
7th International Symposium on
High-Level Parallel Programming and Applications (HLPP 2014)
Amsterdam, Netherlands
July 3-4, 2014

Automatic Task-based Code Generation for High
Performance Domain Specific Embedded Language

Antoine Tran Tan · Joel Falcou · Daniel
Etiemble · Hartmut Kaiser

Abstract Providing high level tools for parallel programming while sustaining
a high level of performance has been a challenge that techniques like Domain
Specific Embedded Languages try to solve. In previous works, we investi-
gated the design of such a DSEL – NT2 – providing a Matlab -like syntax for
parallel numerical computations inside a C++ library. In this paper, we show
how NT2 has been redesigned for shared memory systems in an extensible and
portable way. The new NT2design relies on a tiered Parallel Skeleton system
built using asynchronous task management and automatic compile-time task-
ification of user level code. We describe how this system can operate various
shared memory runtimes and evaluate the design by using several benchmarks
implementing linear algebra algorithms.

Keywords C++, parallel skeletons, asynchronous programming, generative
programming

1 Introduction

As parallel architecture complexity increases, writing scientific applications
with low-level languages (for example Fortran or C) becomes more difficult.
It encompasses the difficulty for domain experts to read computer programs
and the difficulty for software developers to maintain them efficiently. For
sequential applications, the efficiency of Domain Specific Languages is well
established: high-level semantics of the application domain is preserved and
portability is given for any kind of computing systems. Despite their results
in productivity and time savings, DSLs may involve significant costs includ-
ing language learning and implementation costs. To limit these constraints,
Domain Specific Embedded Languages [21,32] have been proposed.

LRI, Université Paris-Sud XI, INRIA - Orsay, France · CCT, Louisiana State University -
Baton Rouge, USA
E-mail: antoine.trantan@lri.fr joel.falcou@lri.fr de@lri.fr hkaiser@cct.lsu.edu

Antoine Tran Tan et al.

DSELs are languages nested inside a host language; they are compiled or in-
terpreted according to the host language ecosystem.

In [19], a C++ library that uses such a solution has been proposed. This
library called NT2 – the Numerical Template Toolbox – combines template
meta-programming techniques [1] and generative programming [14] inside a
Matlab inspired DSEL. But while NT2 provided a simple shared memory
system and proper exploitation of SIMD instruction sets, problems remained.
First, the extensibility of NT2 was limited by the hard-coding of each architec-
tural component. Secondly, its shared memory system only manages thread-
based loop parallelization. As the execution of an arbitrary algorithm contain-
ing multiple independent matrix operations can be significantly improved if
these operations were performed at the same time, using a task-based runtime
may improve performance over a trivial data parallel implementation of such
a library.

In this work, we describe how NT2 was redesigned to take into account
task based parallelism in shared memory environments and how this shared
memory support has been upgraded to use a tiered parallel skeletons system
for handling task parallelism in a generic way1. The rest of this paper is or-
ganized as follow: section 2 will quickly describe the NT2 API and implemen-
tation techniques; section 3 will describe the parallel skeleton system that has
been implemented and how it interacts with the NT2 compile-time expression
system. Section 4 describes how those skeletons can support asynchronous
taskification. Finally, section 5 evaluates performance on some benchmarks
and we discuss related works, our results and future perspectives in section
sections 6 and 7.

2 The NT2 library

NT2 – the Numerical Template Toolbox – is a C++ library designed to help
non-specialists from various fields to develop high performance applications [18].
To provide a general purpose API, NT2 implements a sub set of the Mat-
lab language as a DSEL within C++ while providing a high level of per-
formance. The main data structure in NT2 is the template class table rep-
resenting the equivalent of a matrix in Matlab . Specificities like one-based
indexing, dimensions handling and reshaping operations are preserved.

1 as defined by Czarnecki et al. [14]

Title Suppressed Due to Excessive Length

Listing 1 presents an example code that calculates the root mean square
deviation between two arrays.

