
The Performance Implication of Task Size for Applications on
the HPX Runtime System

Patricia Grubel∗§, Hartmut Kaiser†§, Jeanine Cook∗‡§, Adrian Serio†§
∗Klipsch School of Electrical and Computer Engineering, New Mexico State University,

†Center for Computation and Technology, Louisiana State University
‡Sandia National Laboratories

§STE | |AR Group (stellar-group.org)

Abstract—As High Performance Computing moves toward Exascale,
where parallel applications will be expected to run on millions of cores
concurrently, every component of the computational model must perform
optimally. One such component, the task scheduler, can potentially be
optimized to runtime application requirements. We focus our study using
a task-based runtime system, one possible solution towards Exascale
computation. Based on task size and scheduler, the overheads associated
with task scheduling vary. Therefore, to minimize overheads and optimize
performance, either the task size or the scheduler must adapt. In
this paper, we focus on adapting the task size, which can be easily
done statically and potentially done dynamically. To this end, we first
show how scheduling overheads change with task size or granularity.
We then propose and execute a methodology to characterize these
overheads and dynamically measure the effects of task granularity.
The HPX runtime system [1] employs asynchronous fine-grained task
scheduling and incorporates a dynamic performance modeling capability,
providing an ideal experimental platform. Using the performance counter
capabilities in HPX, we characterize task scheduling overheads and show
metrics to determine optimal task size. This is the first step toward the
goal of dynamically adapting task size to optimize parallel performance.

Keywords—Task Granularity, Task Scheduling, Task Parallelism,
HPX, ParalleX

I. INTRODUCTION

High performance computer architectures on the path to Exascale
are expected to support increased parallelism through higher core
and thread/core counts and tighter integration of GPU and GPU-
like accelerators, in addition to significant changes in processor core
and memory architecture. As these architectures evolve to support
massive amounts of concurrency, runtimes and programming models
are changing to improve Scalability, Programmability, Performance
portability, Resilience, and Energy Efficiency.

There is an ongoing debate in the community on how to achieve
all of the above. An underlying hypothesis of the presented work
is that achieving the goal of dramatic scalability improvements
for contemporary strong scaling impaired applications and future
Exascale applications will require a new execution model to replace
the conventional communicating sequential processes (CSP) model
best represented by the MPI application programming interface.
Although this position is controversial and a focus of community-
wide debate, the Exascale computing study [2] concluded that a
new execution model and programming methodology is required for
dramatic scalability improvements in such problems.

Execution models (and runtime systems that implement them)
that support scalability in massively parallel systems are beginning to
appear in the HPC community [3], [4], [5], [6], [7]. These models and
their respective runtime systems aim to support parallelism through
massive multithreading where an application is split into numerous

tasks or threads of varying size that execute concurrently. Runtime
adaptive resource management and decision making is a centerpiece
of the scalability strategy. Runtime adaptivity strongly relies on
the ability to identify possible decision criteria usable to steer the
runtime system parameters in the desired direction, ensuring best
possible performance, energy efficiency, or resource utilization for the
application. Despite being critical to success, many of these decision
criteria have not yet been determined.

An important component of these runtime systems that can be
dynamically adapted to optimize performance is the thread scheduler.
Many of the runtime systems implement different thread schedulers
that result in widely varying overheads for different task granu-
larities [8]. This provides an opportunity to optimize performance
by dynamically adapting the thread scheduling algorithm and/or
task granularity. The goal of our research is to develop adaptive
thread scheduling to improve performance of parallel applications.
Achieving this goal requires: 1. Identification of metrics that can be
used to monitor performance and signal the need for runtime changes
to task size, 2. Design an auto-tuning infrastructure to make dynamic
changes to task size, and 3. Perform evaluations of the technique
across several platforms and applications. In this paper we report our
early results for the first step.

A. Task Granularity

An important influence on thread scheduling overheads is the
granularity of the tasks distributed among processors. The granularity
of a task is the amount of time the task executes continuously
without synchronization or communication. Fine-grained tasks have
small amounts of computation between events for communication
or synchronization, while coarse-grained tasks perform computations
continuously for long periods of time. Fine-grained tasks can help
in optimizing load balancing amongst the parallel processors, but
if the application is characterized by a very large number of fine-
grained tasks, this can cause higher overall overheads for task
creation, management, communication and synchronization, as well
as contention on resources such as cache hierarchy or the intercon-
nection network. Coarse-grained tasks make it difficult to perform
efficient load balancing amongst the processors causing idle time.
The solution to these problems appears to use an efficient grain
size for the application. For some application classes, this is the
solution. However, there are classes of scaling impaired applications,
such as graph applications, that inherently employ fine-grained tasks.
These types of applications can benefit significantly from thread
scheduling mechanisms that adapt at runtime by detecting granularity
size (specific to the underlying hardware) and subsequently tuning

either the scheduling mechanisms and/or the task granularity (if
possible) to perform more efficiently. Even applications that are not
characterized by a large percentage of fine-grained tasks can benefit
from automatic task-size detection and tuning at runtime.

The initial steps toward runtime adaptivity include describing the
relationship between overheads and task granularity, understanding
how schedulers affect performance for different task sizes, and
ascertaining metrics that dynamically determine task granularity.
Although our initial results indicate that different schedulers optimize
performance for different task size, that performance study is outside
the scope of this work and will be done thoroughly in the future.

B. HPX Runtime System

HPX is a general purpose C++ runtime system for distributed par-
allel applications of any scale. We briefly describe its implementation,
thread scheduling system, and performance monitoring system.

