HPX by example

Thomas Heller (thomas.heller@cs.fau.de)
25.10.2014
FAU

i

Rl

il LSL)

LOUISIANA STATE UNIVERSITY TECHNISCHE FAKULTAT

FRIEDRICH-ALEXANDER
UNIVERSITAT _
ERLANGEN-NURNBERG




HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU

HPX — A general purpose parallel runtime system

HPX is a parallel runtime system which extends the C++11/14 standard to
facilitate distributed operations, enable fine-grained constraint based
parallelism, and support runtime adaptive resource management.

! = FRIEDRICH-ALEXANDER
ﬁl —r— UNIVERSITAT _
= &= ="==ERLANGEN-NURNBERG
o



HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU

HPX — A general purpose parallel runtime system

Locality 0  Locality 1 Locality i Locality N-1

Memory Memory ............. Memory ............. Memory

FRIEDRICH-ALEXANDER
UNIVERSITAT _
ERLANGEN-NURNBERG

8)s
II"
Il
juimnn
i

g;
F
)
C
0
i

NA STATE UNIVERSITY TECHNISCHE FAKULTAT



HPX by example

25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU

HPX — A general purpose parallel runtime system

Locality 0  Locality 1 Locality i Locality N-1
Global Address Space
Memory Memory ............. Memory ............. Memory
Parcelport
Active Global Address Space (AGAS) Service
Thread- Thread- Thread- Thread-
Scheduler| | Scheduler Scheduler Scheduler

UNIVERSITAT

FRIEDRICH-ALEXANDER

L] e
’l gy
— oo
/ﬂ_\ — =="<=== ERLANGEN-NURNBERG
LOUISIANA STA’ VERSITY TECHNISCHE FAKULTAT



HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU

HPX - A general purpose parallel runtime system

Locality 0  Locality 1 Locality i Locality N-1
'IThread Global Addrelss Space
Thread | Memory ............. Memory ............. Memory
Thread |H
Thread |}

[ Thread Jﬂ Parcelport

[ V\Active Global Address Space (AGAS) Service

Thread-
Scheduler

Thread- read-
Scheduler| | Schedu

a1 _—_—== = ICH-
ﬁl su = === = UNIVERSITA
L E = === GEN-
-
LOUISIANA 'E UNIVERSITY C ISCH



HPX by example

25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de)

| FAU

HPX - A general purpose parallel runtime system

Locality 0  Locality 1 Locality i Locality N-1
Thread |} $
1 future<id_type> id =
Thread | M new_<Component >(locality, ...D; | .. .......... Memory
Thread |} $
Thread |If T ayne (10 gt (), action, +..):
[ Thread m é
[ Nbxctive Global Address Space (AGAS) Service
Thread- read- Thread-
Scheduler| | Schedu Scheduler
E% Z_:::E EFRIEDRICH-ALEXANDER
ﬁl Lsu E ===== ggll_\/I\ENF:;SEImLURNBERG

TECHNISCHE FAKULTAT




HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU

HPX - A general purpose parallel runtime system

Locality 0 Locality 1 -

Locality i Locality N-1
I F B e I
- u_ N e - g

= _ / 3
- = - =
2 Y- P S - - - - \
- N - TN 3 - - - - — - ~ - =
AW L S et o - Sl . :
\ N 7 A— \ _--7-==- ‘* SN ~ N -1
1 . 2% 7 Se? > .7 'r ~ o Se===T <P \‘
1 N -
1 \/ ( ‘ e \/ ¥ 1 . = S ~ 0
A / m o= N - - _"~—> ~ = ~ A
\ S - A - | ~ 1
g , v - oD = ] ~ !
\ - 7
] -
’ n _ ’/'/ P <7 ‘l
\ ’ - e » N v
/7 I D R R e  C e B R I R R I )
\ - ;5 A \ 1%
0 N
) PN ’ 7 \ "
\ , 7 \ [
(IS S~ \ I
| ’ -|-
| " R iy
\ - ==F - - = -
N ~ -
v B I ——

