Extending C++ with Co-Array Semantics

Antoine Tran Tan *

Center for Computation and Technology
Louisiana State University
Louisiana, U.S.A.

atrantan@cct.Isu.edu

Abstract

The current trend of large scientific computing problems is to align
as much as possible to a Single Programming Multiple Data (or
SPMD) scheme when the application algorithms are conducive to
parallelization and vectorization. This reduces the complexity of
code because the processors or (computational nodes) perform the
same instructions which allows for better performance as algo-
rithms work on local data sets instead of continuously transferring
data from one locality to another. However, certain applications,
such as stencil problems, demonstrate the need to move data to or
from remote localities. This involves an additional degree of com-
plexity, as one must know with which localities to exchange data.
In order to solve this issue, Fortran has extended its scalar element
indexing approach to distributed structures of elements. In this ex-
tension, a structure of scalar elements is attributed a ’co-index” and
lives in a specific locality. A co-index provides the application with
enough information to retrieve the corresponding data reference.
In C++, containers present themselves as a “smarter” alternative
of Fortran arrays but there are still no corresponding standardized
features similar to the Fortran co-indexing approach. In this paper,
we present an implementation of such features in HPX, a general
purpose C++ runtime system for applications of any scale. We de-
scribe how the combination of the HPX features and the actual C++
Standard makes it easy to define a high performance API similar to
Co-array Fortran.

Categories and Subject Descriptors E.1 [Data Structures]: Dis-
tributed data structures

General Terms Languages, Performance, Standardization

Keywords C++, API, Co-array, distributed containers, PGAS

1. Introduction

The recent advances in processor architecture has allowed modern
supercomputers to perform more than one quadrillion floating point
operations per second. In fact, the transition to the era of exaflops
is expected to occur as soon as 2020. The key factors making such
performance possible are parallel architectures. However, the gap

* The STEIIAR Group (http://stellar-group.org)

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org or Publications
Dept., ACM, Inc., fax +1 (212) 869-0481.

ARRAY’16, June 13-17, 2016, Santa Barbara, CA, USA

Copyright © 2016 ACM 978-1-4503-4384-8/16/06. ... $15.00

DOI: http://dx.doi.org/10.1145/2935323.2935332

Hartmut Kaiser *

Center for Computation and Technology
Louisiana State University
Louisiana, U.S.A.

hkaiser@cct.lsu.edu

between conventional sequential programming and parallel pro-
gramming not only still remains wide, but is widening even further
with the advent of ever more complex architectures, deepening
memory hierarchies, an increasing amount of available processing
units, and heterogeneous instruction sets.

For that reason, many research groups are now actively work-
ing on higher level approaches to reduce the complexity of writing
parallel programs while maintaining a high level of performance.
Among them we cite the PGAS model. The PGAS model is pre-
sented as a model that merges the very best from the two main-
stream concepts which are shared memory programming and dis-
tributed memory programming. The feature of the model are the
following :

e It preserves the concept of Bulk Synchronous Programming
wherein one or more participant processors is executing the
same code (Single Program Multiple Data) but with their proper
data

e It preserves the conventional techniques, i.e. sequential pro-
gramming or multi-threaded programming, when it is about
processors working on local data.

e It bridges the gap between local and distributed worlds by
allowing certain global data to exist in the memory of only one
of the participating processors while being accessible by any
other processor

The PGAS model has some limitations however. The decision
which of data items will be located on what compute node has to
be made statically, which make their runtime redistribution very
difficult.

There are nowadays numerous implementations of the PGAS
model. Those who strictly apply this model are UPC (UPC Con-
sortium 2005), Titanium (Yelick et al. 1998) and Co-array For-
tran (Numrich and Reid 1998). Those who choose to extend the
model are X10 (Charles et al. 2005), Chapel (Chamberlain et al.
2007), and Charm++ (Kale and Krishnan 1993). In general, these
last cited implementations choose to unlock the constraint of Bulk
Synchronous Programming by assigning each processor a task
queue and giving them the ability of creating new asynchronous
tasks schedulable locally or remotely. Such model has the advan-
tage of covering all the types of problems ranging from structured
(or data-parallel) problems to unstructured (or task-parallel) prob-
lems.

