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ABSTRACT
One of the biggest challenges on the way to exascale computing is pro-
grammability in the context of performance portability. The efficient uti-
lization of the prospective architectures of exascale supercomputers will be
challenging in many ways, very much because of a massive increase of
on-node parallelism, and an increase of complexity of memory hierarchies.
Parallel programming models need to be able to formulate algorithms that
allow exploiting these architectural peculiarities. The recent revival of inter-
est in the industry and wider community for the C++ language has spurred
a remarkable amount of standardization proposals and technical specifica-
tions. Among those efforts is the development of seamlessly integrating
various types of parallelism, such as iterative parallel execution, task-based
parallelism, asynchronous execution flows, continuation style computation,
and explicit fork-join control flow of independent and non-homogeneous
code paths. Those proposals are the foundation of a powerful high-level ab-
straction that allows C++ codes to deal with an ever increasing architectural
complexity in recent hardware developments.

In this paper, we present the results of developing those higher level par-
allelization facilities in HPX, a general purpose C++ runtime system for
applications of any scale. The developed higher-level parallelization APIs
have been designed to overcome the limitations of today’s prevalently used
programming models in C++ codes. HPX exposes a uniform higher-level
API which gives the application programmer syntactic and semantic equiv-
alence of various types of on-node and off-node parallelism, all of which are
well integrated into the C++ type system. We show that these higher level
facilities which are fully aligned with modern C++ programming concepts,
are easily extensible, fully generic, and enable highly efficient paralleliza-
tion on par with or better than existing equivalent applications based on
OpenMP and/or MPI.
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1. INTRODUCTION
The massive increase in local parallelism is one of the greatest
challenges amongst the many issues imposed by today’s and to-
morrow’s peta- and exascale systems. This paper focuses on how
to possibly address massive on-node parallelism and data locality,
how to improve the programmability of such systems while main-
taining performance portability. It is to be expected that exascale
ready architectures will be build with up to billion way concurrency
and multiple levels of memory hierarchies. The growing complex-
ity of those next generation supercomputing architectures requires
for new programming models to arise. Those have to be able to
exploit the underlying hardware in a programmable way [8, 22].
We are focusing our efforts on providing higher-level abstractions
based on and derived from the current C++ standard.

This paper explores the capabilities of parallel abstractions which
go beyond the current state of the art, like loop based parallelism
as known from OpenMP [2, 10, 11], or other pragma based ap-
proaches. The immediate benefit is that our solution tightly inte-
grates with the C++ type system and can take advantage of modern
C++. In addition with the help of the exposed uniform API of HPX,
we are able to leverage the same parallelization constructs in a dis-
tributed memory environment. This sets our solution apart from
the prevalently used programming model for distributed comput-
ing, MPI [25], which only exposes fairly low level message passing
functionality, augmented by higher level collective operations.

The recent standardization effort to extend the C++ standard library
with a comprehensive set of parallel algorithms has partially recti-
fied the situation for C++ codes by defining higher-level loop par-
allelization facilities (Parallelism TS [7]). The Parallelism TS ap-
plies the proven design concepts of the Standard Template Library
(STL, [28]) to parallel loop executions. It newly introduces parallel
algorithms which are fully generic and well integrated within the
C++ type system and maintain the same flexibility and extensibil-
ity as the original STL algorithms.

However, the Parallelism TS does not provide a solution that seam-
lessly integrates iterative execution with other types of paralleliza-
tion, such as task-based parallelism, asynchronous execution flows,
continuation style computation, and explicit fork-join control flow
of independent and non-homogeneous code paths. Other standard-
ization documents, such as the Concurrency TS [6] introduce facil-
ities for parallelizing asynchronous, continuation based execution,



and the task-block proposal [5] addresses fork-join parallelism of
independent tasks. But these documents are still not integrated well
enough with the Parallelism TS, offering only limited interoperabil-
ity between different types of parallelism.

In this paper we present the results of developing higher-level paral-
lelization facilities based on HPX [20, 21], a general purpose C++
runtime system for applications of any scale. The implemented
higher-level parallelization APIs have been designed to overcome
limitations of today’s prevalently used programming models in C++
codes. The constructs exposed by HPX are well aligned with the
existing C++ standard [31, 32] and the ongoing standardization
work. However, they go beyond those with the goal of providing
a flexible, well integrated, and extensible framework for paralleliz-
ing applications using a wide range of types of parallelism. Be-
cause HPX is designed for use on both, single and multiple nodes,
the described facilities are also available in distributed use cases,
which further broadens their usability. HPX exposes a uniform
higher-level API which gives the application programmer syntactic
and semantic equivalence of various types of on-node and off-node
parallelism, all of which are well integrated into the C++ type sys-
tem. We show that not only are these higher level facilities fully
aligned with modern C++ programming concepts, easily extensi-
ble and fully generic, but that they also enable highly efficient par-
allelization on par or better than what existing equivalent applica-
tions based on OpenMP and/or MPI can achieve.

