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Abstract. On the way to Exascale, programmers face the increasing
challenge of having to support multiple hardware architectures from the
same code base. At the same time, portability of code and performance
are increasingly difficult to achieve as hardware architectures are becom-
ing more and more diverse. Today’s heterogeneous systems often include
two or more completely distinct and incompatible hardware execution
models, such as GPGPU’s, SIMD vector units, and general purpose cores
which conventionally have to be programmed using separate tool chains
representing non-overlapping programming models. The recent revival
of interest in the industry and the wider community for the C++ lan-
guage has spurred a remarkable amount of standardization proposals and
technical specifications in the arena of concurrency and parallelism. This
recently includes an increasing amount of discussion around the need
for a uniform, higher-level abstraction and programming model for par-
allelism in the C++ standard targeting heterogeneous and distributed
computing. Such an abstraction should perfectly blend with existing,
already standardized language and library features, but should also be
generic enough to support future hardware developments. In this paper,
we present the results from developing such a higher-level programming
abstraction for parallelism in C++ which aims at enabling code and per-
formance portability over a wide range of architectures and for various
types of parallelism. We present and compare performance data obtained
from running the well-known STREAM benchmark ported to our higher
level C++ abstraction with the corresponding results from running it
natively. We show that our abstractions enable performance at least as
good as the comparable base-line benchmarks while providing a uniform
programming API on all compared target architectures.
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1 Introduction

The massive local parallelism available on today’s and tomorrow’s systems
poses one of the biggest challenges to programmers, especially on heterogeneous
architectures, where conventional techniques require to develop and tune indepen-
dent code bases for each of the separate parts of the machine. This paper focuses
on how to address portability in terms of code and performance when developing
applications targeting heterogeneous systems. More and more systems come on-
line which consist of more than one hardware architecture, all of it made available
to the developers through often independent and orthogonal tool-chains.

With the recently growing interest in the community in C++ and the
increased activity towards making all of the available parallelism of the machine
available through native C++ language features and library facilities, we see an
increasing necessity in developing higher level C++ APIs which ensure a high
level of portability of code while providing the best possible performance. At the
same time, such APIs have to provide a sufficient amount of generality and flex-
ibility to provide a solid foundation for a wide variety of application use cases.
GPGPU vendors have started to make their C++ tool chains more conforming
with the newest C++11/C++14 Standards [17], as demonstrated for instance
by recent versions of NVidia’s CUDA [6] or the newer HCC compiler [3] as pro-
vided by AMD. Unfortunately, there are no usable standards-conforming library
solution available yet which would help in writing C++ code which is portable
across heterogeneous architectures.

One of the key problems to solve while developing such higher level library
abstractions is to provide facilities to control and coordinate the placement of data
in conjunction with the location of the execution of the work on this data. We
describe the result of our research in this direction, provide a proof of concept opti-
mization, and present performance results gathered from comparing native imple-
mentations of the STREAM benchmark for OpenMP [16] and CUDA [9] with an
equivalent application written based on our design. We show that there is essen-
tially no performance difference between the original benchmarks and our results.

Our presented implementation of C++ algorithms is fully conforming to the
specification to be published as part of the C++17 Standard [18]. It is based
on HPX [13], a parallel runtime system for applications of any scale. For our
comparisons with the native OpenMP and CUDA benchmarks we use the same
sources demonstrating a high degree of portability of code and performance. The
used parallel algorithms are conforming to the latest C++17 Standard and are
designed to be generic, extensible and composable.

In the remaining part of this paper we describe related work (Sect. 2), talk
about locality of data and work (Sect. 3), describe our implementations (Sect. 4),
show the results (Sect. 5), and summarize our findings (Sect. 6).

2 Related Work

The existing solutions for programming accelerators mostly have in common
that they are based either on OpenCL [5] or on CUDA [6] as their backends.
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Table 1 shows an overview of the different approaches existing today. The most
prominent in that regard are pragma based language extensions such as OpenMP
and OpenACC [4]. The pragma solutions naturally don’t offer good support for
C++ abstractions. In order to get better C++ language integration, software
has to directly rely on newer toolchains directly supporting C++, such as recent
versions of CUDA, the newer HCC compiler [3], or SYCL [2].