Listing 1: NT2 RMSD Computation
1 // Matlab: A1 = 1:1000;
2 table <double > A1 = _(1. ,1000.)
3

4 // Matlab: A2 = A1 + randn(size(A1));
5 table <double > A2 = A1 + randn(size(A1));
6

7 // Matlab: rms = sqrt(sum((A1(:) - A2(:)).^2) / numel(A1));
8 double rms = sqrt(sum(sqr(A1(_) - A2(_))) / numel(A1));

In this sample code, note the first-class semantics of the table object on
which global operations can be applied, the use of as a replacement of Mat-
lab colon (:) operator and the availability of utility functions like numel and
size behaving as their Matlab counterpart. More than 80% of core Mat-
lab functionalities are provided along with an additional C++ based inter-
face for compatibility with standard algorithms and major Boost libraries [15].
NT2 relies on three kinds of optimizations: instruction level parallelism via the
implicit usage of SIMD extensions with Boost.SIMD [17], thread-level par-
allelism using OpenMP or TBB and Expression Templates.

Expression Templates [34,33] is a well known technique implementing a
form of delayed evaluation in C++ [29]. This idiom allows the construction
at compile-time of a C++ type representing the abstract syntax tree associ-
ated with an arbitrary statement. This is done by overloading functions and
operators according to those types so they return a lightweight object which
type represents the current operation in the Abstract Syntax Tree (AST) be-
ing built instead of performing any kind of computation. Once reconstructed,
functions can be used to transform this AST into arbitrary code fragments
(see Figure 1).

While Expression Templates should not be limited to the sole purpose of
removing temporaries and memory allocations from C++ code, few projects
actually go further. The complexity of the boilerplate code is usually as big as
the actual library code, making such tools hard to maintain and extend. To re-
duce those difficulties, Niebler proposed a C++ compiler construction toolkit
for embedded languages called Boost.Proto [25]. It allows developers to spec-
ify grammars and semantic actions for DSELs and provides a semi-automatic
generation of all the template structures needed to perform the AST capture.
Compared to hand-written Expressions Templates-based DSELs, designing a
new embedded language with Boost.Proto is done at a higher level of abstrac-
tion by designing and applying transforms (functions operating on the DSEL
statements using pattern matching). NT2 uses Boost.Proto as its expression
template engine and replaces the classical direct walk-through of the compile-
time AST by the execution of a mixed compile-time/runtime algorithm over
a Boost.Proto standardized AST structure.

Antoine Tran Tan et al.

matrix x(h,w),a(h,w),b(h,w);

x = cos(a) + (b*a);

expr<assign
 ,expr<matrix&>
 ,expr<plus
 , expr<cos
 ,expr<matrix&>
 >
 , expr<multiplies
 ,expr<matrix&>
 ,expr<matrix&>
 >
 >(x,a,b);

+

*cos

a ab

=

x

#pragma omp parallel for
for(int j=0;j<h;++j)
{
 for(int i=0;i<w;++i)
 {
 x(j,i) = cos(a(j,i))
 + (b(j,i)
 * a(j,i)
);
 }
}

Arbitrary Transforms applied
on the meta-AST

Fig. 1: General principles of Expression Templates – C++ operator overload-
ing allows us to reconstruct a recursive type encoding the original expression
AST. This AST is then restructured at compile time.

3 Parallel Skeletons in NT2

An Algorithmic Skeleton (or Parallel Skeleton) [13] is defined as a recurrent
design pattern associated with parallel programming. They usually behave
as higher order functions, i.e. functions parametrized by other functions, in-
cluding other skeletons. This composability reduces the difficulty of designing
complex parallel programs as any combination of skeletons is viable by design.
The other main advantage of skeletons is the fact that the actual synchro-
nization and scheduling of a skeleton’s parallel task is encapsulated within the
skeleton. Once a skeleton semantics is defined, programmers do not have to
specify how synchronizations and scheduling happen. This has two implica-
tions: first, skeletons can be specified in an abstract manner and encapsulate
architecture specific implementation; second, the communications/computa-
tions patterns are known in advance and can be optimized [2,16].

Even if a large number of skeletons has been proposed in the litterature [24,
12], NT2 focuses on three data-oriented skeletons:

• transform that applies an arbitrary operation to each (or certain) ele-
ment(s) of an input table and stores the result in an output table.

• fold that applies a partial reduction of the elements of an input table to
a given table dimension and stores the result in an output table.

• scan that applies a prefix scan of the elements of an input table to a given
table dimension and stores the result in an output table.

Title Suppressed Due to Excessive Length

Those skeletons are tied to families of loop-nest that can or can not be
nested. Those families are :

• elementwise loop nests that represent loop nests implementable via a
call to transform and which can only be nested with other elementwise
operations.