Although asynchronous codes can overcome certain perfor-
mance limits, they tend to progressively loose some expressive-
ness; this happens almost systematically when code writing goes
from SPMD-style to MPMD-style. To solve this issue, we propose

in this paper to design a Co-array-like API but implemented on top
of an asynchronous environment. More precisely, we focus on:

e Imitating as much as possible the functionalities of Co-array
Fortran, because today it is part of the Fortran standard (Num-
rich and Reid 2005) and it intelligently adapts its array element
indexing approach for references of remote objects.

Relying on the HPX library (Kaiser et al. 2009, 2014) as it
offers a best choice asynchronous environment, and a wide
range of tools such as future objects, parallel algorithms, and
distributed containers, while strictly conforming to the C++
standard.

Utilizing new features of the C++ standard such as the variadic
template parameters or the compile-time assertion checking.

In Sect. 2, we introduce the main ideas of co-arrays and describe
how we adapt them for C++. Sect.3 presents the HPX library while
focusing on key elements that help to implement the C++ co-arrays.
Sect. 4 evaluates performance on two benchmarks and we discuss
our results and future perspectives in Sect. 5.

2. Co-array C++

Our main goal in creating a co-array C++ API is to provide the key
elements to implement a distributed code that is understandable for
most developers including Co-array Fortran users. Additionally, we
wanted to design an API that would be non-disruptive for C++ pro-
grammers and would take advantage of cutting edge features of the
C++ Standard. Note that there is similar research which proposes
to adapt the Co-array idiom for C++ (Eleftheriou et al. 2002; John-
son 2013). Our contributions that extent beyond these solutions are
building an API on top of a asynchronous environment instead of
message passing, proposing new semantics which can increase the
clarity of co-subscripts (cf. Sect. 2.1), and supporting range-based
operations. (cf. Sect. 2.2)

2.1 Co-subscript - based API

We assume first that a SPMD region, i.e. code fragment that is ex-
ecuted simultaneously by all (or some) of the available processors,
has been created; each replica of this code is called an image.

the last dimension (described in the sample code by the symbol _)
is equal by default to the number of current images. In listing 2, an
image is performing a read from the standard stream and broadcasts
the value to the other images.

real :: z[*] e

if (this_image()==1) then
read (x,*) z

do image = 2, num_images ()
z[image] = z
end do
end if

call sync_all()

// Fortran Code
real :: z[10,%]

// C++ Code
spmd_block block; o

coarray<double ,2> z(block, "z"

, {10, ©

, partition<double>(1) @
)5

Listing 1. Instantiation of a co-array object : Fortran vs C++

The first noted difference compared with Fortran is the intro-
duction of an object type called spmd_block @ . A spmd_block
encapsulates the information about the current image. This helper
object allows to ease the runtime co-creation of the co-array z. For
coordination aspects issued from the co-array object creation, a tag
must be provided'; in listing 1 the C++ string "z" corresponds to
this tag @ . Then, the co-dimension @ is declared via a C++
initializer_list.? In summary, the listing I creates a 2-D co-
array of elements, each element being of size 1. @ . The size of

!'Each time a global object is created, a Global Address Id (cf. Sect.3) is
attributed. This tag stands for a key that will be associated to this newly
created GID.

2 Note the Fortran symbol (*) which is replaced by the symbol (_) in C++.

Listing 2. Co-array Fortran sample code

One of the key operations in Co-array Fortran is the use of
the operator (=) with a co-indexed 1-value @ . In this case, a put
operation is performed ; the operation is synchronous for the image
holding the r-value. Note in this example that the co-subscript of
the r-value is not mentioned although the co-array is defined with
1-D co-dimension @. This means that the r-value is a local data (it
is equivalent to say that the no mentioned co-subscript is implicitly
equal to the identifier of the current image). See in listing 3 the C++
version of the previous code.

spmd_block block;

coarray<double,1> z(block, "z"
, {2}
, partition<double>(1)
)

if (block.this_image() == 0) @
{
std::cin >> z.data(_); @

block.get_num_images(); @
1; image < num_images; image++)

int num_images
for(int image

{
z(image) = z.data(_); @ @

}
}

block.barrier_sync("b");

Listing 3. Co-array C++ sample code

To avoid the ambiguity between a reference of local data and
a reference of remote data while maintaining the dimensionality
of the co-subscripts, we define two means to obtain a reference of
a co-indexed element. If one would like to get the reference of a
remote data, use the operator () @ , if one would like to get a
reference of a local data, use the method data() €. Note, that in
the latter case , the symbol _ must be specified as the last dimension
index’. Obviously, if the co-array object has its last dimension size*
not equal to _, the call to data() is considered to be undefined
behavior.