Generic higher level abstractions are also provided by various library based
solutions such as Kokkos [10], raja [12], Thrust [11], and Bolt [1]. Those attempt
to offer higher level interfaces similar but not conforming to the parallel algo-
rithms specified in the upcoming C++17-Standard [19]. One of the contributions
of this paper is to provide standards-conforming implementations of those paral-
lel algorithms combined with truly heterogeneous solutions enabling transparent
locality control, a feature not available from the listed existing libraries.

In addition, we aim to provide a solution for all existing accelerator architec-
tures, that is not limited to either OpenCL or CUDA based products providing
a modern C++ programming interface.

Table 1. overview of different approaches: pragma based solutions, low level compiler
and libraries to leverage different architectures.

Name Type Hardware support

OpenMP pragmas cpu, accelerators [5]

OpenACC pragmas accelerators [4]

HCC compiler OpenCL, HSA [3]

CUDA compiler CUDA [6]

SYCL compiler OpenCL [2]

Kokkos library OpenMP, CUDA [10]

Raja library OpenMP, CUDA [12]

Thrust library CUDA, TBB, OpenMP [11]

Bolt library C++Amp, OpenCL, CPU [1]

3 Locality of Work and Data

Modern computing architectures are composed of various different levels of
processing units and memory locations. Figure 1 shows an example for such
architectures that are a common in today’s nodes for GPU accelerated super-
computers. Tomorrow’s systems will be composed of even more complex mem-
ory architectures. In addition, when for instance looking at autonomous driving
applications requiring a huge amount of processing power, the diversity of dif-
ferent processing units as well as different memory locations will increase.

In order to program these architectures efficiently it is important to place
the data as close as possible to the site where the execution has to take
place. As such, we need APIs that are able to effectively and transparently
express the data placement on and data movement to concrete memory locations



4 T. Heller et al.

Fig. 1. This Figure shows an example of a typical heterogeneous architecture that is
composed of multiple CPUs containing different physical blocks of memory as well as
Accelerators and Network Interfaces with their own discrete memory locations, which
are connected through a common bus.

Fig. 2. This figure shows the relation between targets, memory allocation and work
execution; A target is the link between co-locating memory allocation and execution
of tasks close to the memory location. It is used to transparently express the notion of
a ‘place’ in the system to both, allocation and execution.

(or places) in a system. We also need APIs allowing to coordinate the desired
data placement with fine control over defining the execution site from where the
code will access the data.

This paper proposes concepts and APIs that are rooted within the C++ lan-
guage and Standard Library to create an expressive, performant, and extensible
way to control locality of work and data by refining the allocator concept already
defined in the C++ standard as well as using the proposed executor concept.
These are tied together by defining targets, which represent places in a system,
to properly co-locate placement of data and execution of work (see Fig. 2).

3.1 Defining Places in a System

In order to define a place in a system, or a target, we first need to evaluate
the landscape of all available different targets. Examples for targets are: Sets
of CPU cores, which can be used to solve NUMA related problems; Different
memory areas, such as scratch pads, used to access high bandwidth or other
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special purpose memory; Accelerator devices, such as GPUs, which can be used
to offload compute intensive tasks; Remote Processes in a distributed application;
Other types of special purpose hardware, like FPGAs; etc.

Since all the examples for different targets given above have distinct use cases
in terms of their ability to execute different tasks (data parallelism, code with
many control structures) and different properties such as different address spaces
or mechanisms to allocate memory as well as executing code, it becomes obvious
that the definition of a target should be in the form of an concept that doesn’t
define the behavior directly, but rather is a handle to an opaque implementation
defined place in the system. This does not require any additional constraints or
specification for the concept itself, since an implementation is directly operating
on target properties specific to a in place memory and to execute work. By not
having those artificially imposed limitations, we allow for maximal flexibility by
defining the required customization points wherever appropriate.

For supporting the richer functionality to dispatch memory placement and
work execution, the implementation is based on the interfaces described in
Sects. 3.2 and 3.3.