• reduction loop nests that represent loop nests implementable via a call
to fold. Successive reductions are not generally nestable as they can operate
on different dimensions but can contain a nested elementwise loop nest.

• prefix loop nests that represent loop nests implementable via a call to
scan. Successive prefix scans, like reductions, are not nestable but can
contain nested elementwise loop nests.

Those families of loop nests are used to tag functions provided by NT2 so
that the type of the operation itself can be introspected to determine its loop
nest family. As the AST of an arbitrary expression containing at least one
NT2 custom terminal (mainly table or) is being built at compile-time, the
AST construction function has to take care of separating expressions requiring
non-nestable loop nests by fetching the loop nest family associated with the
current top-most AST node. As an example, figure 2 shows how the expression
A = B / sum(C+D) is built and split into sub-ASTs handled by a single type
of skeleton.

; ;

=

A /

B sum

+

C D

fold

transform

=

tmp sum

+

C D

fold

⇒
=

A /

B tmp

transform

Fig. 2: Parallel Skeletons extraction process – Nesting of different kinds of
skeletons into a single statement is automatically unwrapped at compile time
as a sequence of single skeleton statements.

The split ASTs are logically chained by the extra temporary variable in-
serted in the right-hand side of the first AST and as the left-hand size of the sec-
ond. The life-cycle management of this temporary is handled by a C++ shared
pointer and ensures that the data computed when crossing AST barrier lives
long enough. Notice that, as the C+D AST is an elementwise operation, it stays
nested inside the sum node. NT2 then uses the nestability of parallel skeletons

Antoine Tran Tan et al.

to call the SIMD and/or scalar version of each skeleton involved in a serie
of statements to recursively and hierarchically exploit the target hardware.
At the end of the compilation, each NT2 expression has been turned into the
proper serie of nested loop nests using combinations of OpenMP, SIMD and
scalar code.

4 Automatic taskification

As sketched above, once a DSEL statement has been issued either by the user
or as a list of temporary statements generated by an AST split, they are exe-
cuted following the simple fork-join model enforced by OpenMP and TBB. As
the number of statements grows, the cost of synchronization, temporary al-
location and cache misses due to poor locality handling lower the performance.

Our proposal is to use the automatic AST splitting system to derive a de-
pendency graph between those statements and turn this graph into a runtime
managed list of coarse grain tasks. To do so, we need to investigate which kind
of runtime support fits those requirements and how to integrate this runtime
in the current NT2 skeleton based code.

4.1 Task-based runtime for shared memory systems

In order to exploit inter-statement parallelism, NT2 requires a runtime that
allows a proper level of performance, supports nestability and limits the cost of
synchronization. Tasking [4] or asynchronous programming is a such a model.
Available in several projects relating to task runtimes such as TBB [28], OmpSs
[4], HPX [22], Quark [36] or OpenMP (3.0 and 4.0 specifications) [27], this
model is able to generate and process an arbitrary task graph on various ar-
chitectures while minimizing synchronization.

The second point is the nestability. To keep the NT2 skeleton high level
model, we need to use an implementation of tasking supporting such compos-
able calls. Traditionally, low-level thread-based parallelism often suffers from
a lack of composability as it relies on procedural calls that only work with
a global view of the program. Another interface for such a tasking model is
the Future programming model [20,5] that has been integrated by the 2011
C++ Standard [30]. A Future is an object holding a value which may become
available at some point in the future. This value is usually the result of some
other computation but is usually created without waiting for the completion
of the computation. Futures allow for composable parallel programs as they
can be passed around parallel function calls as simple value semantic objects
and have their actual contents be requested in a non-blocking or blocking way
depending on context.

Title Suppressed Due to Excessive Length

4.2 HPX - A Parallel Runtime System for Applications of any Scale

HPX [22] is a general purpose C++ runtime system for parallel and distributed
applications of any scale. For the purpose of the described work, HPX was in-
tegrated as a backend for NT2 , providing the task-based runtime used for the
presented results. HPX represents an innovative mixture of a global system-
wide address space, fine grain parallelism, and lightweight synchronization
combined with implicit, work queue based, message driven computation, full
semantic equivalence of local and remote execution, and explicit support for
hardware accelerators through percolation.

