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HPX — A general purpose parallel runtime system

HPX is a parallel runtime system which extends the C++11/14 standard to
facilitate distributed operations, enable fine-grained constraint based
parallelism, and support runtime adaptive resource management.
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HPX — A general purpose parallel runtime system
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HPX — A general purpose parallel runtime system
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HPX - A general purpose parallel runtime system
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HPX - A general purpose parallel runtime system
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HPX - A general purpose parallel runtime system
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Governing Principles

e Active global address space (AGAS)

e Message driven

e Lightweight Control Objects

e Adaptive locality control

e Moving work to data

e Fine grained parallelism of lightweight threads
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HPX Threads
R f(p...) Synchronous Asynchronous Fire & Forget
(returns R) (returns future<R>) (returns void)
Functions flp...) async(f, p...) apply(f, p...)
(direct) s
Functions bind(f, p...)(...) async (bind(f, p...), ...)| |apply(bind(f, p...), ...)
(lazy) C++ Standard Library
Actions HPX_ACTION(f, a) HPX_ACTION(f, a) HPX_ACTION(f, a)
(direct) a()(d, p...) async(a(), id, p...) apply(a(), id, p...)
Actions HPX_ACTION(f, a) HPX_ACTION(f, a) HPX_ACTION(f, a)
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Future composability

Composable futures

® hpx::when_all, hpx::when_any, hpx::when_n
® hpx::future<T>::then

® hpx::dataflow

Expressing locality

e Executors let you specify where your tasks run and how they are
scheduled
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Components Interface: Writing a component

struct hello_world_component;
struct hello_world;

int main ()

{
hello_world hw(hpx::find_here());

hw.print O);
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Components Interface: Writing a component

// Component implementation
struct hello_world_component
hpx::components::simple_component_base<
hello_world_component

//
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Components Interface: Writing a component

// Component implementation
struct hello_world_component
hpx::components::simple_component_base<
hello_world_component

>
{

void print() { std::cout << "Hello World!\n"; }

// define print_action

HPX_DEFINE_COMPONENT_ACTION (hello_world_component, print);
s
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Components Interface: Writing a component

// Component implementation
struct hello_world_component
hpx::components::simple_component_base<
hello_world_component

//
3

// Register component

typedef hpx::components::managed_component<
hello_world_component

> hello_world_type;

HPX_REGISTER_MINIMAL_COMPONENT_FACTORY (hello_world_type, hello_world);
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Components Interface: Writing a component

// Component implementation
struct hello_world_component
hpx::components::simple_component_base<
hello_world_component

//
s
// Register component

// Register action
HPX_REGISTER_ACTION(print_action);
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Components Interface: Writing a component

struct hello_world_component;

// Client implementation
struct hello_world
hpx::components::client_base<hello_world, hello_world_component>

{
//
¥+
int main ()
{
//
ks
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Components Interface: Writing a component
struct hello_world_component;
// Client implementation
struct hello_world
hpx::components::client_base<hello_world, hello_world_component>
{
typedef
hpx::components::client_base<hello_world, hello_world_component>
base_type;
hello_world (hpx::id_type where)
base_type (
hpx::new_<hello_world_component >(where)
)
{}
s
int main ()
{
//
¥
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Components Interface: Writing a component

struct hello_world_component;

// Client implementation
struct hello_world
hpx::components::client_base<hello_world, hello_world_component>

{
// base_type
hello_world (hpx::id_type where);
hpx::future<void> print ()
{
hello_world_component::print_action act;
return hpx::async(act, get_gid());
}
s
int main ()
{
//
¥
LS 5755 88w
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Components Interface: Writing a component

struct hello_world_component;

// Client implementation
struct hello_world
hpx::components::client_base<hello_world, hello_world_component>

{
hello_world (hpx::id_type where);
hpx::future<void> print();

s

int main ()

{
hello_world hw(hpx::find_here());
hw.print () ;

¥
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Example 1: Matrix Transpose
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Example 1: Matrix Transpose

std::vector<double> A(order * order);
std::vector<double> B(order * order) ;

for(std::size_t 1 = 0; 1 < order; ++1)
{
for(std::size_t j = 0; j < order; ++j)
{
B[i + order * j] = A[j + order * i];
b
+
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Example 1: Matrix Transpose

std::vector<double> A(order * order);
std::vector<double> B(order * order);

auto range = irange (0, order);

// parallel for

for_each(par, begin(range), end(range),
[&] (std::size_t 1)

{
for(std::size_t j = 0; j < order; ++j)
{
B[i + order * j]l = A[j + order * il;
+
}
)5
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Example 1: Matrix Transpose

std::size_t my_id = hpx::get_locality_id ();

std::size_t num_blocks = hpx::get_num_localities().get();
std::size_t block_order = order / num_blocks;
std::vector<block> A(num_blocks) ;

std::vector<block> B(num_blocks) ;
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Example 1: Matrix Transpose

for(std::size_t b = 0; b < num_blocks;
if (b == my_id) {

A[b] = block(block_order * order);

hpx::register_id_with_basename ("A",

B[b] = block(block_order * order);

hpx::register_id_with_basename ("B",

++b) {

get_gid (), b);

get_gid (), b);

b
else {
A[b] = hpx::find_id_from_basename("A", b);
B[b] = hpx::find_id_from_basename("B", b);
+

o ESEE

jLSU /=5

LOUISIANA STATE UNIVERSITY

FRIEDRICH-ALEXANDER
UNIVERSITAT _
ERLANGEN-NURNBERG

TECHNISCHE FAKULTAT

24



HPX by example 25
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU

Example 1: Matrix Transpose

std::vector<hpx::future<void>> phases (num_blocks) ;
auto range = irange (0, num_blocks);
for_each(par, begin(range), end(range),