Parcelport

Active Global Address Space (AGAS) Service

Thread- Thread- Thread- Thread-
Scheduler| | Scheduler Scheduler Scheduler

A _—=
—
= =
FRIEDRICH-ALEXANDER
UNIVERSITAT

L  ——
hLSU ==

== = ERLANGEN-NURNBERG
—

LOUISIANA STATE UNIVERSITY TECHNISCHE FAKULTAT



HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU

Governing Principles

e Active global address space (AGAS)

e Message driven

e Lightweight Control Objects

e Adaptive locality control

e Moving work to data

e Fine grained parallelism of lightweight threads

FRIEDRICH-ALEXANDER

) —

ﬁl - e— UNIVERSITAT _
LI = &= T="—= ERLANGEN-NURNBERG
LOUISIANA STATE UNIVERSITY TECHN I AK TA



HPX by example

25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU 9
HPX Threads
R f(p...) Synchronous Asynchronous Fire & Forget
(returns R) (returns future<R>) (returns void)
Functions flp...) async(f, p...) apply(f, p...)
(direct) s
Functions bind(f, p...)(...) async (bind(f, p...), ...)| |apply(bind(f, p...), ...)
(lazy) C++ Standard Library
Actions HPX_ACTION(f, a) HPX_ACTION(f, a) HPX_ACTION(f, a)
(direct) a()(d, p...) async(a(), id, p...) apply(a(), id, p...)
Actions HPX_ACTION(f, a) HPX_ACTION(f, a) HPX_ACTION(f, a)
(lazy) bind(a(), id, p...) |async(bind(a(), id, p...), | apply(bind(a(), id, p...),
...) o) ) HPX

LOUISIANA STATE UNIVERSITY

FRIEDRICH-ALEXANDER
UNIVERSITAT _
ERLANGEN-NURNBERG

TECHNISCHE FAKULTAT




HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU

Future composability

Composable futures

® hpx::when_all, hpx::when_any, hpx::when_n
® hpx::future<T>::then

® hpx::dataflow

Expressing locality

e Executors let you specify where your tasks run and how they are
scheduled

FRIEDRICH-ALEXANDER
UNIVERSITAT _
ERLANGEN-NURNBERG

LOUISIANA STATE UNIVERSITY TECHNISCHE FAKULTAT

F
)
-
::||||
u

10



HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU

Components Interface: Writing a component

struct hello_world_component;
struct hello_world;

int main ()

{
hello_world hw(hpx::find_here());

hw.print O);

A ==

jLsy =

LOUISIANA STATE UNIVERSITY

FRIEDRICH-ALEXANDER
UNIVERSITAT _
ERLANGEN-NURNBERG

TECHNISCHE FAKULTAT

11



HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU

Components Interface: Writing a component

// Component implementation
struct hello_world_component
hpx::components::simple_component_base<
hello_world_component

//

L  ——

LS ===

LOUISIANA STATE UNIVERSITY

o ESEE

FRIEDRICH-ALEXANDER
UNIVERSITAT _
ERLANGEN-NURNBERG

TECHNISCHE FAKULTAT

12



HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU

Components Interface: Writing a component

// Component implementation
struct hello_world_component
hpx::components::simple_component_base<
hello_world_component

>
{

void print() { std::cout << "Hello World!\n"; }

// define print_action

HPX_DEFINE_COMPONENT_ACTION (hello_world_component, print);
s

A S—— o =
== w= FRIEDRICH-ALEXANDER

L  ——
ﬁl = —— UNIVERSITAT _
= &= === ERLANGEN-NURNBERG

— )
LOUISIANA STATE UNIVERSITY TECHNISCHE FAKULTAT

13



HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU

Components Interface: Writing a component

// Component implementation
struct hello_world_component
hpx::components::simple_component_base<
hello_world_component

//
3

// Register component

typedef hpx::components::managed_component<
hello_world_component

> hello_world_type;