2. RELATED WORK
The differences between HPX and other parallel models and run-
time systems like X10, Chapel, Charm++, Habanero, OpenMP and
MPI have been discussed in detail in [20]. The high-level par-
allelization APIs discussed in this paper are unique features im-
plemented in the HPX parallel runtime system. One match is the
pragma-based construct in OpenMP (#pragma omp), which of-
ten feel misplaced in a modern C++ application since they operate
outside of the C++ type system and are restricted to integer based
loop constructs. The other notable solutions are provided by the
Intel Threading Building Blocks [18] and Microsoft’s Parallel Pat-
terns Library [26] which provide similar APIs as presented in this
paper. However, all the three aforementioned solutions fall short
when it comes to applications for distributed memory.

3. HPX – A GENERAL PURPOSE
PARALLEL C++ RUNTIME SYSTEM

HPX is a general purpose C++ runtime system for parallel and dis-
tributed applications of any scale. It has been described in detail
in other publications [15, 16, 20, 21]. We will highlight its main
characteristics in this section.

HPX represents an innovative mixture of a global system-wide ad-
dress space (AGAS - Active Global Address Space), fine grain
parallelism, and lightweight synchronization combined with im-
plicit, work queue based, message driven computation, full seman-
tic equivalence of local and remote execution, and explicit support
for hardware accelerators through percolation. As such, HPX is a
novel combination of well-known ideas with new and unique over-
arching concepts. It aims to resolve the problems related to scal-
ability, resiliency, power efficiency, and runtime adaptive resource
management that will be of growing importance as HPC architec-
tures evolve from Peta- to Exa-scale. HPX departs from today’s
prevalent parallel programming models with the goal of mitigating
traditional limitations, such as implicit and explicit (global and lo-

cal) barriers, coarse grain parallelism, and lack of easily achievable
overlap between computation and communication.

HPX exposes a coherent programming model unifying all differ-
ent types of parallelism available in HPC systems. By modelling
the API after the interfaces defined by the C++ standards, program-
mers are enabled to write fully asynchronous code using hundreds
of millions of thread. This ease of programming extends to both
parallel and distributed applications. In addition, the implementa-
tion adheres to the programming guidelines and code quality re-
quirements defined by the Boost collection of C++ libraries [1].

HPX is the first open source runtime system implementing the con-
cepts of the ParalleX execution model [19, 34] on conventional
systems including Linux clusters, Windows, Macintosh, Android,
Xeon/Phi, and the Bluegene/Q. It is published under a liberal open-
source license and has an open, active, and thriving developer and
user community. HPX is built using existing ideas and concepts
(such as static and dynamic dataflow, fine grain futures-based syn-
chronization, and continuation style programming), some of which
have been known for decades, however the combination of these
ideas and their strict application forms overarching design princi-
ples that make HPX unique [20].

External to HPX, libraries have been developed which provide ad-
ditional functionality and extend the HPX paradigm beyond CPU
computing. Notable of these libraries are HPXCL [30] and APEX
[17]. The first of these libraries, HPXCL, allows programmers to
seamlessly incorporate GPUs into their HPX applications. Users
write an OpenCL kernel and pass it to HPXCL which manages the
data offloading and synchronization of the results with the parallel
execution flow on the main CPUs. APEX, a policy engine, takes
advantage of the HPX performance counter framework to gather
arbitrary knowledge about the system and uses the information to
make runtime-adaptive decisions based on user defined policies.

4. CONCEPTS OF PARALLELISM
Any type of parallelism can be seen as a stream of small, indepen-
dent or dependent work items which can be executed in a certain,
perhaps concurrent, order. Given a set of work items, the purpose
of a particular implementation of any parallel programming model
is to, at a minimum, allow control over the following execution
properties:

• The execution restrictions or the guarantees on thread safety
that are applicable for the work items (i.e ’can be run concur-
rently,’ or ’has to be run sequentially’, etc.)

• In what sequence the work items have to be executed (i.e. ’this
work item depends on the availability of a result’, ’no restric-
tions apply’, etc.)

• Where the work items should be executed (i.e. ’on this core’,
’on that node’, ’on this NUMA domain’, or ’wherever this data
item is located’, etc.)