The design of the API exposed by HPX is aligned as much as possible
with the latest C++11 Standard [30], the (draft) C++14 Standard [31], and
related proposals to the standardization committee [26,35,11]. HPX imple-
ments all interfaces defined by the C++ Standard related to multi-threading
(such as future, thread, mutex, or async) in a fully conforming way on top
of its own user-level threading system. These interfaces were accepted for ISO
standardization after a wide community based discussion and since then have
proven to be effective tools for managing asynchrony. HPX seeks to extend
these concepts, interfaces, and ideas embodied in the C++11 threading pack-
age to distributed and data-flow programming use cases. Nevertheless, HPX
makes every possible effort to keep all of the implementation fully conforming
to C++, which ensures a high degree of code and performance portability.

The AST generated during the automatic taskification step explicitly de-
scribes the data dependencies of the original expression. We use the asyn-
chronous threading API of HPX to execute all tasks in proper sequence as
defined by the AST. Each of the tasks is launched as a separate (lightweight)
HPX thread using hpx::async generating a hpx::future which represents
the expected result of each of the tasks. HPX additionally exposes facilities
allowing to compose Futures sequentially and in parallel.

• Sequential composition is achieved by calling a Future’s member func-
tion f.then(g) which attaches a given function g to the Future object
f . Here, this member function returns a new Future object representing
the result of the attached continuation function g. The function will be
(asynchronously) invoked whenever the Future f becomes ready. Sequen-
tial composition is the main mechanism for sequentially executing several
tasks, where this sequence of tasks can still run in parallel with any other
task.

• Parallel composition is implemented using the utility function when all(

f1, f2, ...) which returns yet another Future object. The returned Fu-
ture object becomes ready whenever all argument Future objects f1, f2,
etc. have become ready. Parallel composition is the main building block for
fork-join style task execution, where several tasks are executed in parallel
but all of them must finish running before other tasks could be scheduled.

Antoine Tran Tan et al.

We use these composition facilities to create task dependencies which mirror
the data dependencies described by the generated AST. Here, the Future ob-
jects represent the terminal nodes and their combination represents the edges
and the intermediate nodes of the AST.

HPX’ lightweight threading system imposes relative low overhead and al-
lows to create and schedule a large number of tasks (up to several million con-
current tasks). This efficiency combined with the semantics of Futures which
allow to directly express the generated AST as an execution tree generated at
runtime, provides a solid base for a highly efficient auto-parallelization.

4.3 Integration in NT2

The NT2 integration is done by:

• Making a generic implementation of Futures. Although NT2 uses
HPX as a prime backend for task parallelism, most systems tend to use
runtimes like OpenMP or TBB. Thus we implement a Future class template
that acts as a generic template wrapper which maps the current runtime
choice to its proper task implementation and related functions.

• Adapting current skeletons for taskification. NT2 skeletons have
been modified so their internal implementation rely on Futures and asyn-
chronous calls. To do so, NT2 skeletons now use a task-oriented implemen-
tation by using a worker/spawner model. The worker is a function object
containing a function call operator that takes a range as parameter and
processes it with all the possible optimizations. The spawner is a function
template which acts as the parallel skeleton: it invokes multiple workers
by binding them appropriately to tasks depending on the kind of skeleton
required in a given statement.

• Adding task management to NT2. Last part of this implementation
lies in the process of chaining the asynchronous tasks generated by the
various skeletons spawned from a given set of ASTs. This is done by im-
plementing a Future-based pipeline skeleton that explicits the different
dependencies required for the evaluation of expressions. Pipelines are then
created between temporary ASTs and between sub-slices of pre-existing
arrays.

Figure 3 shows the final task layout of the simple A = B / sum(C+D) ex-
pression. The expression is parallelized using both the worker/spawner model
to take advantage of the data-oriented parallelism inside the array evaluation,
and pipelines between the two sub-AST generated by the split skeleton.

Instruction Level Parallelism is maintained by using SIMD-optimized work-
ers when it is possible, thus delivering proper performance from the data-
parallel layer.