HPX_REGISTER_MINIMAL_COMPONENT_FACTORY (hello_world_type, hello_world);

o ESEE

jLSU /=5

LOUISIANA STATE UNIVERSITY

FRIEDRICH-ALEXANDER
UNIVERSITAT _
ERLANGEN-NURNBERG

TECHNISCHE FAKULTAT

14



HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU

Components Interface: Writing a component

// Component implementation
struct hello_world_component
hpx::components::simple_component_base<
hello_world_component

//
s
// Register component

// Register action
HPX_REGISTER_ACTION(print_action);

£
LS ===

LOUISIANA STATE UNIVERSITY

FRIEDRICH-ALEXANDER
UNIVERSITAT _
ERLANGEN-NURNBERG

TECHNISCHE FAKULTAT

15



HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU

Components Interface: Writing a component

struct hello_world_component;

// Client implementation
struct hello_world
hpx::components::client_base<hello_world, hello_world_component>

{
//
¥+
int main ()
{
//
ks

A ==

L  ——

LSl ==

— )
LOUISIANA STATE UNIVERSITY TECHNISCHE FAKULTAT

FRIEDRICH-ALEXANDER
UNIVERSITAT _
ERLANGEN-NURNBERG

16



HPX by example

25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU
Components Interface: Writing a component
struct hello_world_component;
// Client implementation
struct hello_world
hpx::components::client_base<hello_world, hello_world_component>
{
typedef
hpx::components::client_base<hello_world, hello_world_component>
base_type;
hello_world (hpx::id_type where)
base_type (
hpx::new_<hello_world_component >(where)
)
{}
s
int main ()
{
//
¥

L1l — FRIEDRICH-ALEXANDER
ﬁl = = UNIVERSITAT
LI = &= == ERLANGEN-NURNBERG

LOUISIANA STATE UNIVERSITY TECHNISCHE FAKULTAT

17



HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU

Components Interface: Writing a component

struct hello_world_component;

// Client implementation
struct hello_world
hpx::components::client_base<hello_world, hello_world_component>

{
// base_type
hello_world (hpx::id_type where);
hpx::future<void> print ()
{
hello_world_component::print_action act;
return hpx::async(act, get_gid());
}
s
int main ()
{
//
¥
LS 5755 88w

LOUISIANA STATE UNIVERSITY TECHNISCHE FAKULTAT



HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU

Components Interface: Writing a component

struct hello_world_component;

// Client implementation
struct hello_world
hpx::components::client_base<hello_world, hello_world_component>

{
hello_world (hpx::id_type where);
hpx::future<void> print();

s

int main ()

{
hello_world hw(hpx::find_here());
hw.print () ;

¥

A ==

i1

jLsy =

LOUISIANA STATE UNIVERSITY TECHNISCHE FAKULTAT

FRIEDRICH-ALEXANDER
UNIVERSITAT _
ERLANGEN-NURNBERG



HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU

Example 1: Matrix Transpose

B:AT:> =

A ==

LS ===

LOUISIANA STATE UNIVERSITY

FRIEDRICH-ALEXANDER
UNIVERSITAT _
ERLANGEN-NURNBERG

TECHNISCHE FAKULTAT

20



HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU

Example 1: Matrix Transpose

std::vector<double> A(order * order);
std::vector<double> B(order * order) ;

for(std::size_t 1 = 0; 1 < order; ++1)
{
for(std::size_t j = 0; j < order; ++j)
{
B[i + order * j] = A[j + order * i];
b
+

— FRIEDRICH-ALEXANDER
ﬁl = = UNIVERSITAT _

= = '="—= ERLANGEN-NURNBERG
/—‘\

LOUISIANA STATE UNIVERSITY TECHNISCHE FAKULTAT



HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU

Example 1: Matrix Transpose

std::vector<double> A(order * order);
std::vector<double> B(order * order);

auto range = irange (0, order);

// parallel for

for_each(par, begin(range), end(range),
[&] (std::size_t 1)

{
for(std::size_t j = 0; j < order; ++j)
{
B[i + order * j]l = A[j + order * il;
+
}
)5