• The grain size control for tasks which should be run together
on the same thread of execution. (i.e. ’each thread of execution
should run the same number of work items’)

For each of these properties we define a concept (see Table 1). A
C++ type conforms to a given concept if it implements the set of
operations defined by that concept and adheres to the same syntax
and semantics. In particular, for many parallel operations exposed



by the HPX API, a C++ type conforming to a specific concept is
required. Note that the types conforming to one of the concepts
listed in Table 1 can be either one of the predefined types in HPX
or a type defined by the application. This ensures full flexibility,
genericity, and extensibility of the parallel facilities implemented
by HPX.

Property C++ concept name
Execution restrictions execution_policy
Sequence of execution executor
Where execution happens executor
Grain size of work items executor_parameter

Table 1: Concept names defined by HPX to represent the exposed
execution properties.

4.1 Execution Policies
The concept of an execution_policy is defined in the Paral-
lelism TS [6] as “an object that expresses the requirements on the
ordering of functions invoked as a consequence of the invocation
of a standard algorithm”. For example, calling an algorithm with a
sequential execution policy would require the algorithm to be run
sequentially. Whereas calling an algorithm with a parallel execu-
tion policy would permit, but not require, the algorithm to be run
in parallel. The execution_policy concept and types in HPX
syntactically and semantically conform to the Parallelism TS. In
addition to parallel algorithms, execution policies in HPX are used
as a general means of specifying the execution restrictions of the
work items for all different types of parallelism supported by HPX.
The Parallelism TS specified three execution policies, but explicitly
allows implementations to add their own (see Table 2 for all execu-
tion policies specified and additionally implemented by HPX).

The addition of par(task) and seq(task), or task execution
policies, in HPX is an important extension of the Parallelism TS.
In HPX, task execution policies instruct any of the algorithms to
return immediately, giving back to the invocation site a future ob-
ject representing the final outcome of the algorithm. For exam-
ple, calling the all_of algorithm with par computes and then
returns a boolean result. Whereas calling the all_of algorithm
with par(task) immediately returns a future object represent-
ing a forthcoming boolean. Task execution policies also enable
the integration of parallel algorithms and fork-join task blocks with
asynchronous execution flow. Parallel algorithms and fork-join task
blocks are conventionally fully synchronous in the sense that all it-
erations of a loop or tasks of the task block have to finish before the
algorithm or task exits. But through task execution policies, asyn-
chronous execution flows and continuation-style programming can

Policy Description Implemented by
seq sequential execution Parallelism TS, HPX
par parallel execution Parallelism TS, HPX
par_vec parallel and Parallelism TS

vectorized execution
seq(task) sequential and HPX

asynchronous execution
par(task) parallel and HPX

asynchronous execution

Table 2: The execution policies defined by the Parallelism TS and im-
plemented in HPX (HPX does not implement the par_vec execution
policy as this requires compiler support).

be utilitized(see Section 5.2).

Besides the option to create task execution policies, every HPX ex-
ecution policy also has associated default executor and
executor_parameter instances which are accessible through
the exposed execution_policy interface. Additionally, exe-
cution policies can be rebound to another (possibly user defined)
executor or executor parameters object (see Listing 1 for a corre-
sponding example).

4.2 Executors
The concept of an executor as implemented in HPX is aligned
with what is proposed by the C++ standardization document N4406
[4]. The document defines an executor as “an object responsible
for creating execution agents on which work is performed, thus ab-
stracting the (potentially platform-specific) mechanisms for launch-
ing work”. While N4406 limits the use of executors to parallel al-
gorithms, in HPX this concept is applied wherever the API requires
specifying a means of executing work items (see Section 5 for more
details).

With a few key exceptions, the API exposed by executors is simi-
lar to what is proposed by N4406. Both HPX and N4406 rely on
executor_traits to make use of executors. This is done so
that any implemented executor type only has to expose a subset
of the functions provided by executor_traits and the rest are
generated. Minimally, an executor must implement
async_execute, which returns a future (see Section 5.1) that
represents the result of an asynchronous function invocation. From
that instance, the synchronous execute call can be synthesized
by executor_traits or, if implemented, forwarded to the ex-
ecutor. executor_traits also provides overloads to
bulk_execute and async_bulk_execute that calls a func-
tion multiple times for each element in a shape parameter. In the
bulk overload case, N4406 specifies not to keep the results that
the function invocations may provide, whereas HPX does return
the results. This design decision better supports asynchronous flow
control (see Section 5.2).