In order to tackle the Exascale challenges, a new execution model
is required that exposes the full parallelization capabilities of con-
temporary and emerging heterogeneous hardware to the application
programmer in a simple and homogeneous way. HPX is designed
to implement such an execution model. It represents an innovative
mixture of a global system-wide address space, fine-grain parallelism,
and lightweight synchronization combined with implicit, work queue
based, message driven computation, full semantic equivalence of local
and remote execution, and explicit support for hardware accelerators
through percolation. HPX has been designed to replace conventional
CSP with fine-grained threading and asynchronous communication,
thereby eliminating explicit and implicit global barriers and improving
performance of parallel applications.

The design of the API exposed by HPX is aligned as much as
possible with the latest C++11 Standard [9], the C++14 Standard [10],
and related proposals to the standardization committee [11], [12],
[13]. HPX implements all interfaces defined by the C++ Standard
related to multi-threading (such as future, thread, mutex, or async)
in a fully conforming way. These interfaces were accepted for ISO
standardization after a wide community-based discussion and since
then have proven to be effective tools for managing asynchrony. HPX
seeks to extend these concepts, interfaces, and ideas embodied in the
C++11 threading system to distributed and data-flow programming
use cases. Every possible effort was made to keep all of the imple-
mentation of HPX fully conforming to C++, ensuring a high degree
of code portability and performance portability of HPX applications.
For a more detailed description of HPX and its API see [7].

Thread Scheduling System: HPX-threads, also referred to as tasks,
are first class objects in the sense that they have an immutable name
in HPX’s global address space. They maintain a thread state, an exe-
cution frame, and a (operation specific) set of registers. HPX-threads
are implemented as user level threads utilizing the M : N model
(also known as hybrid-threading). Hybrid threading implementations
use a pool of N kernel threads to execute M library threads. HPX-
threads are cooperatively (non-preemptively) scheduled in user mode
by the thread scheduler on top of one operating system (OS) thread
(e.g., pthread) per core, also referred to as worker thread. This way,
HPX-threads can be scheduled without a kernel transition, ensuring
high performance. Additionally the full use of the OS time quantum
per OS thread can be achieved even if an HPX-thread is suspended
for any reason as other HPX-threads may be executed. The scheduler

is cooperative in the sense that it will not preempt a running HPX-
thread until it finishes execution or that thread cooperatively yields its
execution (ends a thread-phase). This is particularly important since
it avoids costly context switches of operating system threads.

The thread manager currently implements different scheduling
policies. However all measurements presented here are done using
a priority based FIFO (first-in-first-out) scheduling scheme, where
each OS thread works from a separate priority queue of tasks. This
is very similar to Intel’s Thread Building Blocks [14], or Microsoft’s
PPL [15]. At creation time the thread manager captures the machine
topology and is parameterized with the number of resources it can
use, the number of OS threads mapped to its allocated resources, and
its resource allocation policy (NUMA awareness). By default it will
use all available cores and will create one static OS thread per core.

All HPX-thread scheduling policies use a dual-queue scheme
to manage threads. The five HPX-thread states are staged, pending,
active, suspended, and terminated. An HPX-thread is first created by
the thread scheduler as a thread description, and placed in a staged
queue. Since staged threads have not yet been allocated a context,
they are easily created and can be moved to queues associated with
other memory domains with only very small associated memory costs.
The thread scheduler will eventually remove the staged HPX-thread,
transform it into an object with a context, and place it in a pending
queue where it is ready to run. Once an HPX-thread is running, it
is in the active state, and can suspend itself for synchronization or
communication. HPX-threads that have suspended execution are in
the suspended state, waiting for resources or data to become ready to
execute; at that time they will be placed back in the pending queue.
A thread that has completed execution will enter the terminated state.

For this study we use the Priority Local-FIFO scheduler, a
composition of the Priority Local scheduling policy and the lock free
FIFO queuing policy. The Priority Local scheduler uses one pending
and one staged queue per worker thread with normal priority, has
a specified number of high priority dual queues, and has one low
priority queue for threads that will be scheduled only when all other
work has been done. When looking for work under the Priority Local
policy, the thread manager looks in the worker thread’s own pending
queue first, then in its staged queue. When the worker thread runs out
of work in its local queue system, the thread manager searches the
local NUMA domain first through other staged queues, then pending
queues. If it does not find work, it will search other NUMA domains,
starting with staged queues then pending queues Figure 1.

HPX Performance Monitoring System: The performance moni-
toring system of HPX provides the mechanism to monitor hardware
and software behavior through measured performance counters. HPX
performance counters are first class objects, each with a global
address mapped to a unique symbolic name, useful for introspection
at runtime by the application or the runtime system. Through HPX’s
predefined interface new performance counters can be easily added.
HPX uses the PAPI [16], [17] interface to implement HPX hardware
counters. HPX counters are easily accessible through an API at
runtime or through a command-line interface for post processing
performance analysis. In this study, hardware and software per-
formance counters are used to determine task granularity for the
experiments and to obtain measurements of system performance.
Since the performance counters are available at runtime, the metrics
obtained from them can be used for adaptation of the scheduling
policies or to vary the grain size for certain classes of applications.

OS ThreadOS Thread

NUMA domain

OS ThreadOS Thread

NUMA domain

OS ThreadOS Thread

NUMA domain

. . .

. . .

. . .

. . .

. . .

. . .