Note that the synchronization operations @ , the number of
current images @ and the identifier of the current image € are im-
plemented in forms of methods owned by the object spmd_block.
Similarly to the creation of a co-array object, placing a barrier im-
plies to dynamically create a global object ; hence the tag "b" @.

2.2 Iterator - based API

Like array scalar elements, one can extract ranges of Fortran co-
indexed elements directly using Fortran co-subscripts. In C++,
ranges are still not considered standard. The C++ standard library

3For a 3-D C++ coarray, the last dimension index is the third index
4 For a 3-D C++ coarray of size {7,8,9}, the last dimension size is 9

is based on ifterators instead. For this reason, we implemented the
methods begin() and end () returning an iterator referring to the
begin and end of a range respectively to help traversing all the co-
indexed elements of a co-array object. Moreover, it can sometimes
be useful to expose only the local elements during such traver-
sal. We illustrate in listing 4 the two means to iterate over the
co-indexed elements.

spmd_block block;

coarray<double ,3> a (block,
, {4,4,_%)
, partition<double >(5)
)

non

a

int idx = 0;

if (block.this_image() == 0)
{
for (auto i = a.begin(); i != a.end(); i++)
¢ (1)
*i = std::vector<double>(5,idx++);
}
/* Equivalent to
for (auto && proxy : a)
‘ ©
proxy = std::vector<double>(5,idx++);
*/
}
block.barrier_sync("b");
auto alocal = local_view(a);
for (auto ii = alocal.begin();
ii != alocal.end();
ii++)
{ (2]
std::vector<double> & ref = xii;
}

/* Equivalent to
for (std::vector<double> & ref : alocal)
‘ }e

}
*/

Listing 4. Traversal of co-indexed elements with iterators

In the first part @, image O traverses the full range of the co-
array elements; here the dereference operator returns a proxy to the
real reference. In the second part @, each image iterates over the
co-indexed elements it possesses: the operator dereference is now
returning a true local reference. Note that these operations can be
performed using range based for loops @ @ that are now available
since the C++ Standard 2011.

3. Distributed Containers and SPMD Regions in
HPX

3.1 Distributed containers

To realize the data distribution that results from the co-array object
creation, we use the class partitioned_vector available in HPX.
This structure aims to simplify the tedious process of distributing
partitions of a segmented structure to the different localities, and
to facilitate their access from any locality. It further provides a log-
ical shared view and a API very similar to that of C++ Standard
vector.

When an object partitioned_vector is created, partitions
made of standard vectors are created and placed in localities that
can be specified by the user. During the creation of a partition, a
Global Address Id ° is attributed. These different GIDs are then

5 A Global Address Id is the way to ensure the uniqueness of an object in
the global address space.

listed and stored as a partitioned_vector’s attribute. See in list-
ing 5 the code showing how to create a distributed container.

int N, n;
std::vector<hpx::id_type> locs
= hpx::find_all_localities();

auto layout = hpx::container_layout(n, locs); @

// Creation of the distributed vector
hpx::partitioned_vector<double> v(N, 0.0, layout); e’

Listing 5. Creation of a distributed vector in HPX

In this code, N is the total number of scalar elements owned
by the distributed vector, n is the number of partitions and locs
is a vector of locality identifiers (of size n) which specifies the
placement of each of the n partitions. From these two parameters, a
layout object is created @ and passed as the last parameter @ of
the distributed vector constructor.

To make the link with our API, we choose to implement the
coarray class by using the concept of view that will be built on
top of a distributed vector. Working on a co-indexed element is
thus equivalent to work on a distributed vector partition. To trans-
late a co-subscript into a partition vector subscript we choose the
following convention: for an object co-array of codimension N
and of size (n1,n2,...,nN), the co-subscript (i1, 2, ...,in) Will
correspond to the kth partition of the underlying distributed vec-
tor, k being equal to 41 +i2 X n1+...+in X (N1 XN2X ... XNN—1).