In addition, HPX extends N4406 by adding the optional possibility
for an executor to provide timed scheduling services (’run at a cer-
tain point in time’ and ’run after a certain time duration’). HPX also
optionally exposes the number of underlying compute resources

// uses default executor: par
std::vector<double> d = { ... };
parallel::fill(par

, begin(d), end(d), 0.0);

// rebind par to user-defined executor
my_executor my_exec = ...;
parallel::fill(par.on(my_exec)

, begin(d), end(d), 0.0);

// rebind par to user-defined executor and
// user defined executor parameters
my_params my_par = ...
parallel::fill(par.on(my_exec).with(my_par)

, begin(d), end(d), 0.0);

Listing 1: Example demonstrating rebinding execution policies to
a new executor using .on() and a new executor parameters object
using .with(). Both rebind operations return a new execution policy
representing the original one combined with the passed argument.



(cores) the executor uses to schedule work items. The mecha-
nism by which additional executor services are provided in HPX
is via additional traits, such as timed_executor_traits and
executor_information_traits.

HPX exposes a multitude of different predefined executor types to
the user. In addition to generic sequential and parallel executors
which are used as defaults for the seq and par execution policies,
HPX implements executors encapsulating special schedulers, like
NUMA-aware schedulers, LIFO or FIFO scheduling policy sched-
ulers, or executors to manage distributed work.

4.3 Executor Parameters
The concept of executor_parameters has been added to HPX
to allow controlling the grain-size of work, i.e. which/how many
work items should be executed by the same execution agent (thread).
This is very similar to the OpenMP static or guided schedul-
ing directives. However, unlike OpenMP scheduling directives that
are not a part of the C++ type system, types that belong to the ex-
ecutor parameters concept can make decisions at runtime. As a case
of runtime-decision making, the executor parameters concept also
allows defining how many processing units (cores) to be used for a
particular parallel operation. Like any of the other described con-
cepts, execution parameters can be easily specialized by the user,
which allows for a wide variety of – possibly application specific –
customizations.

5. TYPES OF PARALLELISM
The various types of parallelism conforming to the listed concepts
are exposed through the HPX API and can be understood as layers
of abstractions that are implemented on top of each other. Figure 1
gives an overview of this implementation layering. Applications
have direct access to all types of parallelism by calling function-
ality exposed by the shown layers. Moreover, since all concepts
implemented by HPX are well defined and documented, an applica-
tion can provide its own implementation of any particular concept.
These application specific types seamlessly integrate with the ex-
isting infrastructure and customize the default behavior of the HPX
runtime system. Additionally, this design has the advantage of be-
ing able to cater to runtime-adaptive implementations of the various
concepts. One example for this is a predefined executor parameters
type, auto_chunk_size, which makes runtime-adaptive deci-
sions about how many iterations of a parallel algorithm to run on
the same thread. This opens the door for a wide range of possibly
application-specific customizations where the application provides
a small amount of code to adapt any of the predefined parallel fa-
cilities in HPX.

5.1 Task-based Parallelism
Task-based Parallelism is the lowest level API for orchestrating
parallel execution. In HPX, the main method of task-based par-
allelism is the template function async which receives a function
and optional parameters. Designed to schedule the parallel execu-
tion of tasks of various lengths and times, async schedules the
given function ’as if on a new thread’ (as mandated by the C++
standard) and immediately returns a future object [9, 13] which
represents the result of the scheduled function. Using async, both
local and remote asynchronous function invocation can be formed,
ensuring syntactic and semantic equivalence of local and remote
operations. Other publications have shown that HPX’s implemen-
tation of async enables writing highly performant and scalable
applications [14, 16, 20].

Futures                       Async Dataflow

Execution Policies

Parallel Algorithms… Fork-Join, etc.…

Executors… Executor Parameters…

Application

Concepts

Figure 1: The layer of abstractions of different concepts and types
of parallelism in HPX. Each layer relies on the layer below where the
lowest layer, ’Futures, Async, Dataflow’, relies on functionality exposed
from the core HPX runtime modules (not shown). The shown layers are
directly accessible to applications and are designed with the possibility
of extension.

template <typename BiIter, typename Pred>
pair<BiIter, BiIter> gather(BiIter f,

BiIter l, BiIter p, Pred pred)
{

BiIter r1 = stable_partition(f, p,
not1(pred));

BiIter r2 = stable_partition(p, l,
pred);

return make_pair(r1, r2);
}

Listing 2: Example showing a conventional implementation of the
gather algorithm; it is called by passing the begin and end iterators
of a sequence f and l, the insertion point p, and the binary predicate
pred identifying the items to gather at the insertion point. It returns a
the range locating the moved items of the original sequence.