3.2 Controlling Memory Placement

After creating a concept for targets (see Sect. 3.1), we discuss the actual place-
ment of memory. Placement of memory in general needs to first and foremost
handle the allocation of data, but should also cover the transparent migration
(movement) of data to different places of a given target family. For memory allo-
cation purposes, we leverage the already widely used concept of the Allocator.

template <typename Allocator >

struct allocator_traits

: std:: allocator_traits <Allocator >

{

typedef unspecified reference;

typedef unspecified const_reference;

typedef unspecified access_target;

typedef typename access_target :: target_type target_type;

static target_type target(Allocator const& alloc);

template <typename ...Ts>

static void bulk_con struct(Allocator& alloc , pointer p,

size_type count , Ts &&... vs);

static void bulk_destroy(Allocator& alloc , pointer p,

size_type count) noexcept;

};

Listing 1.1. Extensions to std::allocator_traits to support efficient memory
allocation and construction operations for targets as described in Sect. 3.1.
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Allocators are already widely used within the C++ standard library (for
example with containers or smart pointers) with the main purpose of encap-
sulating memory allocation. This allows for great reuse of the defined con-
cepts in already existing code and serves our purpose of hiding memory allo-
cation on opaque targets perfectly. For the sake of making memory alloca-
tions efficient on various targets, such as for discrete GPU memory or remote
processes, we introduced backwards compatibly extensions. Listing 1.1 outlines
the traits class which supports our extensions, the remaining interface follows
std::allocator traits. The extensions are optional, and fall back to the require-
ments for C++ standard allocators. The extensions introduced, serve the pur-
pose to perform bulk construction and destruction of C++ objects. This is nec-
essary to either avoid overheads of offloading the constructor or destructor code
or to support first-touch policies (as used for ccNUMA architectures) efficiently.

The topic of transparent data migration is not covered within this paper and
does not fall within the realm of memory allocation. Another mechanism would
need to be created with appropriate customization points to support different
target use cases. One example within the HPX runtime system is the migration
of objects between different localities (where a locality is a HPX specific target).

3.3 Controlling Execution Locality

The previous sections described the mechanisms to define targets (Sect. 3.1) and
memory allocation (Sect. 3.2). The missing piece, execution of work close to
targets, is based on the Executor concept. Executors are an abstraction which
define where, how, and when work should be executed, in a possibly architecture
specific way (see also [7]).

template <typename Executor >

struct executor_traits

{

typedef Executor executor_type;

template <typename T>

struct future { typedef unspecified type; };

template <typename Executor_ , typename F, typename ... Ts>

static void apply_execute(Executor_ && exec , F && f,

Ts &&... ts);

template <typename Executor_ , typename F, typename ... Ts>

static auto async_execute(Executor_ && exec , F && f,

Ts &&... ts);

template <typename Executor_ , typename F, typename ... Ts>

static auto execute(Executor_ && exec , F && f,

Ts &&...ts);
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template <typename Executor_ , typename F, typename Shape ,

typename ... Ts >

static auto

bulk_async_execute(Executor_ && exec , F && f,

Shape const& shape , Ts &&... ts);

template <typename Executor_ , typename F, typename Shape ,

typename ... Ts >

static auto

bulk_execute(Executor_ && exec , F && f,

Shape const& shape , Ts &&... ts);

};

Listing 1.2. std::executor_traits to support efficient execution on targets as
described in Sect. 3.1

Executors follow the same principle as Allocators in such that they are acces-
sible through the trait executor traits (see Listing 1.2), in a similar fashion to
allocator traits. It is important to note that an implementation for a given
executor is not required to implement all functions as outlined but the traits are
able to infer missing implementations. The only mandatory function an execu-
tor needs to be implement is async execute. The remaining facilities are, if not
provided otherwise, automatically deduced from that. However, it is important
to note that architectures like GPGPUs benefit tremendously by implementing
the bulk execution features.

Specific executor types are then specialized, architecture dependent imple-
mentations of the executor concept which use this architecture dependent knowl-
edge to provide the target specific mechanisms necessary to launch asynchronous
tasks. We introduce a selection of special purpose executors in Sect. 4.

3.4 Parallel Algorithms and Distributed Data Structures

Now that we have all the necessary ingredients to co-locate work and data,
we are going to make it usable by providing a specialized implementation of a
vector. This vector is exposing the same high level interface as std::vector<T>.
This data structure encapsulates an array of elements of the same type and
enables accessing the stored data element-wise, through iterators, and using
other supporting facilities like resizing data, giving the user an abstraction over
contiguous data using the API as described in Sect. 3.2.

The exposed iterators can be used directly with the parallel algorithms [14]
already existing in HPX. Additionally, HPX’s parallel algorithms allow us to
pass executors (see Sect. 3.3) which will in turn execute the algorithm on the
designated resources. By using compatible targets for both, the executor and
the allocator, the co-location of tasks and data is guaranteed.