Note that when the last dimension size of the co-array is defined
equal to _, the layout of the underlying partitioned vector is such
that all the co-subscripts sharing the same last dimension index are
referencing partitions that are placed in the same locality.

3.2 SPMD Region

To define a SPMD region, we need to specify the different localities
that participate in the bulk computation and an entry point from
which to start. This entry point is defined by using a HPX action®.
To allow all participant localities to know with which locality they
have to work, this entry point must accept at least one parameter of
type spmd_block. See in listing 6 a sample code in which a SPMD
region is created.

void example_image(spmd_block block)

{

}

HPX_DEFINE_PLAIN_ACTION (example_image, my_action);

int main ()

{
std::vector<hpx::id_type> locs
= hpx::find_all_localities();
// Invocation of the spmd region
define_spmd_block(locs, my_action)
return O;
}

Listing 6. Creation of a SPMD region

Here the function define_spmd_block creates multiple images of
the code example_image and launches them in each of the locali-
ties listed in the variable locs. A temporary object spmd_block is
created and diffused to each image. When this function returns, an
implicit barrier is placed to ensure that each image has been com-
pleted.

6 An HPX action is a wrapper allowing normal functions to be called
remotely.

4. Performance Evaluation

For our performance evaluation, we performed all of our bench-
marks on one node. This decision was made to allow us to compare
our results with published benchmarks written for shared mem-
ory multicore architectures. We hope to observe that message ex-
changes from the parcelport layer’ and management of the locality
in a PGAS-style runtime system will have a sufficiently low impact
on overheads and have a comparable performance to pure multi-
threaded codes. See in table 1 the characteristics of our machine.

Processor name Intel Xeon Haswell
Number of cores 2 x 8 cores
Last level cache size (L.3) 20 Mo
Number of NUMA nodes 2

Peak performance in simple precision 480 GFlop/s
Memory bandwidth 90 GB/s

Table 1. Test platform characteristics

4.1 Matrix Transpose

For our performance evaluation we first implement the matrix
transpose algorithm. See in listing 7 the co-array C++ version of
matrix transpose.

void transpose_coarray(spmd_block & block
coarray<double ,2> & out
coarray<double ,2> & in

int height

int width

int local_height

int local_width

int local_leading_dimension

e v e e v e

// Outer Transpose operation
for (int j = 0; j<width; j++)
for (int i 0; i<height; i++)
{

// Put operation
out (j,i) = in(i,j);
}

block.barrier_sync("outer_transpose");
auto out_local = local_view(out);
// Inner Transpose operation

for (std::vector<double> & elt

{

out_local)

0; jj<local_width-1; jj++)
jj+1; dii<local_height; ii++)

for (int jj
for (int ii

{

std::swap(
elt[jj + iixlocal_leading_dimension]
, elt[ii + jj*local_leading_dimension]
N
}
}

block.barrier_sync("inner_transpose");

Listing 7. Transpose with co-array C++

In this version of the algorithm, we first perform a transpose
by block (a block is accessed via co-array subscripts). We assume
that coarray objects out and in have been predefined with an ex-
plicit last dimension size (different to _). In that case, the respective

7 Parcels in HPX are active messages for inter-locality communication.
They are used to move the work to the data and to gather data back to the
caller.

blocks are distributed in a round-robin maneer over the participat-
ing localities.

A barrier is placed thereafter to ensure that each block has
arrived to its destination. Then, in-place transpose is performed
for each block at scalar value level. Note that these two steps can
potentially be parallelized using local tasks. We present, in figures 1
and 2, the scalability results for two different matrix orders (10000
and 22000). We compare our matrix transpose implementation with
the OpenMP version, and with the optimized hand-written HPX
version. Deep explanations about this latter version can be found in
(Kaiser et al. 2015).