The future object returned by async naturally establishes an ex-
plicit data dependency as any subsequent operations that depend
on the result represented by the future object can be attached as
an asynchronous continuation, which is guaranteed to be executed
only after the future has become ready (see Section 5.2).

5.2 Asynchronous Flow Control
HPX also exposes facilities that allow composing futures sequen-
tially and in parallel. These facilities are aligned with the C++
Concurrency TS [6]. Sequential composition is achieved by calling
a future’s member function f.then(g) which attaches a given
function g to the future object f. Here, this member function re-
turns a new future object representing the result of the attached
continuation function g. The function will be asynchronously in-
voked whenever the future f becomes ready. Sequential composi-
tion is the main mechanism for sequentially executing several tasks
that can still run in parallel with other tasks. Parallel composi-
tion is implemented using the utility function when_all(f1,
f2, ...) which also returns a future object. The returned fu-
ture object becomes ready whenever all argument futures f1, f2,
etc. have become ready. Parallel composition is the main building
block for fork-join style task execution, where several tasks are ex-



ecuted in parallel and all of them must finish running before other
tasks can be scheduled. Other facilities complement the API, like
when_any or when_some wait for one or a given number of fu-
tures to become ready.

The dataflow function combines sequential and parallel compo-
sition. It is a special version of async which delays the execu-
tion of the passed function until after all of the arguments which
are futures have become ready. Listing 3 demonstrates the use of
dataflow to ensure the overall result of gather_async will
be calculated only after the two partitioning steps have completed.

Any future object in HPX generated by an asynchronous operation,
regardless whether this operation is local or remote, is usable with
the described facilities. In fact, the future objects returned from
local operations are indistinguishable from those returned from re-
mote operations. This way, the described facilities intrinsically sup-
port overlapping computation with communication on the API level
without requiring additional effort from the developer.

5.3 Loop-based Parallelism
The recently published Parallelism TS [7] is the basis for many of
the extensions expected to come to support parallelism in C++. It
specifies a comprehensive set of parallel algorithms for inclusion
into the C++ standard library. The specified parallel algorithms are
similar to the well-known STL algorithms except that the first ar-
gument should be an execution policy. HPX implements almost
all of the specified algorithms. The HPX parallel algorithms have,
however, been extended to support the full spectrum of execution
policies (including the asynchronous ones), combined with the full
set of executors and executor parameters as described in Section 4.
The ability for the application to provide specific implementation
of one or more of the parallelism concepts ensures full flexibility
and genericity of the provided API. In Section 6.1 we present an
example for this by utilizing a custom made NUMA-aware execu-
tor for the presented benchmark. Listing 3 gives a demonstration
of invoking one of the parallel algorithms, stable_partition,
with an asynchronous execution policy.

The HPX parallel algorithms will generally execute the loop body
(the iterations) at the locality where the corresponding data item is
located. For purely local data structures (e.g. std::vector)
all of the execution is local, for distributed data structures (e.g.
hpx::partitioned_vector) every particular iteration is ex-
ecuted close to the data item, i.e. on the correct locality. Special
executors, based on HPX’s distribution policies – a concept ab-
stracting data layout and distribution over different localities – are
available and enable more fine control over this mapping process,
such as enabling SPMD style execution, where each locality works
on the local portion of the distributed data only.

5.4 Fork-join Parallelism
The task-block proposal N4411 [5] specifies new facilities for easy
implementation of fork-join parallelism in applications. It pro-
poses the define_task_block function which is based on the
task_group concept that is a part of the common subset of the PPL
[29] and the TBB [18] libraries. N4411 does not, however, inte-
grate the ideas of execution policies and/or executors into fork-join
parallelism. Unfortunatelt, this imposes unneeded limitations and
inconsistencies.

For this reason, HPX extends the facilities as proposed by N4411
and allows passing an execution policy to the task block. This again

template <typename BiIter, typename Pred>
future<pair<BiIter, BiIter>> gather_async(

BiIter f, BiIter l, BiIter p, Pred pred)
{

future<BiIter> f1 = parallel::
stable_partition(par(task), f, p,
not1(pred));

future<BiIter> f2 = parallel::
stable_partition(par(task), p, l,
pred);

return dataflow(
unwrapped([](BiIter r1, BiIter r2)

{ return make_pair(r1, r2); }),
f1, f2);

}

Listing 3: Example demonstrating asynchronous flow control and
execution policies. The gather_async algorithm is called by passing
the begin and end iterators of a sequence f and l, the insertion point
p, and the binary predicate pred. It returns a future representing the
range locating the moved items of the original sequence.

includes full support for executors and – where applicable – to ex-
ecutor parameters. For task-blocks, the use of asynchronous exe-
cution policies is a powerful addition as it easily allows to integrate
those with asynchronous execution flows.

