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Overview of Research 

• NSF STAR project: a cross-discipline 
collaboration between LSU computer 
scientists and astrophysicists. 

– Primary goal is to facilitate a highly realistic 
simulation of the merger of two white dwarfs. 

• The study of these binaries is important as they are 
possible progenitors of a number of astrophysically 
important objects, such as Type 1a supernovae. 
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Overview of Research 

• Development of new adaptive mesh refinement (AMR) 
codes utilizing HPX, a framework for message-driven 
computation, instead of traditional HPC programming 
mechanisms (MPI,  OpenMP, PGAS). 
– Existing unigrid codes are too slow. 

• 0.2 orbits/day running on 1,032 cores.  

• We want to be running hundreds if not thousands of orbits. 

– AMR codes can be many orders of magnitude faster (104 – 
106 ). 
• Doing AMR with MPI is difficult and can face scalability problems, 

due to the inherently inhomogeneous nature of AMR. 
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Numerical Methods 

• Our group uses 3D Eulerian hydrodynamics codes: 
– Explicit advection scheme 

• Kurganov and Tadmor, 2000, Journal of Computational Physics, 
160, 241 

– Finite-volume method 
– Adaptive mesh refinement 

• Multigrid method (for solving Poisson’s equations): Martin and 
Cartwright, 1996 

• Interpolation (PPM): Colella and Woodward, 1984, Journal of 
Computational Physics 

– Angular momentum conservation 

• Other references: 
– Dominic Marcello’s Ph.D. thesis 

5/17/2012 stellar.cct.lsu.edu 4 



5/17/2012 stellar.cct.lsu.edu 5 

Source: Dominic Marcello, LSU Department of Physics 



What’s HPX? 

• A general purpose C++ runtime system for 
parallel and distributed applications of any scale. 

• The HPX paradigm prefers: 
– Asynchronous communication to hide latencies and 

contention instead of avoiding them. 
– Fine-grained parallelism and an active global address 

space to enable dynamic and heuristic load balancing 
instead of statically partitioning work. 

– Local, dependency-driven synchronization instead of 
explicit global barriers. 

– Sending work to data instead of sending data to work. 
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Hiding Latency and Contention 
(pull model) 
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Hiding Latency and Contention 
(push model) 
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Asynchronous vs Synchronous 
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A phone call is a form 
of synchronous 
communication. 

 
Texting is a form of 

asynchronous 
communication. A 
text message is a 

future.  



What’s Octopus? 

• A general purpose HPX AMR framework. 
– Based heavily on ideas drawn from an existing LSU OpenMP AMR 

code. 
• Octree-based AMR. 

– Primarily designed for high-resolution, high-accuracy astrophysics 
hydrodynamics simulations. 

• Octopus design: 
– Multi-tiered software architecture to maintain abstraction while 

supporting domain-specific physics. 
– Policy-driven genericity. 
– Powerful optimizations applied to the generic layers: 

• Timestep size prediction. 
• Time-based refinement. 
• Localization of dependencies 
• Eager computation of fluxes. 
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Octopus Architecture 
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Universal Scalability Law 
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S =
N

1 + α N − 1 + βN N − 1  
 

 
S: Speedup 
α: Contention coefficient 
β: Synchronization delay coefficient 
N: Number of processors 

Set β = 0, and you get Amdahl 
 

S =
N

1 + α N − 1  
 

 

Maximum scaling point: 
 

Nmax =  1 − α /β 
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Scaling of OpenMP 3D Eulerian Code vs Octopus 3D Eulerian Code 

Measured scaling for 4 LOR with Octopus

Modeled scaling for 4 LOR with Octopus

Measured scaling for 5 LOR with Octopus

Modeled scaling for 5 LOR with Octopus

Measured scaling for 6 LOR with Octopus

Modeled scaling for 6 LOR with Octopus

Measured scaling for 7 LOR with Octopus

Modeled scaling for 7 LOR with Octopus

Measured scaling for 4 LOR with OpenMP

Modeled scaling for 4 LOR with OpenMP

Measured scaling for 5 LOR with OpenMP

Modeled scaling for 5 LOR with OpenMP

Measured scaling for 6 LOR with OpenMP

Modeled scaling for 6 LOR with OpenMP



USL Modeling 

Octopus 

LOR α β Nmax 

4 0.04840 3.00E-04 56 

5 0.03790 1.00E-04 98 

6 0.04084 6.00E-05 126 

7 0.05069 6.00E-06 397 

OpenMP 

LOR α β Nmax 

4 0.40890 1.89E-02 5 

5 0.37560 1.83E-02 5 

6 0.37470 1.62E-02 6 
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Grain Size 
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