L1l — FRIEDRICH-ALEXANDER
ﬁl = = UNIVERSITAT
LI = &= == ERLANGEN-NURNBERG

LOUISIANA STATE UNIVERSITY TECHNISCHE FAKULTAT



HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU

Example 1: Matrix Transpose

std::size_t my_id = hpx::get_locality_id ();

std::size_t num_blocks = hpx::get_num_localities().get();
std::size_t block_order = order / num_blocks;
std::vector<block> A(num_blocks) ;

std::vector<block> B(num_blocks) ;

A ==

jLsy =

LOUISIANA STATE UNIVERSITY TECHNISCHE FAKULTAT

FRIEDRICH-ALEXANDER
UNIVERSITAT _
ERLANGEN-NURNBERG



HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU

Example 1: Matrix Transpose

for(std::size_t b = 0; b < num_blocks;
if (b == my_id) {

A[b] = block(block_order * order);

hpx::register_id_with_basename ("A",

B[b] = block(block_order * order);

hpx::register_id_with_basename ("B",

++b) {

get_gid (), b);

get_gid (), b);

b
else {
A[b] = hpx::find_id_from_basename("A", b);
B[b] = hpx::find_id_from_basename("B", b);
+

o ESEE

jLSU /=5

LOUISIANA STATE UNIVERSITY

FRIEDRICH-ALEXANDER
UNIVERSITAT _
ERLANGEN-NURNBERG

TECHNISCHE FAKULTAT

24



HPX by example 25
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU

Example 1: Matrix Transpose

std::vector<hpx::future<void>> phases (num_blocks) ;
auto range = irange (0, num_blocks);
for_each(par, begin(range), end(range),

[4] (std::size_t phase)

{
std::size_t block_size = block_order * block_order;
phases[b] = hpx::1lcos::dataflow(
transpose,
Alphase].get_sub_block(my_id * block_size, block_size)
Blmy_id].get_sub_block (phase * block_size, block_size)
)
3

hpx::when_all (phases);

o I A—
15 oy
L ! FRIEDRICH-ALEXANDER

ﬁl = = UNIVERSITAT _
= = ="=—= ERLANGEN-NURNBERG
j L

LOUISIANA STATE UNIVERSITY TECHNISCHE FAKULTAT



HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU

Example 1: Matrix Transpose

void transpose (hpx::future<sub_block> Af, hpx::future<sub_block> Bf)
{

sub_block A = Af.get();
sub_block B = Bf.get();
for(std::size_t 1 = 0; 1 < block_order; ++1i)
{
for(std::size_t j = 0; j < block_order; ++j)
{
B[i + block_order * j] = A[j + block_order * i];
}
+

A ==

i1

LSy ==

— '
LOUISIANA STATE UNIVERSITY TECHNISCHE FAKULTAT

FRIEDRICH-ALEXANDER
UNIVERSITAT _
ERLANGEN-NURNBERG

26



HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU

Example 1: Matrix Transpose

struct block_component

hpx::components::simple_component_base<block_component >

block_component () {}
block_component (std::size_t size)
data_(size) {}
sub_block get_sub_block(std::size_t offset, std::size_t size)
{
return sub_block(&data_[offset], size);
¥
HPX_DEFINE_COMPONENT_ACTION (block_component, get_sub_block);
std::vector<double> data_;

A S—— o =
== w= FRIEDRICH-ALEXANDER

L - -
ﬁl = == UNIVERSITAT _
= &= ="== ERLANGEN-NURNBERG

LOUISIANA STATE UNIVERSITY TECHNISCHE FAKULTAT

27



HPX by example

25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU

Example 1: Matrix Transpose

Bandwidth (Gb/s)

250

200

150

100

Matrix Transpose (24kx24k doubles) on Edison

OpenMP
MPI
HPX parallel loop

50|/

HPX blocked

4 8 12 24
Number of Cores

A ==

jLsy =

LOUISIANA STATE UNIVERSITY

FRIEDRICH-ALEXANDER
UNIVERSITAT _
ERLANGEN-NURNBERG

TECHNISCHE FAKULTAT

28



HPX by example

25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU

Example 1: Matrix Transpose

Bandwidth (Gb/s)