30 T T
. . —— HPX coarray
! ! re HPX coarray + tasks
=
1 3 - - OpenMP
' '
i L™ - HPX parallel: :for_each
I IS A et I __| == Available Bandwidth
5 . :
g ' '
L -
E ' '
£ . ' '
S ' e
,,,,,,,, R S A
2 10 ! : Lo
. !
U S P
. P R 1
4= 1 [
'
0 i i L i
10 15

Number of cores

Figure 1. Performance comparison of Matrix Transpose codes -
matrix order = 10000, tile order = 500

— HPX coarray

- HPX coarray + tasks

- .- OpenMP

w-- HPX parallel::for_each
—— Available Bandwidth

Performance in GB/s

=
o

Number of cores

Figure 2. Performance comparison of Matrix Transpose codes -
matrix order = 22000, tile order = 1100

We can see that the best version of Matrix Transpose code is
the one where HPX calculations are parallelized manually via the
use of parallel::for_each. Note that this version has a gain of
up to 7 compared to the OpenMP version. The main reason is that
the data arrangement in the HPX version is different : each matrix
tile is stored contiguously in memory. For OpenMP, data keeps the
conventional shared memory Lapack layout. Our C++ Coarray ver-
sion uses just the number of images to achieve its proper scalability
(one image per used core). According to this version, obtained per-
formance remains inferior to the OpenMP version ; the main reason
is that the algorithm we developed includes extra copies from the
in-place transpose stage. We can nevertheless observe some scala-
bility.

To improve this performance, we decide to fix the number of
images to 1 and to locally parallelize the two stages of the algorithm
implemented in the Coarray version. This change allows to surpass
the performance of the OpenMP version. The data arrangement by

co-indexed blocks of the Co-array version is indeed similar to that
used in the HPX version. But we are less better than the hand
optimized HPX version once again because our implementation
includes two copy steps in place of one.

4.2 Sparse Matrix Vector Multiplication

For our second performance evaluation we implement the sparse
matrix vector multiplication (SpMV) algorithm. This operation has
a computation complexity of O(nnz), with nnz the number of
non-zero elements of the matrix.

For this benchmark, we choose to compare with the multi-
threaded version provided by Intel MKL. This implementation of
the code performs the computation by using the CSR sparse ma-
trix format and by using a combination of vectorized and OpenMP
codes. In our case, we decide to extract only the vectorized part of
the Intel MKL code (via a dependency to mkl_sequential) and to
explore the possibilities of parallelism between CPU cores. See in
listing 8 the co-array C++ version of SpMV.

struct spmatrix

{
// Constructor definition
int m_, n_, nnz_;
std::vector<int> rows_, indices_;
std::vector<double> values_;
std::vector<int> begins_, sizes_; ‘D
};

void spmv_coarray(spmd_block & block
spmatrix const & a
std::vector<double> & x
coarray<double ,1> & y 9
int unroll_factor

e e e

int N = block.get_num_images();
int image_id = block.this_image ();

int begin = a.begins_[image_id];
int chunksize = a.sizes_[image_id];

double * out = y.data(_).data();
const int * row rows_.data() + begin;

const int * idx a.indices_.data() + *row - 1;
const double * val = a.values_.data() + *row - 1;

for(int iter = 0; iter!=unroll_factor; ++iter) ‘,
{
for(int i = 0;
i < chunksize;
i++, row++, out++)

double tmp = 0.;
int end = *(row + 1);

for(int o = *row;
o < end; G’
o++, val++, idx++
)
{
tmp += *val * x[*idx - 1];

}

*out = tmp;
}
}

block.barrier_sync("spmv");

Listing 8. SpMV with co-array C++

In our implementation, the sparse matrix and the operand vec-
tor are duplicated in each image. We define a spmatrix class that

encapsulates the three tables of the CSR matrix and some helper
arrays @ to inform images of {matrix sub-block, image} corre-
spondence. Only the output vector @ is partitioned via a use of a
co-array object. Note in this code that we let the hand-written code
of the sub-block computation @ but our results were obtained by
using the mk1_dcsrgemv sequential kernel.

An important element to note is that we unrolled the test loop by
a factor equal to unroll_factor @ (a barrier synchronization is
thus placed only once every unroll_factor iterations). The main
reason for this choice is to put ourselves in the case in which there
is no need for an image to regularly synchronize with the other
images when several SpMV operations shall be effected in a se-
quence. Recent studies in the context of iterative methods in linear
algebra (methods known for their high use of the SpMV kernel)
have also shown by various approaches (Hoemmen 2010; Ghysels
et al. 2013) that it is possible to overcome collective operations, at
least partially, sometimes at a cost of additional calculations.