Staged Thread

Pending Thread

3

14

 Task Scheduling Algorithm
1. Local Pending
2. Local Staged
3. Local NUMA Staged
4. Local NUMA Pending
5. Remote NUMA Staged
6. Remote NUMA Pending

3
2

35

36

31

OS Thread OS Thread OS Thread

Fig. 1: Schematics of working principle of the Priority Local Scheduler

C. Benchmark

This study uses the one dimensional heat distribution benchmark,
HPX-Stencil, (1d stencil 4, available in the HPX distribution pack-
age), a representation of the class of scientific applications using
iterative kernels. The regular updates in the stencil code provides
us with the means to control grain size for our experiments. HPX-
Stencil is one of the benchmarks in a series of benchmarks developed
to demonstrate the steps in futurization of parallel applications using
HPX [7]. The calculation simulates the diffusion of heat across a
ring by breaking the ring up into discrete points and using the
temperature of the point and the temperatures of the neighboring
points to calculate the temperature of the next time step. This
dependency is captured in Fig. 2, and explicitly describes the data
dependencies captured by the original algorithm. We use the asyn-
chronous threading API of HPX to execute all tasks in proper
sequence as defined by the dependency graph. Each of the tasks is
launched as a separate (lightweight) HPX-thread using hpx::async
generating an hpx::future that represents the expected result of
each of the tasks. The hpx::future instances are combined into
the dependency tree using the additional HPX facilities to compose
Futures sequentially and in parallel. These compositional facilities
allow creating task dependencies that mirror the data dependencies
described by the original algorithm. Here, the Future objects represent
the terminal nodes and their combination represents the edges and the
intermediate nodes of the dependency graph.

HPX’s lightweight threading system imposes relatively low over-
head and allows one to create and schedule a large number of tasks (up
to several million concurrent tasks). This efficiency combined with
the semantics of Futures allow the direct expression of the generated
dependency graph as an execution tree generated at runtime, providing
a solid base for a highly efficient auto-parallelization.

In HPX-stencil, the HPX code has been futurized. This means
that the dependencies of the calculation have been expressed using
futures. The process of futurizing parallel applications using HPX is
documented in the HPX manual [18]. In addition, the data points
have been split into partitions, and each ”partition” is represented
with a future. By changing the number of data points in each partition
(varying the available input parameters for number of grid points per
partition and number of partitions) we can change the number of
calculations contained in each future. In this way, we are able to

control the grain size of the problem.

This benchmark was chosen because task granularity can be easily
controlled, allowing us to use task size as the basis of our experiments
and enable us to construct a simple test case in runtime adaptivity.
We obtained similar results from micro benchmarks but for brevity
they are not included. We are in the process of studying a variety of
applications with different workloads.

II. EXPERIMENTAL METHODOLOGY

Our goal is to explore how to dynamically adapt task granularity
in a programming model that uses fine-grained asynchronous task
scheduling mechanisms. In parallel applications, with regular parallel
loops, we can easily modify grain size statically to improve perfor-
mance. We need to be able to determine granularity and adjust it
at runtime. To this end, we use HPX-Stencil with its controllable
partition size and asynchronous data-flow constructs. Varying grain
size from fine-grain to coarse-grain will cause different overheads.
Executing applications with millions of fine-grained tasks can cause
overheads for thread management and due to contention for queuing
and memory resources. While executing coarse-grained tasks can
cause overheads caused by poor load balancing and starvation of
worker threads. We determine metrics that measure performance
behavior, determine granularity and associated overheads then use
the facilities in HPX to measure required event counts. This charac-
terization is a first step towards adapting grain size for performance
improvement.

The experiments for this study comprise executing the HPX
parallel benchmark, HPX-Stencil, described in Sec. I-C, over a large
range of partition sizes, to vary granularity, and for an increasing
number of cores for strong scaling performance. We compute the
heat equation of 100 million grid points for 50 time steps for each
data set. When collecting performance and counter data, we make
multiple runs and calculate means and standard deviation of these
counts. We compute the metrics using the average of the required
event counts.

A. Performance Metrics

We compute and analyze numerous metrics. We present only
those metrics that are useful to our goal of determining grain size
and associated overheads that can be used dynamically to adapt
granularity. The metrics and their associated performance event counts
are as follows:

Execution Time: We measure the execution time of the heat
diffusion for the benchmark to assess performance. To vary grain size,
the size of the partition (grid points per partition) is increased and
the number of partitions is decreased, so that, for each experiment,
heat diffusion is calculated for the same number of grid points.

Thread Idle-rate: The idle-rate event count, /threads/idle-rate, is
the ratio of thread management overhead to execution time. HPX
measures

∑
texec, the running sum of times spent on the computation

portion of each HPX-thread, and
∑

tfunc, the running sum of total
times to complete each HPX-thread. HPX computes idle-rate (Ir) as
shown in Eq. 1.

Ir =

∑
tfunc −

∑
texec∑

tfunc
(1)

In Sec. IV we show idle-rate can be used to make decisions to adjust
scheduling mechanisms and grain size to optimize performance by
monitoring it at runtime and setting a level of tolerance.

xj+1,0 … xj+1,n-1xj-1,0 … xj-1,n-1ti xj+2 … xj+2xj-2 … xj-2 xj,0 … xj,n-1

xj,0 … xj,n-1ti+1 … …

…ti+2

Fig. 2: Dependencies of Heat Distribution Benchmark, HPX-Stencil. Inside each partition, the temperature of a point in the next time step is
calculated using the current point’s temperature and the temperatures of its neighbors. In order for a partition to be ready to calculate the next time
step tI+1, the three closest partitions from the previous time step tI must have calculated their temperatures.