In conclusion, the full integration of the parallelism concepts de-
scribed in Section 4 with HPX’s API enables an uniform handling
of local and remote execution exploiting various forms of paral-
lelism. The resulting API is extensible by the application, fully
generic in the sense that it can be applied to any data types, but still
ensures best possible performance as shown in Section 6.

6. BENCHMARKS
In this section we present the results of two benchmarks with two
aims in mind. First, to demonstrate that the facilities provided by
HPX reach the same performance as would be achieved with the
well established OpenMP and MPI paradigms. Second, to show
that achievements in performance do not come at a hidden cost
to implement – namely, that the facilities provided by HPX are in
fact practical and easy to use. The first benchmark shown assesses
purely local performance on a single node by comparing HPX’s
parallel algorithm implementations with the results of running the
STREAM benchmark [23, 24]. The second presented benchmark
shows results from a real mini-application taken from the Intel Par-
allel Research Kernels ([12, 3], git hash af1d35b088), matrix trans-
position, which relies on various types of parallelism.

6.1 The STREAM Benchmark
The STREAM benchmark [23, 24] has been widely used for years
to assess the memory bandwidth of a computer system. In this
section we compare the results measured by running the standard
STREAM benchmark (OpenMP version), with results of running
an equivalent version developed using the described higher-level
parallelization facilities in HPX. The code for the STREAM bench-
mark ported to HPX is available from the HPX repository ([33], git
hash 4ee915c3b6). The results of the TRIAD part of this compari-
son are shown in Figure 2. The STREAM results were collected on
a node from NERSC’s Edison cluster [27]. The test machine has
two Intel Xeon E5-2695 processors, each with 12 cores clocked at
2.4GHz, and 64GB of DDR3-1866. We have not used the system’s
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Figure 2: Strong scaling results of running the STREAM benchmark
with 50 million data points comparing the original standard version
and the version ported to HPX. The HPX version is based on the de-
scribed higher-level parallelism facilities. The speedup of running on
two NUMA-domains over one NUMA-domain at 12 cores is close to a
perfect factor of two (1.95 for OpenMP, 1.97 for HPX).

hyper-threading capabilities for any of the benchmarks. The shown
results are the averaged results of 10 iterations of the benchmark.
All code on Edison was compiled using the Intel C++ compiler
V15.0.1 20141023.

In order to be able to measure the practically available memory
bandwidth of a system, the original STREAM benchmark is writ-
ten such that each of the created OpenMP threads accesses only
data located in a memory bank associated with the NUMA domain
the thread is running on. This is achieved by utilizing a NUMA
placement policy where after the memory allocation (for instance,
using malloc()) the thread which first writes to the newly allo-
cated memory determines the locality domain where the physical
address mapped behind the allocated virtual address will be placed
(first touch policy). If the loops that initialize the data array are
parallelized in exactly the same way and use the same access pat-
terns as the loops that use the data later, cross-NUMA domain data
transfer can be minimized [35]. A precondition for this first touch
initialization to work is that all threads maintain their affinity to the
same core throughout their lifetime. All of this reduces the operat-
ing system noise and maximizes the data transfer between memory
and cores by avoiding cross NUMA-domain traffic.

In the case of OpenMP, the consistency of the access patterns dur-
ing initialization and the actual measurement is implicitly ensured
by using the #pragma omp parallel static directive for
both loops. No direct, more sophisticated control over the parallel
access pattern is available in OpenMP. Also, pinning the threads
has to be performed by using special external OS tools (such as
numactl or likwid-pin) as OpenMP itself does not provide
any such facilities.

The original STREAM benchmark consists of 4 subsequent paral-
lel loops over 3 separate, equally sized data arrays (a, b, and c):
a copy step (c = a), a scale step (b = k * c), a step which
adds two of the arrays (c = a + b), and a triad step (a = b +
k * c). The HPX version of the STREAM benchmark replaces
each of the parallel OpenMP loops (#pragma directives) with a
corresponding parallel algorithm which performs the exact same

B

my_id

A

my_id

phase

phase

transpose

Figure 3: Block-wise matrix transposition. The matrix is (optionally)
distributed over several localities, each holding a row-block of the over-
all matrix (light blue), the current locality is marked as my_id. The
matrix is transposed by invoking parallel transposition operations for
each of the blocks of the corresponding column-block in matrix A, while
placing the transposed result (dark blue) into the correct position in
matrix B’s row-block.

operations. For this, we have used the copy, and the unary and
binary transform parallel algorithms (see Listing 4).