Listing 1.3 is providing an example that transforms the string “hello world”
to all uppercase. Note that this example is omitting actual targets and specific
allocators/executors which will be introduced in Sect. 4.
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auto target = ...;

target_allocator <char > alloc(target);

vector <char , target_allocator <char >> s(

{’h’, ’e’, ’l’, ’l’, ’o’, ’w’, ’o’, ’r’, ’l’, ’d’},

alloc);

target_executor exec(target);

transform(par.on(exec), s.begin (), s.end(),

[]( char c){ return to_upper(c); });

Listing 1.3. Hello world example using the introduced concepts Target, Allocator
and Executor

4 Implementation

This Section describes specific implementations for the concepts we defined in
Sect. 3 to demonstrate the feasibility of our claims. As a proof of concept we
implemented special allocators and executors to support NUMA architectures
as well as an allocator and various executors for CUDA devices.

4.1 Support for NUMA Aware Programming

Contemporary compute nodes nowadays usually consist of two or more sockets.
Within this architecture, co-locating work and data is an important ingredient
to leverage the full memory bandwidth within the whole system to avoid NUMA
related bottlenecks and to reduce cross-NUMA-domain (cross-socket) memory
accesses.

For this purpose of identifying cores, the target (see Sect. 3.1) is a numeric
identifier for a specific CPU (see Fig. 3). To identify the various cores in the sys-
tem we use hwloc [8]. This allows us to use bit-masks to define multiple CPUs
as one single target, making up a convenient way to build targets for whole
NUMA domains. For convenience, two functions are provided: get targets()

which returns a vector containing all processing units found in the system and
get numa domains() which is returning a vector with targets, where each ele-
ment in that vector represents the cpuset (bit-mask) identifying the respective
NUMA domain. The targets returned from those functions can then easily be
transformed as necssary, for instance to construct finer grained sets.

After having the targets defined to support our CPU based architecture we
need a target specific allocator to support a vector of separate targets. As a
proof of concept we chose to implement a block allocation scheme by dividing
the number of bytes to be allocated evenly across the passed elements in the
target vector.

The same scheme as described above is used to implement the executor. This
ensures that work that is to be executed on data using the block allocator is
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Fig. 3. Graphical output from hwloc-ls showing a two-socket Ivy Bridge system. The
Figure shows the different identifiers for the different processing units and groups them
in their respective NUMA domain.

co-located with the data. The cpusets in the associated targets are used as an
affinity mask to pin the executed tasks to the cores accordingly.

4.2 Leveraging CUDA Based GPGPUs

Since more and more supercomputers are equipped with NVIDIA based GPG-
PUs as accelerators, this section will cover a prototypical solution based on
CUDA.

Within the CUDA based implementation, the choice for how to define a tar-
get is determined by the underlying programming model. The devices are repre-
sented by numerical identifiers and in order to support asynchronous operations
such as kernel invocations and memory copies, CUDA streams are used. That
means a CUDA target is implemented as a wrapper for an integer representing
the device and a CUDA stream attached to that device.

For memory placement, an Allocator (see Listing 1.1) are specialized to allo-
cate memory on the given device and the (bulk) construct/destruct functions
offload directly to the GPU. In terms of transparent memory access via refer-
ences to a given object we introduce a special proxy object that allows to hide
the implementation specific details on how to read and write memory and as
such seamlessly supports the interfaces described in Sect. 3.4. For copying data
between host and device, we extended the parallel copy algorithm to provide a
internal specialization that is able to directly call the respective CUDA memcpy
functions for maximum efficiency.

The executor support (see Sect. 3.3) is exploiting the dual compilation mode
of CUDA’s nvcc compiler and is therefore able to execute any callable that is
marked with the CUDA specific device attribute. This gives great flexibility
since code that is supposed to be offloaded needs to be, in theory, only marked



10 T. Heller et al.

with the device (in addition to host ) attribute and can be used immedi-
ately with the new executor.

The executor itself implements all functions as outlined in Listing 1.2. For
one, the implemented bulk execution facility ensures best-possible performance
for executing kernels on an array of data-elements. Secondly, we implemented
both, the synchronous and asynchronous versions of the executor interfaces as
the synchronous versions can be implemented more efficiently than they could
be generated by the traits class. The asynchronous versions additionally need to
attach a callback to the stream in order to notify the returned future about the
completion of the operation on the GPU.