Task Duration: The average execution time of the computa-
tion of an HPX-thread, task duration (td) is obtained from the
/threads/time/average HPX performance counter, and computed as
shown in Eq. 2. The number of HPX-threads executed, nt, is also
available as counter /threads/count/cumulative.

td =

∑
texec

nt
(2)

Task Overhead: The average time spent on thread management
for each HPX-thread, task overhead (to), is obtained from the
/threads/time/average-overhead performance counter, and is com-
puted by HPX’s performance monitoring system as shown in Eq. 3.

to =

∑
tfunc −

∑
texec

nt
(3)

Task duration and overhead performance counters were added
to HPX as a part of this study and are now available for dy-
namic measurements at runtime. Additional counters were added
to measure average duration and overheads of HPX-thread phases.
Each time a thread is activated, either as a new thread or one
that has been suspended and reactivated, a thread phase begins.
The number of phases, phase duration, and phase overhead can be
useful to monitor the affects of suspension and are available as the
counters, /count/cumulative-phases, /threads/time/average-phase, and
/threads/time/average-phase-overhead.

HPX-thread Management Overhead: We compute the HPX-
thread management overhead of the benchmark as shown in Eq. 4.
This metric is computed per core (divided by the number of cores, nc)
to be compared with the execution time of the benchmark. Although
we calculate this metric for the entire run, for dynamic measurements
it can be calculated over any interval of interest.

To =
to ∗ nt

nc
(4)

Wait Time: When running on multiple cores the duration of a task
can increase due to waiting on resources. We compute the average
wait time per HPX-thread, as the difference between the measured
average task duration, td, of each experiment and, td1, task duration
of the same experiment on one core (Eq. 5). Wait time is an additional
time spent in parallel applications and does not include the overheads
caused by task management. We also see in our results that wait time
can be negative since behaviors such as caching effects can cause the
time for one core to be larger than that for multiple cores [8].

tw = td − td1 (5)

We use Eq. 6 to compute the wait time per core for comparison
to execution time. For dynamic measurements this metric can be
calculated for any interval of the application. This metric requires
measurements from running on one core that can be taken at a one
time cost prior to data runs or by running a small number of iterations
upon initialization of the application.

Tw =
(td − td1) ∗ nt

nc
(6)

Note: We performed extensive experiments assessing overheads
caused by invoking the timers used for the idle-rate, task duration
and overhead counters. There were no significant overheads except
for the cases where the experiments were run on only one core and
the task durations were less than four microseconds.

Thread Pending Queue Metrics: The HPX counters, pending
queue accesses and misses (/threads/count/pending-accesses and -
misses), count the number of times the thread scheduler looks for
work in the associated pending queue of each worker thread and the
number of times it fails to find work there. The counters register the
activity by the HPX-thread scheduler on the queues. Counters (idle-
rate, task duration, and task overhead) required for the other metrics
use timestamps and may not be available on all platforms, so we
present the pending queue metrics as viable alternatives. Although
individual counts are available for each pending queue, in this paper,
the total count for all the pending queues are reported for each
experiment. Counts are also available for the staged queues and were
measured for this study but are not presented because the values were
insignificant.

III. EXPERIMENTAL PLATFORMS

HPX is a unified computational runtime system designed for
parallel computation on either a single server or in distributed
mode on homogeneous or heterogeneous clusters. This study is only
concerned with performance useful for determining task granularity
and optimizing task scheduling, therefore the experiments measure
performance on a single node.

Experiments are performed on an Intel Xeon Phi coprocessor
and three Intel nodes of the Hermione cluster, Center for Com-
putation and Technology, Louisiana State University, running the
Debian GNU/Linux Unstable, kernel version 3.8.13 (on the Xeon

1E+03 1E+04 1E+05 1E+06 1E+07 1E+08
1

2

3

4

5

6

7

8

Cores

Partition Size (Grid Points)
E

xe
cu

tio
n

 T
im

e
 (

se
c)

1

2

4

8

12

16

(a) Sandy Bridge

1E+03 1E+04 1E+05 1E+06 1E+07 1E+08
1

2

3

4

5

6

7

8

Cores
1

2

4

8

16

20

Partition Size (Grid Points)

E
xe

cu
tio

n
 T

im
e

 (
se

c)

(b) Ivy Bridge

1E+03 1E+04 1E+05 1E+06 1E+07 1E+08
1

2

3

4

5

6

7

8

Cores

1

2

4

8

16

28

Partition Size (Grid Points)

E
xe

cu
tio

n
 T

im
e

 (
se

c)

(c) Haswell

1E+03 1E+04 1E+05 1E+06 1E+07 1E+08
0

20

40

60
Cores

1

2

4

8

16

32

60

Partition Size (Grid Points)

E
xe

cu
tio

n
 T

im
e

 (
se

c)

(d) Xeon Phi (1 thread per core)

Fig. 3: Execution Time vs. Task Granularity (partition size) for various Intel microarchitectures

Phi, 2.6.38.8 k1om), using HPX V0.9.10. The specifications of the
platforms are shown in Table III. We ran the experiments on the
Xeon Phi for 1 to 4 threads per core. There was no improvement
in results with multiple threads per core. So, we only present results
from running with one thread per core.

TABLE I: Platform Specifications.