These algorithms are called with executor objects which are config-
ured to run as many threads as there are cores in a single NUMA-
domain on the target machine. Those threads have their affinity de-
fined such that each thread is confined to a separate core. The HPX
STREAM benchmark creates as many of such executor objects as
there are NUMA-domains on the target system and the algorithms
are run in parallel on each NUMA-domain, passing the appropri-
ate executor instances. Each of the algorithm instances works on
part of the data arrays. The executor threads work exclusively with
data located on the NUMA-domain the thread is running on. For
instance, the system used to collect the shown benchmark results
has two NUMA-domains, with twelve cores each. This results in
two executor objects being created, one for each NUMA-domain.
Each executor object manages 12 kernel threads, one for each core,
pinned to one of the cores of its NUMA-domain. Each thread is
then used to run the algorithms.

For the data arrays for this benchmark we used 3 instances of a
std::vector<double, allocator>, where allocator
is a special HPX NUMA-aware allocator type. This allocator per-
forms the data allocation and uses the same executor instances as
described above to first touch the allocated memory ranges. This
ensures proper memory locality minimizing cross NUMA-domain
data transfer during the execution of the parallel algorithms.

The HPX executors applied here customize the execution pattern
of the threads which perform the data initialization and benchmark
runs. This customization is fully generic and encapsulated; any of
the parallel algorithms may be adapted this way. As shown, while
the parallelization APIs are fairly high level, it is still possible to
fine tune and adapt various parameters of the actual execution to a
wide variety of use cases without a significant loss of performance.
In this case, a maximum of a 3% loss of performance compared
to the relatively low level, inflexible, albeit highly tuned OpenMP
solution (see Figure 2).
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Figure 4: Strong scaling results of running the OpenMP version of the
Matrix Transpose benchmark from the Intel Parallel Research Kernels
on a SMP system compared with the same code ported to HPX. The
HPX version is based on the described higher-level parallelism facili-
ties. Note that the (blue) HPX results are the same as shown in Figure 5.

// copy step: c = a
hpx::parallel::copy(policy,

a_begin, a_end, c_begin);

// scale step: b = k * c
hpx::parallel::transform(policy,

c_begin, c_end, b_begin,
[k](double val) { return k * val; });

// add two arrays: c = a + b
hpx::parallel::transform(policy,

a_begin, a_end,
b_begin, b_end, c_begin,
[](double val1, double val2)

{ return val1 + val2; });

// triad step: a = b + k * c
hpx::parallel::transform(policy,

b_begin, b_end,
c_begin, c_end, a_begin,
[k](double val1, double val2)

{ return val1 + k * val2; });

Listing 4: The four steps of the STREAM benchmark implemented
using the HPX parallel algorithms copy and transform. Here:
policy is the execution policy used, e.g., a_begin and a_end are
iterators referring to the begin and the end of the data array a.

6.2 Matrix Transposition
In this section we present the results of comparing the performance
of one of the applications of the Intel Parallel Reseach Kernels [12]
– Matrix Transpose – with a version of this application ported to
HPX. We compare three original versions of this kernel, the pure
OpenMP, the MPI version (running one MPI rank per core), and
the combined MPI + OpenMP implementations. We also show
the results of running on different architectures, namely conven-
tional Intel Xeon systems and an Intel Xeon Phi coprocessor. The
HPX code used for those comparisons is the same for all three base
cases and is available from the HPX repository [33]. The HPX ver-
sion was written using the higher-level parallelization facilities de-
scribed above such as asynchronous, continuation based constructs,
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Figure 5: Strong scaling results of running the MPI and MPI +
OpenMP versions of the Matrix Transpose benchmark from the Intel
Parallel Research Kernels on a SMP system compared with the same
code ported to HPX. The HPX version is based on the described higher-
level parallelism facilities. Note that the (blue) HPX results are the
same as shown in Figure 4.

execution policies and executors, and parallel algorithms.

The results of the measurements on a single SMP system are shown
in Figure 4 (comparing HPX with the pure OpenMP version), and
Figure 5 (comparing HPX with the MPI and MPI + OpenMP ver-
sions). The results collected from runs on the Intel Xeon Phi are
shown in Figure 6 and the results for a corresponding distributed
application are shown in Figure 7. The SMP Matrix Transpose
strong scaling results were collected on the same system as the
STREAM benchmark above and additionally on a Intel Xeon Phi
7120P coprocessor (16GB RAM, clocked at 1.238 GHz, 61 core).
The weak scaling distributed results were collected on up to 8 nodes
from LSU’s Hermione cluster. The test machines had each two In-
tel Xeon E5 2450 processors (each with 8 cores clocked at 2.1GHz),
and 48GB of DDR3-1600 memory accessible through 3 indepen-
dent memory buses. All code on Hermione was compiled using
gcc V5.2, and the Intel C++ compiler V15.0.2 20150121 on the
Intel Xeon Phi.