We test our codes by implementing two problems derived from
the Matrix Market Collection web resource. We present in table 2
the key features of these systems.

Problem s3dkt3m2 | memplus
name

Matrix 90449 17758
order

Number of 1921955 | 126150
non-zero values

Average distance 339 4600
from diagonal

Table 2. Statistics of tested matrices

We can see in Figure 3 and 4 that the best version of the SpMv
code is the HPX one when parallelization is done manually. In the
case of problem s3dkt3m2 (Figure 3), we note that the achieved
performance exceeds the available memory bandwidth of the ma-
chine. The reason is that unrolling the test loop, promotes the data
reuse, meaning that the data does not need necessarily to be fetch
from the main memory at each iteration. In addition, the proximity
of the non-zero elements from the diagonal elements will promote
the contiguous loads of operand vector elements and therefore al-
lows for better use of prefetch mechanisms in cache memory. In the
case of memplus problem (Figure 4), performances we obtained are
roughly at the same level of the matrix transpose performance. This
result which is quite different in comparison to the first problem is
caused by a greater dispersion of non-zero elements from the di-
agonal elements, reducing the contiguity of elements successively
loaded from the operand vector.

By focusing on our implementation, we can see that the C++
Co-array version is overall better than the multithreaded Intel MKL
version except with the memplus problem when we use more than
10 images. This gain is due in part because the test loop has been
unrolled in the case of C++ Co-array and secondly because the
sparse matrix and the operand vector are duplicated in each image.
Although this solution consumes more memory, it allows to have
better control of the locality especially in a NUMA environment.
Note that the sparse matrix can be potentially partitioned instead of
being replicated. Since our two problems are relatively small and
our platform has enough memory, we have opted for the replication
solution.

The decline in performance on the problem memplus is ex-
plained by the relatively small size of the sparse matrix (10 times

less non-zero elements than the problem s3dkt3m2), which accen-
tuates the impact of the barrier in C++ Co-array since it is natu-
rally more expensive than the one used in MKL. Using a hybrid
approach®, i.e. by adding local parallelism to the co-array code, we
achieved performance that is closer to the performance of manu-
ally optimized HPX code, notably when the size of the problem in
terms of non-zero elements is large enough. The management of
local parallelism is done mostly by parallelizing the computation
loop with the help of inner block counters and inner blocksizes.

120

—— HPX coarray
. HPX coarray + tasks
100 -.- Intel MKL

w- HPX parallel::for_each
—— Available Bandwidth

80

60 : =2 -4

Performance in GB/s

40 AR -]

20f--mflam Tt

Number of cores

Figure 3. Performance comparison of SpMV codes with problem
s3dkt3m2 - unroll factor = 20

30

—— HPX coarray
. HPX coarray + tasks
r - Intel MKL

w- HPX parallel::for_each
—— Available Bandwidth

¥
=}

—
S

Performance in GB/s

S N

_
S
—
ot

Number of cores

Figure 4. Performance comparison of SpMV codes with problem
memplus - unroll factor = 20

5. Conclusion

In this paper, we propose a C++ API based on Co-array semantics
which are known to be powerful for managing distributed paral-
lelism. Compared to similar works, our API increases the clarity of
element access, enables range operations, and enhances the man-
ageability of the different participating processors. The key element
of our API is that it is built on top of an asynchronous environment
that is able to deliver significant performance. Our results show that
reasonable scalability can be achieved by only relying on co-array
constructs, but also highlights the importance of local parallelism to
reach better performance. While utilizing finer grained approaches
to parallelism can produce more performant and scalable code, the
programmability offered by our API offers an efficient alternative
to developers such as domain scientists. Ongoing work focuses on
evaluating our API in larger scale applications and on gathering
feedback from Co-array Fortran users to better tailor our API to
their needs.

8 Up to 8 cores, we launch only one image and the used CPU cores share the
same NUMA node. After 8 cores, we launch 2 images (1 on each NUMA
node) and balance the number of used CPU cores among the NUMA nodes.