Title Suppressed Due to Excessive Length

Optimization across statement boundaries is the main benefit of our task
generation system. They enable us to preserve data locality, thus ensuring
optimal memory accesses. Such optimizations are often difficult to perform
with classical Expression Templates as they can only statically access the
statement’s structure.

fold

=

tmp(3) sum

+

C(:, 3) D(:, 3)
transform

=

A(:, 3) /

B(:, 3) tmp(3)

fold

=

tmp(2) sum

+

C(:, 2) D(:, 2)
transform

=

A(:, 2) /

B(:, 2) tmp(2)

worker<fold >

=

tmp(1) sum

+

C(:, 1) D(:, 1)
worker<transform >

=

A(:, 1) /

B(:, 1) tmp(1)

spawner<transform >

spawner<transform >

;

Fig. 3: Taskification of an AST – Previous compile decomposition into multiple
statement is augmented with the insertion of an asynchronous pipeline between
the auto-generated statements.

5 Performance results

This section presents two benchmarks to give an idea of the performance of
NT2. Those benchmarks were run over multiple executions (around 50 for each
table size) from which the median execution time has been kept as the end
result. Those tests were run on different machines:

• Mini-Titan composed of 2 sockets of Intel Core Westmere processors with
6 cores, 2 x 24GB of RAM and a 12MB L3 Cache. Code is compiled using
g++-4.7 and SSE4.2 instructions

• Lyra composed of 8 sockets of AMD Istanbul processors with 6 cores, 128
GB of RAM and a 5MB L3 cache. Code is compiled using g++-4.7 and
SSE4a instructions

5.1 Inter-statement Optimization

The Black and Scholes algorithm [6] represents a mathematical model able to
give a theoretical estimate of the price of European-style options. The code

Antoine Tran Tan et al.

is defined in listing 2. The Black & Scholes algorithm involves multiple high
latency and high register count operations. The SIMD version of log, exp

and normcdf uses polynoms and precision refinement steps that consume a
large amount of registers. This implementation also uses multiple statements
in which locality is important.

Listing 2: Black & Scholes NT2 implementation
1table <float > blackscholes (table <float > const& S, table <float > const& X
2 , table <float > const& T, table <float > const& r
3 , table <float > const& v
4)
5{
6 table <float > d = sqrt(T);
7 table <float > d1 = log(S/X)+(fma(sqr(v) ,0.5f,r)*T)/(v*d);
8 table <float > d2 = fma(-v,d,d1));
9

10 return S*normcdf(d1) - X*exp(-r*T)*normcdf(d2);
11}

Since the Black & Scholes algorithm is a sequence of transforms encap-
sulating elementary operations, a minimum table size is required to get some
efficiency. This benchmark is then evaluated using single-precision floating-
point tables with out-of-cache sizes ranging from 64M to 1024M. As the
performance by element changes slowly with the problem size (in the order of
one cycle per element), we used cycles/element as measurement unit and kept
the medium value over samples corresponding to one implementation.

scalar SIMD NT2

0

200

400

600 581

140

23

331

50
11

Implementation

E
x
ec

u
ti

o
n

T
im

e
in

cy
cl

es
/
el

em
en

t

Lyra

Mini-Titan

Fig. 4: Black & Scholes execution time comparaison

Title Suppressed Due to Excessive Length

40K 160K 640K

0

10

20

30

40
37

27

23
25

22 23

Grain size (in number of float elements)

E
x
ec

u
ti

o
n

T
im

e
in

cy
cl

es
/
el

em
en

t

NT2 without barriers

NT2 with barriers

Fig. 5: Black & Scholes execution time in function of the grainsize - Lyra

40K 160K 640K

0

5

10

15

20

17

14

12
11 11 11

Grain size (in number of float elements)

E
x
ec

u
ti

o
n

T
im

e
in

cy
cl

es
/
el

em
en

t

NT2 without barriers

NT2 with barriers

Fig. 6: Black & Scholes execution time in function of the grainsize - Mini-Titan

Figure 4 shows that the NT2 implementation is better than the SIMD ver-
sion with performance factor gains of 4 in Mini-Titan and 6 in Lyra. As we
used all the processing units, the theoretical performance factor gain should
be respectively 12 and 48 when ignoring the communication and synchroniza-
tion latencies. Thus we can outline a real lack of scalability due to the implicit

Antoine Tran Tan et al.

inter-statement barriers.