Node Haswell (HW) Xeon Phi
Processors Intel Xeon E5-2695 v3 Intel Xeon Phi
Clock Frequency 2.3 GHz (3.3 turbo) 1.2 GHz
Microarchitecture Haswell (HW) Xeon Phi
Hardware Threading 2-way (deactivated) 4-way
Cores 28 61
Cache/Core 32 KB L1(D,I) 32 KB L1(D,I)

256 KB L2 512 KB L2
Shared Cache 35 MB
RAM 128 GB 8 GB

Node Ivy Bridge (IB) Sandy Bridge (SB)
Processors Intel Xeon E5-2679 v3 Intel Xeon E5 2690
Clock Frequency 2.3 GHz (3.3 turbo) 2.9 GHz (3.8 turbo)
Microarchitecture Ivy Bridge (IB) Sandy Bridge (SB)
Hardware Threading 2-way (deactivated) 2-way (deactivated)
Cores 20 16
Cache/Core 32 KB L1(D,I) 32 KB L1(D,I)

256 KB L2 256 KB L2
Shared Cache 35 MB 20 MB
RAM 128 GB 64 GB

IV. EXPERIMENTAL RESULTS

Using the benchmark HPX-stencil, we ran experiments over a
large range of task grain sizes by varying the partition size from 160
points to 100 million points, adjusting the number of partitions to
keep the number of grid points at 100 million. For each experiment,
we compute the heat equation of 100 million grid points for 50 time
steps (for experiments on the Xeon Phi we compute five time steps).
We increase the number of cores used for each experiment but keep
the total number of grid points the same for strong scaling results. We
use the mean of ten samples for each of the experiments. We compute
the mean, standard deviation, and coefficient of variation (COV) (the
ratio of the standard deviation to the mean) of the execution times
and event counts. COVs for execution times and event counts are less
than 10%, (most are less than 3%) for experiments using less than

16 cores. For a few sample sets using more than 16 cores and when
the partition size is less than 32,000, COVs range up to 21% on the
Haswell node. For the Xeon Phi, COVs for partition sizes less than
5000 were greater than 10% for some of the sample sets. COV for
event counts have the same behavior for the same sample sets. We
will investigate this thouroughly in the future.

We examine the performance of the benchmark, HPX-stencil,
by granularity and number of cores in Figure 3. On all platforms,
execution time is large for very fine-grained tasks due to overheads
caused by task management and for coarse-grained tasks where
overheads are caused by poor load balance, not enough work to
spread among the cores. In between these areas, we expect to see the
execution time flatten out since task management overheads should
be minimum. However, wait time as explained in II-A also influences
the execution time and is dependent on task granularity, the number
of cores used, and the underlying architecture.

Using the metrics in Sec. II-A we model the effects of varying task
granularity and the number of parallel processors on overheads and
performance. We present experimental measurements and resulting
metrics for the Haswell and Xeon Phi platforms. Results of the
metrics from the other two platforms are similar to the results from
the Haswell node so are not presented here.

A. Idle-rate

Idle-rate is the ratio of time spent on HPX-thread management to
that of execution, Figures 4 and 5. For very fine-grained tasks (small
partition sizes) there are a large number of tasks to manage, and the
task management is a large percentage, up to 90%, of the execution
time. The regions on the left sides of the graphs show the increased
execution times for very fine-grained tasks with partition sizes less
than 12,500 grid points. The average task duration for computing
12,500 grid points using one core is 21 microseconds on Haswell
and 1.1 milliseconds on the Xeon Phi. On the other extreme for very
coarse-grained tasks idle-rate increases due to starvation. The tasks
are so large that, at times, cores have no work to do while waiting
for results, but the thread scheduler continues to look for work.

1E+03 1E+04 1E+05 1E+06 1E+07 1E+08

1

2

3

4

5

6

0%

20%

40%

60%

80%

100%
Execution Time
Idle Rate

Partition Size (Grid Points)

E
xe

cu
tio

n
T

im
e

(s
ec

)

Id
le

 R
at

e

(a) Haswell 8 cores

1E+03 1E+04 1E+05 1E+06 1E+07 1E+08

1

2

3

4

5

6

0%

20%

40%

60%

80%

100%
Execution Time
Idle Rate

Partition Size (Grid Points)

E
xe

cu
tio

n
T

im
e

(s
ec

)

Id
le

 R
at

e

(b) Haswell 16 cores

1E+03 1E+04 1E+05 1E+06 1E+07 1E+08

1

2

3

4

5

6

0%

20%

40%

60%

80%

100%
Execution Time
Idle Rate

Partition Size (Grid Points)

E
xe

cu
tio

n
T

im
e

(s
ec

)

Id
le

 R
at

e

(c) Haswell 28 cores

Fig. 4: Idle-rate: Intel Haswell

1E+03 1E+04 1E+05 1E+06 1E+07 1E+08

1

2

3

4

5

6

0%

20%

40%

60%

80%

100%
Execution Time
Idle Rate

Partition Size (Grid Points)

E
xe

cu
tio

n
 T

im
e

 (
se

c)

Id
le

 R
a

te

(a) Xeon Phi 16 cores

1E+03 1E+04 1E+05 1E+06 1E+07 1E+08

1

2

3

4

5

6

0%

20%

40%

60%

80%

100%
Execution Time
Idle Rate

Partition Size (Grid Points)

E
xe

cu
tio

n
 T

im
e

 (
se

c)

Id
le

 R
a

te

(b) Xeon Phi 32 cores

1E+03 1E+04 1E+05 1E+06 1E+07 1E+08

1

2

3

4

5

6

0%

20%

40%

60%

80%

100%
Execution Time
Idle Rate

Partition Size (Grid Points)

E
xe

cu
tio

n
 T

im
e

 (
se

c)

Id
le

 R
a

te

(c) Xeon Phi 60 cores

Fig. 5: Idle-rate: Intel Xeon Phi

Idle-rate can be used to determine a range of adequate grain sizes,
but since it does not mimic the effects of the parallelization time and
overheads of the benchmark, it cannot be used to determine an optimal
grain size. In figures 4a and 4b, for partition sizes from 20,000 to
100,000 even though idle-rate increases, the execution time decreases.
This also appears in Figures 5b and 5c for partition sizes from
100,000 to 800,000 for 32 and 60 cores on the Xeon Phi coprocessor.
In Sec. IV-C we show that this behavior is caused by wait time.

