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Overview of Research

* NSF STAR project: a cross-discipline
collaboration between LSU computer
scientists and astrophysicists.

— Primary goal is to facilitate a highly realistic
simulation of the merger of two white dwarfs.

* The study of these binaries is important as they are
possible progenitors of a number of astrophysically
important objects, such as Type 1a supernovae.



Overview of Research

 Development of new adaptive mesh refinement (AMR)
codes utilizing HPX, a framework for message-driven
computation, instead of traditional HPC programming
mechanisms (MPI, OpenMP, PGAS).

— Existing unigrid codes are too slow.
* 0.2 orbits/day running on 1,032 cores.
 We want to be running hundreds if not thousands of orbits.
— AMR codes can be many orders of magnitude faster (10%—
10°).
* Doing AMR with MPI is difficult and can face scalability problems,
due to the inherently inhomogeneous nature of AMR.



Numerical Methods

e Our group uses 3D Eulerian hydrodynamics codes:

— Explicit advection scheme

e Kurganov and Tadmor, 2000, Journal of Computational Physics,
160, 241

— Finite-volume method

— Adaptive mesh refinement

e Multigrid method (for solving Poisson’s equations): Martin and
Cartwright, 1996

 Interpolation (PPM): Colella and Woodward, 1984, Journal of
Computational Physics

— Angular momentum conservation

e Other references:
— Dominic Marcello’s Ph.D. thesis
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What’s HPX?

* A general purpose C++ runtime system for
parallel and distributed applications of any scale.

* The HPX paradigm prefers:

— Asynchronous communication to hide latencies and
contention instead of avoiding them.

— Fine-grained parallelism and an active global address
space to enable dynamic and heuristic load balancing
instead of statically partitioning work.

— Local, dependency-driven synchronization instead of
explicit global barriers.

— Sending work to data instead of sending data to work.



Hiding Latency and Contention

(pull model)
Locality 1
Future object |\ 5 Locality 2
Suspend |\> ! Execute
thread A = ! :
rea - ___ future:
i : Thread B
Execute I N R
another / : : """"""""""""""
thread Lo
/ & Result is being
E:SWQ; returned
rea




Hiding Latency and Contention
(push model)
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Asynchronous vs Synchronous

°o° T A phone call is a form
~— A of synchronous
5j communication.
<A

Texting is a form of
asynchronous
communication. A

text message is a
future.




What’s Octopus?

A general purpose HPX AMR framework.
— Based heavily on ideas drawn from an existing LSU OpenMP AMR
code.
* QOctree-based AMR.

— Primarily designed for high-resolution, high-accuracy astrophysics
hydrodynamics simulations.

* Octopus design:
— Multi-tiered software architecture to maintain abstraction while
supporting domain-specific physics.
— Policy-driven genericity.
— Powerful optimizations applied to the generic layers:
* Timestep size prediction.
* Time-based refinement.

* Localization of dependencies
* Eager computation of fluxes.
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Universal Scalability Law

Speedup [S]
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S: Speedup
a: Contention coefficient

B: Synchronization delay coefficient
N: Number of processors

Set B =0, and you get Amdahl

. N
14+ a(N-1)

Maximum scaling point:

Nmax = V(]- —a)/B

Number of Processors [N]




Speedup (scaled to 1-core relative to each code)
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Scaling of OpenMP 3D Eulerian Code vs Octopus 3D Eulerian Code
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USL Modeling

Octopus
a | B | Nua
4 0.04840 | 3.00E-04 56
5 0.03790 | 1.00E-04 98
6 0.04084 | 6.00E-05 126
7 0.05069 | 6.00E-06 397
OpenMP
4 0.40890 | 1.89E-02 5
5 0.37560 | 1.83E-02 5
6 0.37470 | 1.62E-02 6




Grain Size
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