
High Performance ParalleX (HPX) is the runtime

implementation of ParalleX, a new model of computation

targeting future generation of High Performance Computing

Systems. HPX has been designed as an alternative to the

conventional computation models such as MPI, attempting to

overcome their limitations such as: global barriers, too coarse-

grained parallelism and poor latency hiding capabilities. HPX

is a modular, feature complete and performance oriented

representation of ParalleX. Currently it has been developed on

conventional architectures such as Linux or Windows based

SMPs or Clusters. The current implementation of HPX

provides the infrastructure for key ParalleX concepts: threads

and their management, local control objects, parcel transport

and parcel management and the active global address.

Threads and their Management: The HPX-thread managers

implements a work queue based execution model, similar to

prior systems like Cilk++, TBB. HPX-threads are first class

objects with immutable global names, enabling remote

management. Thread migration is avoided across localities as

it is an expensive operation. Instead, actions are transferred to

remote localities through parcels.

Local Control Objects (LCOs): An LCO is an abstraction of

different functionalities for event-driven HPX-thread creation,

protection of data structures from race condition and automatic

event driven on-the-fly scheduling of work and

synchronization of tasks.

Parcel Transport and Parcel Management: In HPX, parcels

are extended form of active messages for inter-locality

communication. Parcels enable invocation of action at a

remote locality, take part in synchronization of remote tasks

and provide means of transferring data.

Active Global Address Space (AGAS) is a fundamental

concept in ParalleX execution model and is implemented as a

part of the HPX runtime system. AGAS enables programming

in distributed systems in a shared memory context. Each first

class object in HPX is assigned a uniquely identifiable tag.

AGAS maintains this tag as well as information about its

locality, virtual address and component type throughout the

duration of lifetime of the object. As such, core functionality of

AGAS are: a) ascertain whether an object in reference is local

or remote and b) to provide the global virtual address of the

object in query (whether local or remote).

Parcel Forwarding: It is an incremental feature added in the

HPX system that allows the AGAS service itself forward the

parcels from the requesting locality to the destination locality.

This feature would minimize the overall time taken for address

resolution for a parcel’s destination and its arrival at the

destination.

Methods

Conclusions

Bibliography

In the previous implementation of AGAS, whenever there was a

need for address resolution, the requesting locality would send a

parcel to the AGAS server and the AGAS server would send a

parcel back to the requesting locality with the resolved global

virtual address (GVA). After receiving resolved address of the

destination, the locality would then send the parcel to the final

destination.

With Parcel Forwarding feature added, now the parcels could be

sent directly to the AGAS server, and the server in turn would be

able to forward the parcel to the final destination directly, hence

minimizing the overall trip time of query-resolution-shipping of the

parcel.

The Application of choice is ShenEOS (shen equation of state), that

maintains tables of nuclear matter at finite temperature and density

with various electron fractions within the relativistic mean

field(RMF), in a set of three dimensional data arrays enabling high

precision interpolation of 19 relevant parameters required for

neutron star simulation. It is implemented in HPX, with a HPX

component encapsulating the non-overlapping partitioning and

distribution of the ShenEOS tables to all available localities, thus

reducing the required memory footprint per locality.

Test-bed for the experiment is a heterogeneous cluster with two 48

core SMP systems and 15 quad core Xeon type workstations.

For the test, an iterative operation on the ShenEOS tables of huge

size is performed. The partitioning of data would allow exchange of

parcels across localities, which serves the purpose of our test.

1. T. Eicken, D. Culler, S. Goldstein, and K. Schauser. Active messages: A mechanism for

integrated communication and computation. Computer Architecture, 1992.

Proceedings., The 19th Annual International Symposium on, pages 256–266, 1992.

2. G. Gao, T. Sterling, R. Stevens, M. Hereld, and W. Zhu. Parallex: A study of a new

parallel computation model. In Parallel and Distributed Processing Symposium, 2007.

IPDPS 2007. IEEE International, pages 1–6, 2007. doi: 10.1109/IPDPS.2007.370484.

3. H. Kaiser, M. Brodowicz, and T. Sterling. ParalleX: An advanced parallel execution

model for scaling-impaired applications. In Parallel Processing Workshops, pages 394–

401, Los Alamitos, CA, USA, 2009. IEEE Computer Society. doi:

http://doi.ieeecomputersociety. org/10.1109/ICPPW.2009.14.

The test runs were performed with the local caching turned off so

that more AGAS requests could be registered. The tests were

performed for weak scaling with increasing resources as we

increased work load.

The results of preliminary implementation of parcel forwarding

shows slight speedup with parcel forwarding as compared with

test run of the same application without parcel forwarding and

every other test parameter remaining same. The results of the test

runs are shown in the graphs below.

As a proof of concept, we can clearly see from the test results,

that the ability of the AGAS service to forward parcel does

minimize the round-trip time that is observed in the tests with

parcel forwarding enabled. In essence, parcel forwarding cuts

down the time spent to receive the parcel back to the requesting

locality/node when an address resolution request is put to AGAS.

In the result, we observe an overhead with parcel forwarding

enabled when there is less number of nodes involved. This

overhead is due to extra cost of serialization and de-serialization

of parcels at the action manager and the AGAS server side.

The current implementation does not consider the size of the

parcel to be forwarded. Any parcel that needs address resolution

is sent to the AGAS server, irrespective of the argument size. This

may not be the optimal solution as there might be situations

where parcel’s size is too big for it to a) serialize and b) too huge

to fit in memory of AGAS server. As an improvement to current

implementation, an intelligent way of detecting parcel size before

hand and thereafter triggering a faster way of transferring parcels

such as RDMA could be implemented.

Introduction Results

Acknowledgement:

Parcel Forwarding for AGAS in HPX
Vinay C Amatya1,2, Bryce Adelstein-Lelbach1, Maciej Brodowicz1, Hartmut Kaiser1,2

1Center for Computation and Technology, 2LSU Department of Computer Science

stellar.cct.lsu.edu

STE||AR

Fig. 1. Address resolution without parcel forwarding

Fig. 2. Address resolution with parcel forwarding

Figure 3: ShenEOS test run with 1024 runs, 4 partitions. Number

of Nodes on X-axis and time in seconds in Y-axis.

Figure 4: ShenEOS test run with 2048 runs, 4 partitions. Number

of Nodes on X-axis and time in seconds in Y-axis.

Figure 5: ShenEOS test run with 4096 runs, 4 partitions. Number

of Nodes on X-axis and time in seconds in Y-axis.

Figure 6: ShenEOS test run with two worker nodes with varying

number of nodes and run iterations with fixed data partitions. Number of

nodes on X-axis and time in seconds in Y-axis.

• NSF Grants 1117470, 1048019, 1029161

• DARPA UHPC Funding

• LONI Allocation loni_hpx