The experimental results indicate that, depending on require-
ments, an acceptable grain size can be determined by setting a thresh-
old for the idle-rate. For example, on the Haswell node for 28 cores
with a maximum threshold for idle-rate at 30%, the smallest partition
size is 78,125 with an average task duration of 99 microseconds
(average task duration measured while running with one core). At
this partition size, the average execution time is 1.75 seconds, which
is within the standard deviation (0.03) for the minimum time of 1.71
seconds using a partition size of 40,000.

B. HPX-thread Management Overhead

We compute the overhead, Eq. 4, caused by management of HPX-
threads to determine the effect on the execution time. Figures 7 and
8 show that for both platforms the overhead is high for very fine- and
coarse-grained tasks, and the behavior of the execution time in those
regions is the same as the overhead. However, in the center region
the behavior of the HPX-thread management overhead is relatively
flat and execution time does not follow that behavior. For fine- to
medium-grained tasks, where task management is not the predominant
overhead, waiting on resources has a similar behavior to performance
as shown in the following section.

C. Wait Time

To assess the effect of waiting on resources, we first compute
the average wait time per HPX-thread, Eq. 5. Results from our
experiments show that the wait time per HPX-thread increases with
the number of cores and with the partition size as shown for the
Haswell node in Figure 6.

10,000 30,000 50,000 70,000 90,000
0

100

200

300

400

500

600

700

Cores
4

8

16

28

Partition Size (Grid Points)

m
ic

ro
se

co
n

d
s

Fig. 6: Wait Time per HPX-Thread (Haswell)

To compute the wait time for the entire experiment we use Eq. 6.
The results of the wait time metric for the Haswell node in Figure 7
and for the Xeon Phi in Figure 8 show that the behavior for fine- to
medium-grained task size mimics the execution time. This region is
for partition sizes ranging from 20,000 to 1,000,000 grid points with
task durations of 32 microseconds to 1.3 milliseconds for the Haswell
node and 1.8 to 50 milliseconds on the Xeon Phi. We note that wait
time is negative (i.e. the average task duration run on multiple cores
is larger than when run on one core) for the experiments with very
coarse-grained tasks. This occurs when the number of tasks per time
step are smaller than the number of cores used. These task sizes are
well beyond the range of fine-grained to medium-grained tasks of
interest for task parallelism but are presented here for completeness.

D. Combined Costs: HPX-thread Management and Wait Time

The combination of time for managing HPX-threads and waiting
on resources show that these are the driving effects on execution
time (Figures 7 and 8). Not only does the behavior of the combined
costs mimic that of execution time, but we can also see that the
costs increase with parallelism causing the execution time to stay
relatively the same after eight cores. The gap between execution
time and the cost of thread management and wait time depicts the
actual computation time. As the number of cores used increases (i.e.

1E+03 1E+04 1E+05 1E+06 1E+07 1E+08
-2

-1

1

2

3

4

5

6

Exec Time HPX-TM & WT
WT HPX-TM

Partition Size (Grid Points)

se
co

n
d

s

(a) Haswell 8 cores

1E+03 1E+04 1E+05 1E+06 1E+07 1E+08
-2

-1

1

2

3

4

5

6

Exec Time HPX-TM & WT
WT HPX-TM

Partition Size (Grid Points)

se
co

n
d

s

(b) Haswell 16 cores

1E+03 1E+04 1E+05 1E+06 1E+07 1E+08
-2

-1

1

2

3

4

5

6

Exec Time HPX-TM & WT
WT HPX-TM

Partition Size (Grid Points)

se
co

n
d

s

(c) Haswell 28 cores

Fig. 7: HPX-Thread Management (TM) and Wait Time (WT): Intel Haswell

1E+03 1E+04 1E+05 1E+06 1E+07 1E+08
-2

-1

1

2

3

4

5

6

Partition Size (Grid Points)

se
co

n
d

s

Exec Time HPX-TM & WT
WT HPX-TM

(a) Xeon Phi 16 cores

1E+03 1E+04 1E+05 1E+06 1E+07 1E+08
-2

-1

1

2

3

4

5

6

Partition Size (Grid Points)

se
co

n
d

s
Exec Time HPX-TM & WT
WT HPX-TM

(b) Xeon Phi 32 cores

1E+03 1E+04 1E+05 1E+06 1E+07 1E+08
-2

-1

1

2

3

4

5

6

Partition Size (Grid Points)

se
co

n
d

s

Exec Time HPX-TM & WT
WT HPX-TM

(c) Xeon Phi 60 cores

Fig. 8: HPX-Thread Management (TM) and Wait Time (WT): Intel Xeon Phi

1E+03 1E+04 1E+05 1E+06 1E+07 1E+08

1

2

3

4

5

6

0

5

10

15

20

25

30

35

40

Partition Size (Grid Points)