300

250

200

150

100

50

Matrix Transpose (12kx12k doubles) on the Xeon Phi
— OpenMP ' ' '
- MPI . . .
| — HPX parallel loop [~ A AR ARt
— HPX blocked : :
1 110 210 310 410 510 60

Number of Cores

LSy s===

LOUISIANA STATE UNIVERSITY

_—

FRIEDRICH-ALEXANDER
UNIVERSITAT _
ERLANGEN-NURNBERG

TECHNISCHE FAKULTAT

29



HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU

Example 2: 1D Heat equation

Solving f = Au using finite differences with a Jacobi-Solver:

t. :"'I- x]_l K] Kj,i
L X :
ti+2

)
II"
Il
juimnn
i

FRIEDRICH-ALEXANDER
UNIVERSITAT _
ERLANGEN-NURNBERG

=\
F
)
-
::||”
u

LOUISIANA STATE UNIVERSITY TECHNISCHE FAKULTAT



HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU

Example 2: 1D Heat equation

typedef hpx::future<double> partition;
std::vector<partition> grids[2];
std::size_t o0ld = 0O;

std::size_t cur = 1;
for(std::size_t t = 0; t < nt; ++t)
{
for(std::size_t x = 1; x < nx-1; ++x)

grids[cur] = hpx::1lcos::dataflow(
heat_diffusion
, grids[old][x-1], grids[old][x], grids[old][x+1]
) ;
std::swap(old, cur);
ks
wait (grids[old]);

f =

L - -

j LSy =

LOUISIANA STATE UNIVERSITY

FRIEDRICH-ALEXANDER
UNIVERSITAT _
ERLANGEN-NURNBERG

TECHNISCHE FAKULTAT

31



HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU

Example 2: 1D Heat equation

struct partition_component // component (details omitted for clarity)

{
typedef std::vector<double> partition_data;

partition_data get_data();

partition_data data_;

T

A ==

L ———— FRIEDRICH-ALEXANDER
/I = = UNIVERSITAT _
o i ="<==—= ERLANGEN-NURNBERG

LOUISIANA STATE UNIVERSITY TECHNISCHE FAKULTAT

_—

32



HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU

Example 2: 1D Heat equation

std::vector<partition> grids[2];
hpx::id_type left_neighbor, right_neighbor;
std::size_t old = 0O;
std::size_t cur = 1;
for (std::size_t t = 0; t != nt; ++t)
{
for(std::size_t x = 1; x < num_parts-1; ++x)

grids[cur] = hpx::1lcos::dataflow(
heat_part

, grids[old][x-1], grids[old][x], grids[old] [x+1]
);

N ==

i1

jLSU fe=<s

LOUISIANA STATE UNIVERSITY

FRIEDRICH-ALEXANDER
UNIVERSITAT _
ERLANGEN-NURNBERG

TECHNISCHE FAKULTAT

33



HPX by example 34
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU

Example 2: 1D Heat equation

partition heat_part(partition left, partition middle, partition right)
{

hpx::future<partition_data> middle_part = middle.get_part();
//

A ==

L ———— FRIEDRICH-ALEXANDER
/I = = UNIVERSITAT _
e = = ="=—= ERLANGEN-NURNBERG

LOUISIANA STATE UNIVERSITY TECHNISCHE FAKULTAT

_—



HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU

Example 2: 1D Heat equation

partition heat_part(partition left, partition middle, partition right)
{
hpx::future<partition_data> middle_part;
hpx::future<partition> next_middle = middle_part.then(
hpx::util::unwrapped ([] (partition_data old) {
partition_data next(old.size());

for(std::size_t x = 1; x < old.size()-1; ++x)
grids[cur] = hpx::1lcos::dataflow(
heat_diffusion
, old[x-1], old[x], old[x+1]
) ;
)