In practice however, this way of programming leads to unforeseen problems
during compilation since not all features of C++ are supported on devices and
the need to mark up every function does not scale well especially for third party
code. Newer compiler technologies such as hcc are more promising in this regard
and a truly single source solution without additional mark up can be imple-
mented there in the near future.

5 Results

For the sake of giving a first evaluation of our abstractions defined in the previous
sections, we are using the STREAM Benchmark [16]. As a proof of concept, the
presented APIs have been implemented with the HPX parallel runtime system,
and have been ported to the parallel algorithms as defined in the newest C++
Standard [19] (see Listing 1.4).

template <typename Executor , typename Vector >

void stream(Executor& e, Vector const& as , Vector const& bs,

Vector const& cs)

{

double scalar = 3.0

// Copy

copy(e, as.begin (), as.end(), cs.begin());

// Scale

transform(e, cs.begin(), cs.end(), bs.begin (),

[scalar ]( double c){ return c * scalar ;});

// Add

transform(e, as.begin(), as.end(), bs.begin (), cs.begin(),

[]( double a, double b){ return a + b;});

// Triad

transform(e, bs.begin(), bs.end(), cs.begin (), as.begin(),

[scalar ]( double b, double c){ return b + c*scalar ;});

}

Listing 1.4. Generic implementation of the STREAM benchmark using HPX and
C++ standards conforming parallel algorithms.
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It is important to note that the benchmark is parameterized on the allocaor
used for the arrays (vectors) and the given executor, which allows to design an
portable implementation of the benchmark ensuring best possible performance
across heterogeneous architecturs in plain C++. For any of the tested architec-
tures, the used Executor and Vector is are using the same target. In our case, we
use the NUMA target as defined in Sect. 4.1 and a CUDA target as described in
Sect. 4.2. The test platform we use is a dual socket Intel Xeon CPU E5-2650v2
with 2.60 GHz together with a NVIDIA Tesla K40m GPU. As a reference imple-
mentation for the NUMA based benchmark, we used the original STREAM
benchmark [15], The GPU version was compared with the CUDA based GPU-
STREAM [9]. For the CPU based experiments, we used two sockets and 6 cores
per socket, that is a total of 12 CPU Cores, which has been determined to deliver
the maximal performance for the benchmark

Fig. 4. Results for STREAM Benchmark on the host and GPU. The figure shows
the resulting bandwidth achieved with the native implementations and the HPX port
showed in Listing 1.4. The achieved performance for all tests is approximately the same
for the respective architectures. The benchmark on the CPU used 2 NUMA domains
with 6 cores each, the GPU version ran on a single Tesla K40m.

The results we obtained from running our benchmark show that the uti-
lized memory bandwidth is essentially equivalent to that achieved by the native
benchmarks. Figure 4 is showing results comparing to the respective reference
implementations. What can be seen is that our CPU based implementation
is about 1.1% slower than the reference and our CUDA implementation are
about 0.4% slower. Figure 5 is giving an impression on the overheads involved
with the parallel algorithms abstractions. For small array sizes, the overhead is
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Fig. 5. Results for STREAM Benchmark on the host and GPU. This graph shows the
average performance of the entire benchmark suite with varying input sizes, from 10
to 400MB. While the native implementations provide lower overhead for small input
sizes, all implementations converge to the same maximum. The benchmark on the CPU
used 2 NUMA domains with 6 cores each, the GPU version ran on a single Tesla K40m.

noticeable within the HPX implementation, however, for reasonable large extents
of the array, the implementations are almost similar again.

6 Conclusion

This paper presented a coherent design and implementation based on the foun-
dation of the upcoming C++17 Standard and provided extensions to ensure
locality of work and data. We showed that the performance of the introduced
higher-level parallelism framework is does not significantly reduced compared to
the performance of today’s prevalent programming environments. The benefit
of our presented solution is to provide a single source, generic, and extensible
abstraction for expressing parallelism, together with no loss in performance.

For future work, we are going to extend the number of targets to include more
support for different memory hierarchies (e.g. Intel Knights Landing High Band-
witdth Memory) as well as improving the support for GPGPU based solutions
by implementing other back ends such as HCC and SYCL.
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