Figure 3 depicts the matrix transposition algorithm implemented by
the HPX benchmark application. Both matrices (the source A and
the destination B) are sub-divided into blocks (dark-blue in Fig-
ure 3), each of this blocks is completely allocated on one of the
NUMA-domains. The HPX version uses the same NUMA-aware
allocator as described in Section 6.1 which gives a very precise
control over where the memory is placed. The OpenMP version
relies on a rather coincidental first-touch distribution derived from
the parallel access pattern which is used for the data initialization.
OpenMP does not expose any more sophisticated means of con-
trolling the memory locality. All of the shown SMP measurements
are strong scaling results of transposing a matrix of 24k× 24k ele-
ments, using a block-size of 64× 64 (384× 384 blocks). The size
of the blocks was selected such that one block fit into the L1 cache
of one of the cores. The shown results are the averaged results of
10 matrix transposition iterations.

The HPX version uses executors for both the first-touch data place-
ment (through the NUMA-aware allocator) and for running the ac-
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Figure 6: Strong scaling results of running the OpenMP version of the
Matrix Transpose benchmark from the Intel Parallel Research Kernels
on a Intel Xeon/Phi coprocessor system compared with the same code
ported to HPX. The HPX version is based on the described higher-level
parallelism facilities.

tual transposition operation on a particular data block. Both oper-
ations use the same threads for the same data block, thus minimiz-
ing cross-NUMA-domain memory traffic, and improving data and
cache locality. The HPX version is written such that each block-
transposition operation is scheduled to run on the NUMA-domain
where the destination block is placed. The source block can be
both, local or remote. In fact, our measurements show that the
overall ratio of local NUMA-domain memory accesses to remote
NUMA-domain memory accesses is close to one.

The results show that the HPX versions significantly outperform
all of the original benchmarks run on a single node (pure OpenMP,
MPI, and MPI + OpenMP) and on the Intel Xeon Phi. The rea-
sons for this large difference are a) while HPX uses higher-level
parallelization facilities, it still allows for much more precise con-
trol over the data locality of the matrix blocks, and b) the HPX
executor task stealing capabilities allow for better (automatic) load-
balancing amongst the cores of every NUMA domain and for auto-
matic overlap of communication (memory traffic) and computation
which hides the variances in latencies from accessing memory from
the different NUMA domains.

The distributed results show some advantage of using the blocked
matrix transposition with HPX for smaller node numbers compared
to the original MPI + OpenMP benchmark taken from the Parallel
Research Kernels. However, the more nodes that are used for the
weak scaling test, the larger the number of generated network mes-
sages which impedes the overall performance. More work needs
to be done to tune the HPX networking solutions to alleviate this.
Though it is clear that the degraded performance is not caused by
the higher-level abstractions used to implement the benchmarks.

7. RESULTS
The results of this work demonstrates that the design and devel-
opment of uniform, versatile, and generic higher-level paralleliza-
tion abstractions in C++ is not only possible, but also necessary
to fully utilize the capabilities of modern computer systems. As
shown in HPX’s STREAM benchmark, higher-level parallelization
facilities can closely match results of conventional fork-join and
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Figure 7: Weak scaling results of running the OpenMP/MPI version
of the Matrix Transpose benchmark from the Intel Parallel Research
Kernels on a cluster on up to 8 nodes (128 cores) compared with the
same code ported to HPX. The HPX version is based on the described
higher-level parallelism facilities.

loop-based parallelization techniques. These abstractions are also
capable of outperforming well established programming models
by implementing new algorithms which were previously difficult
or impossible to implement, as demonstrated by the matrix block
transpose test – which used identical HPX code for all benchmarks
on all test platforms. This underlines the high portablility in terms
of performance and code achieved by the described interfaces and
their implementations across different architectures. The presented
higher-level parallelization abstractions are enabled by using mod-
ern C++ facilities on top of a versatile runtime system support-
ing a fine-grain, task-based scheduling and synchronization. While
the same higher-level abstractions show great promise for the dis-
tributed use case, the underlying networking implementation re-
quires more future work to match on larger scales the excellent
results seen for single node benchmarks.
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