We then integrate the pipeline optimization and compare this NT2 version
with the one that keeps the barriers. Figures 6 and 5 show that the version with
barriers is still better than the new version but its scalability doesn’t progress
with the grain size parameter. The pipelined version is not optimal for small
grain sizes but progresses relatively well when this parameter increases. Since
HPX uses the First Come First Served rule as a thread scheduling policy, the
data locality is not preserved when walking through a pipeline of transforms.

Thus, the one-dependency continuation (.then() method) is optimized by
integrating the following conditions:

• The Future is not ready - a callback is attached to the Future, so that the
thread solving the Future executes its corresponding continuation.

• The Future is ready - the thread instantiating the continuation executes it
immediately

However some problems can still arise while building a task graph during
the execution. For example, the execution of a task can be completed before its
continuation is instantiated. In this situation, the thread which has executed
the task will choose a new one from the work queue. The continuation of
the first task will then be executed by the wrong thread losing some memory
locality. To keep this locality, the computational complexity of a task must be
sufficient (ex: matrix product) to ensure an optimal scheduling.

5.2 Task-oriented Skeletons

We assess the efficiency of NT2 Future-based task management by implement-
ing the tiled version of LU factorization. Inspired from PLASMA [9], this algo-
rithm adapts the regular LU factorization to fit in multicore architectures. It
enables fine granularity by decomposing the whole calculation into dependent
units of work that operate on square portions of a matrix. This leads naturally
to a directed acyclic graph (DAG) representation that is easily translatable into
a Future implementation.

As a first step, we perform the benchmark on Mini-Titan. Figures 7, 8 and
9 show that the regular version of LU (Intel MKL) is better than the tiled
version (Plasma and NT2). The key reason is that Mini-Titan is composed of
only 2 NUMA domains and thus offers a perfect environment where the effect
of synchronization points can be considered as negligible.

As a second step, we perform the benchmark on Lyra. Figures 10, 11 and
12 show that the tiled version of LU is now better than the regular version.
Since the benchmark is performed in a machine composed of multiple 6 core
NUMA domains, the performance of the MKL version drops around 20 cores

Title Suppressed Due to Excessive Length

because of memory transactions involving more than 3 NUMA domains (18
cores). By conception, the tiled version uses asynchronism to hide these trans-
actions and then scales better. In those two cases, the scalability of the NT2

implementation is very close to the PLASMA version regardless of the size of
the problem.

0 2 4 6 8 10 12

20

40

60

80

Number of cores

P
er

fo
rm

a
n

ce
in

G
F

lo
p

/
s

NT2

Plasma

Intel MKL

Fig. 7: LU performance for Problem Size 4000 - Mini-Titan

0 2 4 6 8 10 12
0

20

40

60

80

Number of cores

P
er

fo
rm

a
n

ce
in

G
F

lo
p

/
s

NT2

Plasma

Intel MKL

Fig. 8: LU performance for Problem Size 8000 - Mini-Titan

Antoine Tran Tan et al.

0 2 4 6 8 10 12
0

20

40

60

80

100

Number of cores

P
er

fo
rm

a
n

ce
in

G
F

lo
p

/
s

NT2

Plasma

Intel MKL

Fig. 9: LU performance for Problem Size 12000 - Mini-Titan

0 10 20 30 40 50

0

20

40

60

80

100

Number of cores

P
er

fo
rm

a
n

ce
in

G
F

lo
p

/
s

NT2

Plasma

Intel MKL

Fig. 10: LU performance for Problem Size 4000 - Lyra

Title Suppressed Due to Excessive Length

0 10 20 30 40 50

0

50

100

150

Number of cores

P
er

fo
rm

a
n

ce
in

G
F

lo
p

/
s

NT2

Plasma

Intel MKL

Fig. 11: LU performance for Problem Size 8000 - Lyra

0 10 20 30 40 50

0

50

100

150

Number of cores

P
er

fo
rm

a
n

ce
in

G
F

lo
p

/
s

NT2

Plasma

Intel MKL

Fig. 12: LU performance for Problem Size 12000 - Lyra

Antoine Tran Tan et al.