[4] (std::size_t phase)

{
std::size_t block_size = block_order * block_order;
phases[b] = hpx::1lcos::dataflow(
transpose,
Alphase].get_sub_block(my_id * block_size, block_size)
Blmy_id].get_sub_block (phase * block_size, block_size)
)
3

hpx::when_all (phases);
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Example 1: Matrix Transpose

void transpose (hpx::future<sub_block> Af, hpx::future<sub_block> Bf)
{

sub_block A = Af.get();
sub_block B = Bf.get();
for(std::size_t 1 = 0; 1 < block_order; ++1i)
{
for(std::size_t j = 0; j < block_order; ++j)
{
B[i + block_order * j] = A[j + block_order * i];
}
+
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Example 1: Matrix Transpose

struct block_component

hpx::components::simple_component_base<block_component >

block_component () {}
block_component (std::size_t size)
data_(size) {}
sub_block get_sub_block(std::size_t offset, std::size_t size)
{
return sub_block(&data_[offset], size);
¥
HPX_DEFINE_COMPONENT_ACTION (block_component, get_sub_block);
std::vector<double> data_;
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Example 1: Matrix Transpose
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Example 1: Matrix Transpose
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Example 2: 1D Heat equation

Solving f = Au using finite differences with a Jacobi-Solver:
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Example 2: 1D Heat equation

typedef hpx::future<double> partition;
std::vector<partition> grids[2];
std::size_t o0ld = 0O;

std::size_t cur = 1;
for(std::size_t t = 0; t < nt; ++t)
{
for(std::size_t x = 1; x < nx-1; ++x)

grids[cur] = hpx::1lcos::dataflow(
heat_diffusion
, grids[old][x-1], grids[old][x], grids[old][x+1]
) ;
std::swap(old, cur);
ks
wait (grids[old]);
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Example 2: 1D Heat equation

struct partition_component // component (details omitted for clarity)

{
typedef std::vector<double> partition_data;

partition_data get_data();

partition_data data_;

T
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Example 2: 1D Heat equation

std::vector<partition> grids[2];
hpx::id_type left_neighbor, right_neighbor;
std::size_t old = 0O;
std::size_t cur = 1;
for (std::size_t t = 0; t != nt; ++t)
{
for(std::size_t x = 1; x < num_parts-1; ++x)

grids[cur] = hpx::1lcos::dataflow(
heat_part

, grids[old][x-1], grids[old][x], grids[old] [x+1]
);
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Example 2: 1D Heat equation

partition heat_part(partition left, partition middle, partition right)
{

hpx::future<partition_data> middle_part = middle.get_part();
//
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Example 2: 1D Heat equation

partition heat_part(partition left, partition middle, partition right)
{
hpx::future<partition_data> middle_part;
hpx::future<partition> next_middle = middle_part.then(
hpx::util::unwrapped ([] (partition_data old) {
partition_data next(old.size());

for(std::size_t x = 1; x < old.size()-1; ++x)
grids[cur] = hpx::1lcos::dataflow(
heat_diffusion
, old[x-1], old[x], old[x+1]
) ;
)
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Example 2: 1D Heat equation

partition heat_part(partition left, partition middle, partition right)
{
hpx::future<partition_data> middle_part;
hpx::future<partition> next_middle;
return dataflow(
unwrapped ([left, middle, right](partition_data next, partition_data

const& 1,
partition_data const& m, partition_data const& r) -> partition {
std::size_t size = m.size();
next [0] = heat(l[size-1], m[0], m[1]);
next [size-1] = heat(m[size-2], m[size-1], r[0]);
return partition(middle.get_gid (), next);
IR

std::move (next_middle),
left.get_part ),
middle_data, right.get_part());

L1l FRIEDRICH-ALEXANDER
ﬁl = = UNIVERSITAT
LI = &= == ERLANGEN-NURNBERG

LOUISIANA STATE UNIVERSITY TECHNISCHE FAKULTAT

36



HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU

Example 2: 1D Heat equation

std::vector<hpx::future<partition>> grids[2];
hpx::1id_type left_neighbor, right_neighbor;
std::size_t old = 0O;
std::size_t cur = 1;
for (std::size_t t = 0; t != nt; ++t)
{
// receive
if(id !'= 0)
grids [cur] [0] = receive_left(t);
if (id != ranks-1)
grids [cur] [num_parts-1] = receive_right(t);

for(std::size_t x
grids [cur] [x]
heat_part
, grids[old][x-1], grids[old][x], grids[old][x+1]
)
// send
if(id !'= 0)
send_left (grids [1])
if (id != ranks-1)
send_right (grids [num_parts-2]); N ===

) LS ===
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Example 2: 1D Heat equation

hpx::1lcos::1local::receive_buffer<partition> left_receiver;
hpx::future<partition> receive_left(std::size_t t)
{

return left_receiver.receive(t);

hpx::1lcos::local::receive_buffer<partition> right_receiver;
hpx::future<partition> receive_left(std::size_t t)
{

return right_receiver.receive(t);

}

— —
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Example 2: 1D Heat equation

void send_left(partition p, std::size_t t)
{

store_right_action act;

hpx::apply(act, left_neighbor, t, p);

}
void store_right(std::size_t t, partition p)
{
right_receiver.store_received(t, p);
ks

void send_right(partition p, std::size_t t)
{

store_left_action act;

hpx::apply(act, right_neighbor, t, p);

¥
void store_left(std::size_t t, partition p)
{
left_receiver.store_received(t, p);
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Get in touch!

e Blog: http://stellar-group.org

e Code: https://github.com/STE11AR-GROUP/hpx
Open Source (Boost Software License 1.0)

e Mailing List: hpx-users@stellar.cct.lsu.edu
e IRC: #stel| |ar @ irc.freenode.org
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