A S—— o =
== w= FRIEDRICH-ALEXANDER

L - -
ﬁl = == UNIVERSITAT _
= &= ="== ERLANGEN-NURNBERG

LOUISIANA STATE UNIVERSITY TECHNISCHE FAKULTAT



HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU

Example 2: 1D Heat equation

partition heat_part(partition left, partition middle, partition right)
{
hpx::future<partition_data> middle_part;
hpx::future<partition> next_middle;
return dataflow(
unwrapped ([left, middle, right](partition_data next, partition_data

const& 1,
partition_data const& m, partition_data const& r) -> partition {
std::size_t size = m.size();
next [0] = heat(l[size-1], m[0], m[1]);
next [size-1] = heat(m[size-2], m[size-1], r[0]);
return partition(middle.get_gid (), next);
IR

std::move (next_middle),
left.get_part ),
middle_data, right.get_part());

L1l FRIEDRICH-ALEXANDER
ﬁl = = UNIVERSITAT
LI = &= == ERLANGEN-NURNBERG

LOUISIANA STATE UNIVERSITY TECHNISCHE FAKULTAT

36



HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU

Example 2: 1D Heat equation

std::vector<hpx::future<partition>> grids[2];
hpx::1id_type left_neighbor, right_neighbor;
std::size_t old = 0O;
std::size_t cur = 1;
for (std::size_t t = 0; t != nt; ++t)
{
// receive
if(id !'= 0)
grids [cur] [0] = receive_left(t);
if (id != ranks-1)
grids [cur] [num_parts-1] = receive_right(t);

for(std::size_t x
grids [cur] [x]
heat_part
, grids[old][x-1], grids[old][x], grids[old][x+1]
)
// send
if(id !'= 0)
send_left (grids [1])
if (id != ranks-1)
send_right (grids [num_parts-2]); N ===

) LS ===

LOUISIANA STATE UNIVERSITY

1; x < num_parts-1; ++x)
hpx::1lcos::dataflow(

FRIEDRICH-ALEXANDER
UNIVERSITAT _
ERLANGEN-NURNBERG

TECHNISCHE FAKULTAT

37



HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU

Example 2: 1D Heat equation

hpx::1lcos::1local::receive_buffer<partition> left_receiver;
hpx::future<partition> receive_left(std::size_t t)
{

return left_receiver.receive(t);

hpx::1lcos::local::receive_buffer<partition> right_receiver;
hpx::future<partition> receive_left(std::size_t t)
{

return right_receiver.receive(t);

}

— —

A 3 = === =

L S w= == == FRIEDRICH-ALEXANDER

/I = S=—=T= = UNIVERSITAT
i ="<==—= ERLANGEN-NURNBERG

LOUISIANA STATE UNIVERSITY TECHNISCHE FAKULTAT

_—

38



HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU

Example 2: 1D Heat equation

void send_left(partition p, std::size_t t)
{

store_right_action act;

hpx::apply(act, left_neighbor, t, p);

}
void store_right(std::size_t t, partition p)
{
right_receiver.store_received(t, p);
ks

void send_right(partition p, std::size_t t)
{

store_left_action act;

hpx::apply(act, right_neighbor, t, p);

¥
void store_left(std::size_t t, partition p)
{
left_receiver.store_received(t, p);
by

FRIEDRICH-ALEXANDER
ﬁl —r— UNIVERSITAT _

= &= ="==ERLANGEN-NURNBERG
o

LOUISIANA STATE UNIVERSITY TECHNISCHE FAKULTAT



HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU

Get in touch!

e Blog: http://stellar-group.org

e Code: https://github.com/STE11AR-GROUP/hpx
Open Source (Boost Software License 1.0)

e Mailing List: hpx-users@stellar.cct.lsu.edu
e IRC: #stel| |ar @ irc.freenode.org

' — =
é ) — —— - —
ﬁl — — — —
P - - -——
LOUISIANA STATE UNIVERSITY

FRIEDRICH-ALEXANDER
UNIVERSITAT _
ERLANGEN-NURNBERG

TECHNISCHE FAKULTAT

40