Acknowledgments

The work described in this paper is supported by the National Sci-
ence Foundation through award 1447831. Any opinions, findings,
and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the
National Science Foundation.

References

B. Chamberlain, D. Callahan, and H. Zima. Parallel programmability and
the chapel language. Int. J. High Perform. Comput. Appl., 21(3):291-
312, Aug. 2007. ISSN 1094-3420. doi: 10.1177/1094342007078442.
URL http://dx.doi.org/10.1177/1094342007078442.

P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu,
C. Von Praun, and V. Sarkar. X10: an object-oriented approach to
non-uniform cluster computing. Acm Sigplan Notices, 40(10):519-538,
2005.

M. Eleftheriou, S. Chatterjee, and J. E. Moreira. A c++ implemen-
tation of the co-array programming model for blue gene/l. In
Proceedings of the 16th International Parallel and Distributed Pro-
cessing Symposium, IPDPS 02, pages 1-, Washington, DC, USA,
2002. IEEE Computer Society. ISBN 0-7695-1573-8. URL
http://dl.acm.org/citation.cfm?id=645610.661533.

P. Ghysels, T. J. Ashby, K. Meerbergen, and W. Vanroose. Hid-
ing global communication latency in the gmres algorithm on mas-
sively parallel machines. SIAM Journal on Scientific Comput-
ing, 35(1):C48-C71, 2013. doi: 10.1137/12086563X. URL
http://dx.doi.org/10.1137/12086563X.

M. Hoemmen. Communication-avoiding Krylov Subspace Methods. PhD
thesis, Berkeley, CA, USA, 2010. AAI3413388.

T. A. Johnson. Coarray c++. In International Conference on PGAS
Programming Models, PGAS, volume 13, 2013.

H. Kaiser, M. Brodowicz, and T. Sterling. Parallex an advanced parallel
execution model for scaling-impaired applications. In Parallel Process-
ing Workshops, 2009. ICPPW’09. International Conference on, pages
394-401. IEEE, 2009.

H. Kaiser, T. Heller, B. Adelstein-Lelbach, A. Serio, and D. Fey.
HPX: A Task Based Programming Model in a Global Ad-
dress Space. In Proceedings of the 8th International Confer-
ence on Partitioned Global Address Space Programming Models,
PGAS ’14, pages 6:1-6:11, New York, NY, USA, 2014. ACM.
ISBN 978-1-4503-3247-7. doi: 10.1145/2676870.2676883. URL
http://doi.acm.org/10.1145/2676870.2676883.

H. Kaiser, T. Heller, D. Bourgeois, and D. Fey. Higher-level par-
allelization for local and distributed asynchronous task-based pro-
gramming. In Proceedings of the First International Work-
shop on Extreme Scale Programming Models and Middleware,
ESPM 15, pages 29-37, New York, NY, USA, 2015. ACM.
ISBN 978-1-4503-3996-4. doi: 10.1145/2832241.2832244. URL
http://doi.acm.org/10.1145/2832241.2832244.

L. V. Kale and S. Krishnan. Charm++: A portable concurrent object ori-
ented system based on c++. In IN PROCEEDINGS OF THE CONFER-
ENCE ON OBJECT ORIENTED PROGRAMMING SYSTEMS, LAN-
GUAGES AND APPLICATIONS, pages 91-108, 1993.

R. W. Numrich and J. Reid. Co-array fortran for parallel programming. In
ACM Sigplan Fortran Forum, volume 17, pages 1-31. ACM, 1998.

R. W. Numrich and J. Reid. Co-arrays in the next fortran stan-
dard. SIGPLAN Fortran Forum, 24(2):4-17, Aug. 2005.
ISSN 1061-7264. doi: 10.1145/1080399.1080400. URL
http://doi.acm.org/10.1145/1080399.1080400.

UPC Consortium. Upc language specifications, v1.2. Tech Re-
port LBNL-59208, Lawrence Berkeley National Lab, 2005. URL
http://www.gwu.edu/ upc/publications/LBNL-59208.pdf.

K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krishna-
murthy, P. Hilfinger, S. Graham, D. Gay, P. Colella, and A. Aiken. Tita-
nium: A high-performance java dialect. In In ACM, pages 10-11, 1998.