E
xe

cu
tio

n
 T

im
e

 (
se

c)

A
cc

e
ss

e
s

(m
ill

io
n

s)Execution Time
Pending Q Accesses

(a) Haswell 8 cores

1E+03 1E+04 1E+05 1E+06 1E+07 1E+08

1

2

3

4

5

6

0

5

10

15

20

25

30

35

40

Partition Size (Grid Points)

E
xe

cu
tio

n
 T

im
e

 (
se

c)

A
cc

e
ss

e
s

(m
ill

io
n

s)

Execution Time
Pending Q Accesses

(b) Haswell 16 cores

1E+03 1E+04 1E+05 1E+06 1E+07 1E+08

1

2

3

4

5

6

0

5

10

15

20

25

30

35

40

Partition Size (Grid Points)

E
xe

cu
tio

n
 T

im
e

 (
se

c)

A
cc

e
ss

e
s

(m
ill

io
n

s)

Execution Time
Pending Q Accesses

(c) Haswell 28 cores

Fig. 9: Pending Queue Accesses: Intel Haswell

1E+03 1E+04 1E+05 1E+06 1E+07 1E+08

1

2

3

4

5

6

.0

.5

1.0

1.5

2.0

Partition Size (Grid Points)

E
xe

cu
tio

n
 T

im
e

 (
se

c)

A
cc

e
ss

e
s

(m
ill

io
n

s)

Execution Time

Pending Q Accesses

(a) Xeon Phi 16 cores

1E+03 1E+04 1E+05 1E+06 1E+07 1E+08

1

2

3

4

5

6

.0

.5

1.0

1.5

2.0

Partition Size (Grid Points)

E
xe

cu
tio

n
 T

im
e

 (
se

c)

A
cc

e
ss

e
s

(m
ill

io
n

s)

Execution Time

Pending Q Accesses

(b) Xeon Phi 32 cores

1E+03 1E+04 1E+05 1E+06 1E+07 1E+08

1

2

3

4

5

6

.0

.5

1.0

1.5

2.0

Partition Size (Grid Points)

E
xe

cu
tio

n
 T

im
e

 (
se

c)

A
cc

e
ss

e
s

(m
ill

io
n

s)Execution Time

Pending Q Accesses

(c) Xeon Phi 60 cores

Fig. 10: Pending Queue Accesses: Intel Xeon Phi

increased parallelism) the computation time decreases, but overheads
and wait time increases impairing scaling.

E. Thread Pending Queue Accesses

Measuring the number of accesses to the pending queues gives an
indication of the amount of activity involving the thread scheduler.
Figures 9 and 10 show that this metric can be used to determine
adequate task grain size. For example, the minimum pending queue
accesses for Haswell when running on 28 cores occurs when the
partition size is 31,250 and the execution time is 1.925 seconds, within
13% of the minimum time. This metric gives similar results to the
idle-rate metric but does not require timestamps.

V. RELATED WORK

Work related to adaptive thread scheduling includes the work
based on introspection of hardware behavior by A. Porterfield et
al. in [19]. They use RCRdaemon to collect hardware memory and
power measurements and based on those measurements throttle the
number of running OS threads. Their results indicate that this type of
adaptive scheduling can improve performance and save energy. This
requires the ability to perform throttling actions at the hardware level
to be effective in restarting threads. An implementation of the thread
scheduling mechanism has been interfaced with HPX and we plan to
apply our findings to use our metrics with their scheduler.

S. Olivier et al. in [8] characterizes one of the components,
work time inflation, that causes poor performance in task parallel
applications. They use a locality framework to mitigate work time
inflation for task parallel OpenMP programs. They extended that
work by augmenting the Qthreads [5] library with locality-aware
scheduling. Our wait time metric is a measure of work time inflation,
and we characterize wait time as related to varying task granularity.

In [20] Y. Sun et al. employ grain size adaptation using an
execution tree cut-off strategy to expand the task grain size in the
implementation of the framework, Parallel State Space Search Engine
(ParSSSE) over the Charm++ runtime system [15]. They extended
ParSSSE to incorporate adaptive task granularity by sampling the time
it takes to expand individual nodes of the graph and estimating the
average time for the entire application. Their work shows the benefit
of adaptive granularity for dynamic graph problems in a runtime
system that utilizes task parallelism and message driven execution
for state space search problems.

VI. CONCLUSIONS AND FUTURE WORK

Our goal is to dynamically adapt task grain size to optimize
parallel performance using HPX, an open source, general purpose,
C++ runtime system. In this paper, we present a methodology and
the resulting characterization study that characterizes and evaluates
scheduling overheads and time waiting on resources affected by task
granularity for parallel programs. We show that by collecting pertinent
event counts, we can determine an optimal grain size to minimize
scheduling overheads and wait time for best performance.

For future work, we will apply the methodology to dynamically
adapt grain size to minimize scheduling overheads and improve
performance of parallel applications. We plan to conduct a perfor-
mance study with a variety of thread scheduling policies to determine
methods to dynamically adapt the thread scheduler. A. Porterfield’s
throttling scheduler [19] and an initial implementation of the policy
engine from the APEX prototype in [21] have been integrated with
HPX. We plan to apply our findings to drive the policy engine with
our metrics for adapting thread granularity and scheduling policies.

: Acknowledgements.
This work is supported by NSF grant number CCF-111798. We thank
Bryce Adelstein-Lelbach for his work on the HPX thread scheduler
and the addition of counters that made this study possible. We also
thank the anonymous reviewers for their insightful recommendations.