6 Related Works

Various systems and libraries have been proposed to solve this kind of issues.
The most notable are:

• STAPL [3] (Standard Template Adaptive Parallel Library) is a C++ li-
brary based on ISO Standard C++ components similar to the ”sequential”
ISO C++ Standard library. The library works with parallel equivalents
of C++ containers (pContainers) and algorithms (pAlgorithms) that in-
teracts through ranges (pRange). It provides support for shared and dis-
tributed memory and includes a complete runtime system, rules to easily
extend the library and optimization tools. STAPL internally uses a system
similar to HPX’ Futures but based on a specific runtime. Also, STAPL
focus on standard algorithms and containers use cases instead of providing
a more high-level API.

• Chapel [10] is a full-fledged programming language developed by Cray to
ease parallel programming. Like NT2, Chapel uses abstractions for data-
parallelism with objects named Arrays (equivalent of Tables), and abstrac-
tions for task-parallelism with objects named Synchronization variables
(equivalent of Futures).

• PaRSEC [7] (or DAGuE) is a generic framework developed by the ICL
(University of Tennessee) that can be used to extract data-flow patterns
from a sequential C Code, generating a DAG representation at compile-
time. PaRSEC uses a proper runtime to instantiate this DAG in the form
of computation tasks.

7 Conclusion

In this paper, we proposed an implementation of an automatic taskification
system which enables the extraction of asynchronism from high level DSEL
statements. This system is then used to implement an efficient shared mem-
ory support inside a C++ numerical library called NT2. Results show that
the implementation of skeletons allows inter-statement optimizations and thus
reduces one of the usual limitation of expression templates based systems. Cur-
rent works aim to provide a larger support of shared memory runtimes by using
wrappers for systems like OmpSs. On a broader scope, we also want to extent
this system to distributed memory machines by keeping the Future based im-
plementation and using different asynchronous runtimes for large scale systems
like Charm++ [23] or STAPL [8].

References

1. D. Abrahams and A. Gurtovoy. C++ template metaprogramming: concepts, tools, and
techniques from Boost and beyond. Pearson Education, 2004.

Title Suppressed Due to Excessive Length

2. M. Aldinucci, M. Danelutto, and J. Dnnweber. Optimization techniques for implement-
ing parallel skeletons in grid environments. In S. Gorlatch, editor, Proc. of CMPP: Intl.
Workshop on Constructive Methods for Parallel Programming, pages 35–47, Stirling,
Scotland, UK, July 2004. Universitat Munster, Germany.

3. P. An, A. Jula, S. Rus, S. Saunders, T. Smith, G. Tanase, N. Thomas, N. Amato, and
L. Rauchwerger. Stapl: An adaptive, generic parallel c++ library. In Languages and
Compilers for Parallel Computing, pages 193–208. Springer, 2003.

4. E. Ayguadé, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F. Massaioli, X. Teruel, P. Un-
nikrishnan, and G. Zhang. The design of openmp tasks. Parallel and Distributed
Systems, IEEE Transactions on, 20(3):404–418, 2009.

5. H. C. Baker Jr and C. Hewitt. The incremental garbage collection of processes. In ACM
SIGART Bulletin, volume 12, pages 55–59. ACM, 1977.

6. F. Black and M. Scholes. The pricing of options and corporate liabilities. The journal
of political economy, pages 637–654, 1973.

7. G. Bosilca, A. Bouteiller, A. Danalis, T. Herault, and J. Dongarra. From serial loops to
parallel execution on distributed systems. In Euro-Par 2012 Parallel Processing, pages
246–257. Springer, 2012.

8. A. Buss, Harshvardhan, I. Papadopoulos, O. Pearce, T. Smith, G. Tanase, N. Thomas,
X. Xu, M. Bianco, N. M. Amato, and L. Rauchwerger. Stapl: Standard template adap-
tive parallel library. In Proceedings of the 3rd Annual Haifa Experimental Systems
Conference, SYSTOR ’10, pages 14:1–14:10, New York, NY, USA, 2010. ACM.

9. A. Buttari, J. Langou, J. Kurzak, and J. Dongarra. A class of parallel tiled linear
algebra algorithms for multicore architectures. Parallel Computing, 35(1):38–53, 2009.

10. B. L. Chamberlain, D. Callahan, and H. P. Zima. Parallel programmability and the
chapel language. International Journal of High Performance Computing Applications,
21(3):291–312, 2007.

11. Chris Mysen and Niklas Gustafsson and Matt Austern and Jeffrey Yasskin. N3785:
Executors and schedulers, revision 3. Technical report, 2013. http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2013/n3785.pdf.

