future <partition_data > middle_part;
hpx::future <partition > next_middle;
return dataflow(

unwrapped ([left , middle , right](partition_data next , partition_data
const& l,
partition_data const& m, partition_data const& r) -> partition {
std:: size_t size = m.size();
next [0] = heat(l[size -1], m[0], m[1]);
next[size -1] = heat(m[size -2], m[size -1], r[0]);
return partition(middle.get_gid (), next);

}),
std::move(next_middle),
left.get_part (),
middle_data , right.get_part ());

}

HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU 37

Example 2: 1D Heat equation

std::vector <hpx::future <partition >> grids [2];
hpx:: id_type left_neighbor , right_neighbor;
std:: size_t old = 0;
std:: size_t cur = 1;
for (std:: size_t t = 0; t != nt; ++t)
{

// receive ...
if(id != 0)

grids[cur][0] = receive_left(t);
if(id != ranks -1)

grids[cur][num_parts -1] = receive_right(t);

for(std:: size_t x = 1; x < num_parts -1; ++x)
grids[cur][x] = hpx::lcos:: dataflow(

heat_part
, grids[old][x-1], grids[old][x], grids[old][x+1]

);
// send ...
if(id != 0)

send_left(grids [1])
if(id != ranks -1)

send_right(grids[num_parts -2]);
}

HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU 38

Example 2: 1D Heat equation

hpx::lcos::local:: receive_buffer <partition > left_receiver;
hpx::future <partition > receive_left(std:: size_t t)
{

return left_receiver.receive(t);
}

hpx::lcos::local:: receive_buffer <partition > right_receiver;
hpx::future <partition > receive_left(std:: size_t t)
{

return right_receiver.receive(t);
}

HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU 39

Example 2: 1D Heat equation

void send_left(partition p, std:: size_t t)
{

store_right_action act;
hpx::apply(act , left_neighbor , t, p);

}
void store_right(std:: size_t t, partition p)
{

right_receiver.store_received(t, p);
}

void send_right(partition p, std:: size_t t)
{

store_left_action act;
hpx::apply(act , right_neighbor , t, p);

}
void store_left(std:: size_t t, partition p)
{

left_receiver.store_received(t, p);
}

HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU 40

Get in touch!

• Blog: http://stellar-group.org
• Code: https://github.com/STEllAR-GROUP/hpx

Open Source (Boost Software License 1.0)
• Mailing List: hpx-users@stellar.cct.lsu.edu
• IRC: #ste||ar @ irc.freenode.org