REFERENCES

[1] H. Kaiser, T. Heller, A. Berge, and B. Adelstein-Lelbach, “HPX
V0.9.10: A general purpose C++ runtime system for parallel and
distributed applications of any scale,” 2015. [Online]. Available:
http://dx.doi.org/10.5281/zenodo.16302

[2] P. Kogge et al., “ExaScale Computing Study: Technology Challenges in
Achieving Exascale Systems,” University of Notre Dame, Notre Dame,
IN, Tech. Rep. TR-2008-13, 2008.

[3] C. E. Leiserson, “The Cilk++ concurrency platform,” in DAC ’09:
Proceedings of the 46th Annual Design Automation Conference. New
York, NY, USA: ACM, 2009, pp. 522–527. [Online]. Available:
http://dx.doi.org/10.1145/1629911.1630048

[4] G. Contreras and M. Martonosi, “Characterizing and improving the
performance of intel threading building blocks,” in Workload Charac-
terization, 2008. IISWC 2008. IEEE International Symposium on, Sept
2008, pp. 57–66.

[5] “The Qthread Library,” 2014, http://www.cs.sandia.gov/qthreads/.
[6] K. Wheeler, R. Murphy, and D. Thain, “Qthreads: An api for program-

ming with millions of lightweight threads,” in Parallel and Distributed
Processing, 2008. IPDPS 2008. IEEE International Symposium on,
April 2008, pp. 1–8.

[7] H. Kaiser, T. Heller, B. Adelstein-Lelbach, A. Serio, and D. Fey,
“Hpx: A task based programming model in a global address space,”
in Proceedings of the 8th International Conference on Partitioned
Global Address Space Programming Models, ser. PGAS ’14. New
York, NY, USA: ACM, 2014, pp. 6:1–6:11. [Online]. Available:
http://doi.acm.org/10.1145/2676870.2676883

[8] S. L. Olivier, B. R. de Supinski, M. Schulz, and J. F. Prins,
“Characterizing and mitigating work time inflation in task parallel
programs,” in Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, ser. SC
’12. Los Alamitos, CA, USA: IEEE Computer Society Press, 2012,
pp. 65:1–65:12. [Online]. Available: http://dl.acm.org/citation.cfm?id=
2388996.2389085

[9] The C++ Standards Committee, “ISO International Standard ISO/IEC
14882:2011, Programming Language C++,” Geneva, Switzerland: In-
ternational Organization for Standardization (ISO)., Tech. Rep., 2011,
http://www.open-std.org/jtc1/sc22/wg21.

[10] ——, “ISO International Standard ISO/IEC 14882:2014, Program-
ming Language C++,” Geneva, Switzerland: International Organiza-
tion for Standardization (ISO)., Tech. Rep., 2014, http://www.open-
std.org/jtc1/sc22/wg21.

[11] Niklas Gustafsson and Artur Laksberg and Herb Sutter and Sana
Mithani, “N3857: Improvements to std::future¡T¿ and Related APIs,”
The C++ Standards Committee, Tech. Rep., 2014, http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2014/n3857.pdf.

[12] Vicente J. Botet Escriba, “N3865: More Improvements to
std::future¡T¿,” The C++ Standards Committee, Tech. Rep., 2014,
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3865.pdf.

[13] Chris Mysen and Niklas Gustafsson and Matt Austern
and Jeffrey Yasskin, “N3785: Executors and sched-
ulers, revision 3,” , Tech. Rep., 2013, http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2013/n3785.pdf.

[14] Intel, “Intel Thread Building Blocks 3.0,” 2010,
http://www.threadingbuildingblocks.org.

[15] PPL, “PPL - Parallel Programming Laboratory,” 2011,
http://charm.cs.uiuc.edu/.

[16] J. Dongarra, K. London, S. Moore, P. Mucci, and D. Terpstra, “Using
PAPI for hardware performance monitoring on linux systems,” in
International Conference on Linux Clusters: The HPC Revolution, jun
2001.

[17] D. Terpstra, H. Jagode, H. You, and J. Dongarra, “Collecting perfor-
mance data with PAPI-C,” in Tools for High Performance Computing.
Springer Verlag, 2009, pp. 157–173, 3rd Parallel Tools Workshop.

[18] The STEllAR Group, Louisiana State University, “HPX Users
Manual,” 2007-2014, available under the Boost Software License
(a BSD-style open source license). [Online]. Available: http:
//stellar-group.github.io/hpx/docs/html/

[19] A. Porterfield, R. Fowler, A. Mandal, D. O’Brien, S. Olivier, and
M. Spiegel, “Adaptive Scheduling Using Performance Introspection,
RENCI Technical Report TR-12-02, Renaissance Computing Institute,”
2012.

[20] Y. Sun, G. Zheng, P. Jetley, and L. V. Kale, “An Adaptive Framework for
Large-scale State Space Search,” in Proceedings of Workshop on Large-
Scale Parallel Processing (LSPP) in IEEE International Parallel and
Distributed Processing Symposium (IPDPS), 2011, Anchorage, Alaska,
May 2011.

[21] K. Huck, S. Shende, A. Malony, H. Kaiser, A. jh, R. Fowler, and
R. Brightwell, “An early prototype of an autonomic performance
environment for exascale,” in Proceedings of the 3rd International
Workshop on Runtime and Operating Systems for Supercomputers, ser.
ROSS ’13. New York, NY, USA: ACM, 2013, pp. 8:1–8:8. [Online].
Available: http://doi.acm.org/10.1145/2491661.2481434