12. P. Ciechanowicz and H. Kuchen. Enhancing muesli’s data parallel skeletons for multi-
core computer architectures. In High Performance Computing and Communications
(HPCC), 2010 12th IEEE International Conference on, pages 108–113. IEEE, 2010.

13. M. I. Cole. Algorithmic skeletons: structured management of parallel computation.
Pitman London, 1989.

14. K. Czarnecki, U. W. Eisenecker, R. Glück, D. Vandevoorde, and T. L. Veldhuizen.
Generative programming and active libraries. In Generic Programming, pages 25–39,
1998.

15. B. Dawes, D. Abrahams, and R. Rivera. Boost C++ libraries. URL http://www. boost.
org, 35:36, 2009.

16. K. Emoto, K. Matsuzaki, Z. Hu, and M. Takeichi. Domain-specific optimization strategy
for skeleton programs. In A.-M. Kermarrec, L. Boug, and T. Priol, editors, Euro-Par
2007 Parallel Processing, volume 4641 of Lecture Notes in Computer Science, pages
705–714. Springer Berlin Heidelberg, 2007.

17. P. Estérie, M. Gaunard, J. Falcou, J.-T. Lapresté, and B. Rozoy. Boost. simd: generic
programming for portable simdization. In Proceedings of the 21st international confer-
ence on Parallel architectures and compilation techniques, pages 431–432. ACM, 2012.

18. J. Falcou, M. Gaunard, and J.-T. Lapresté. The numerical template toolbox, 2013.
http://www.github.com/MetaScale/nt2.

19. J. Falcou, J. Sérot, L. Pech, and J.-T. Lapresté. Meta-programming applied to automatic
smp parallelization of linear algebra code. In Euro-Par 2008–Parallel Processing, pages
729–738. Springer Berlin Heidelberg, 2008.

20. D. P. Friedman and D. S. Wise. The impact of applicative programming on multipro-
cessing. Indiana University, Computer Science Department, 1976.

21. P. Hudak. Building domain-specific embedded languages. ACM Comput. Surv.,
28(4es):196, 1996.

22. H. Kaiser, M. Brodowicz, and T. Sterling. Parallex an advanced parallel execution model
for scaling-impaired applications. In Parallel Processing Workshops, 2009. ICPPW’09.
International Conference on, pages 394–401. IEEE, 2009.

Antoine Tran Tan et al.

23. L. V. Kale and S. Krishnan. CHARM++: a portable concurrent object oriented system
based on C++, volume 28-10. ACM, 1993.

24. H. Kuchen. A skeleton library. Springer, 2002.
25. E. Niebler. Proto : A compiler construction toolkit for DSELs. In Proceedings of ACM

SIGPLAN Symposium on Library-Centric Software Design, 2007.
26. Niklas Gustafsson and Artur Laksberg and Herb Sutter and Sana Mithani. N3857:

Improvements to std::future<T> and Related APIs. Technical report, 2014.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3857.pdf.

27. OpenMP Architecture Review Board. OpenMP application program interface version
4.0, 2013.

28. J. Reinders. Intel threading building blocks: outfitting C++ for multi-core processor
parallelism. O’Reilly Media, Inc., 2010.

29. D. Spinellis. Notable design patterns for domain-specific languages. Journal of Systems
and Software, 56(1):91 – 99, 2001.

30. The C++ Standards Committee. ISO/IEC 14882:2011, Standard for Programming
Language C++. Technical report, 2011. http://www.open-std.org/jtc1/sc22/wg21.

31. The C++ Standards Committee. N3797: Working Draft, Standard for Pro-
gramming Language C++. Technical report, 2013. http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2013/n3797.pdf.

32. L. Tratt. Model transformations and tool integration. Software & Systems Modeling,
4(2):112–122, 2005.

33. D. Vandevoorde and N. M. Josuttis. C++ Templates. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 2002.

34. T. Veldhuizen. Expression templates. C++ Report, 7:26–31, 1995.
35. Vicente J. Botet Escriba. N3865: More Improvements to std::future<T>. Technical

report, 2014. http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3865.pdf.
36. A. Yarkhan, J. Kurzak, and J. Dongarra. Quark users guide. Technical report, Techni-

cal Report April, Electrical Engineering and Computer Science, Innovative Computing
Laboratory, University of Tenessee, 2011.

