
Parallelizing the C++
Standard Template Library

Grant Mercer(gmercer015@gmail.com)
 Daniel Bourgeois(dcbourg@gmail.com)

CppCon2015

mailto:gmercer015@gmail.com
mailto:dbourg@gmail.com

About Grant Mercer

● Third year student at UNLV, computer science major
● Recent work with the STE||AR research group
● Primarily worked on C++ Standards Proposal N4505 inside of HPX
● N4505 is a technical specification for extensions for parallelism

2

About Daniel Bourgeois
● Fourth year student at LSU, mathematics major
● Currently works with the STE||AR Research group
● Primarily worked on C++ Standards proposals N4505 and N4406 inside of

HPX

3

Background Information
● STE||AR is about shaping a scalable future with a new approach to parallel

computation

● Most notable ongoing project by STE||AR is HPX: A general purpose C++
runtime system for parallel and distributed applications of any scale

4

HPX
● HPX enables programmers to write fully asynchronous code using hundreds

of millions of threads

● First open source implementation of the ParallelX execution model
○ Starvation
○ Latencies
○ Overhead
○ Waiting

5

Focus Points
● Reasons we should parallelize the STL
● Features these algorithms should offer
● Our experience at HPX
● Benchmarking
● Future work

6

So Why Parallelize the STL?

● Multiple cores are here to stay, parallel programming is becoming more and
more important.

○ Amping up processor speed only gives so much. Memory lag, RC delay and Power are all
reasons why increasing the processor speed is not the answer

● Scalable performance gains, user flexibility

● Build widespread existing practice for parallelism in the C++ standard
algorithms library

7

Moores law will eventually slow down

8

Parallelism is growing!

9

Standards Proposal N4505
● A technical specification for C++ extensions for parallelism, or implementation

details for a parallel STL
● Not all algorithms can be parallelized (e.g. std::accumulate), so N4505

defines a list of algorithms to be reimplemented

10

Proposed Algorithms

11

Aimed for acceptance into C++17
● Implementation at HPX takes advantage of C++11
● Compenents of TS will lie in std::parallel::experiemental::v1. Once

standardized, they are expected to be placed in std
● HPX implementation lies in hpx::parallel

12

● All algorithms will conform to their predecessors, no new requirements will be
placed on the functions

13

Inside N4505: Execution Policies
● An object of an execution policy type indicates the kinds of parallelism

allowed in the execution of the algorithm and express the consequent
requirements on the element access functions

● Officially supports seq, par, par_vec

14

15

● Par: It is the caller’s responsibility to ensure correctness
● Data races and deadlocks are the caller’s job to prevent, the algorithm will

not do this for you
● Example of what not to do (data race)

using namespace hpx::parallel;

int a[] = {0,1};

std::vector<int> v;

for_each(par, std::begin(a), std::end(a), [&](int i) {

 v.push_back(i*2+1);

});

16

More about parallel execution policies
● Just because you type par, doesn’t mean you’re guaranteed parallel

execution due to iterator requirements
● You are permitting the algorithm to execute in parallel, not forcing it
● For example, calling copy with input iterators and a par tag will execute

sequentially. Input iterators cannot be parallelized!

17

Exception reporting behavior
● If temporary resources are required and none are available, throws std::

bad_alloc
● If the invocation of the element access function terminates with an uncaught

exception for par, seq: all uncaught exceptions will be contained in an
exception_list

18

Task execution policy for HPX
● The task policy was added by us at HPX to give users a choice of when to

join threads back into the main program. Returns and hpx::future of the result

// permitting parallel exeuction

auto f =

 sort(par(task), v.begin(), v.end());

...

f.wait();

19

User Interaction with the Algorithms
● Restrictions of execution
● Runtime decision making
● Where work is executed
● Size of work to be executed
● Abstractions usable for the parallel algorithms and elsewhere

// sort with dynamically-selected execution
size_t threshold = ...
execution_policy exec = seq;
if (v.size() > threshold)
{
 exec = par;
}
for_each(exec, v.begin(), v.end());

20

Inside N4406: Parallel Algorithms Need Executors
● Let the programmer specify where work is executed
● Attach to parallel algorithms

21

Extending On Execution Policies
● The .on syntax to attach to parallel algorithms
● Not all combinations of policies and executors should be allowed

// should compile, done in parallel

for_each(par.on(parallel_executor()), f, l, &F)

// should compile, but not done in parallel

for_each(par.on(sequential_executor()), f, l, &F)

// This does not make sense thus should not compile!

for_each(seq.on(parallel_executor()), f, l, &F)

22

But how, N4406? The requirements to be met…
● Execution policies should accept an executor
● An executor should advertise restrictions
● uniform API for parallel algorithms

23

Executor Traits for N4406
● Can be called with objects that meet the requirements of an executor
● Executor_traits provides four main function calls

○ async_execute - asynchronously calls a function once
○ async_execute - asynchronously calls a function more than once
○ execute - calls a function once
○ execute - calls a function more than once

24

Executor Traits for N4406: Example

// Some Definitions

some_executor_type exec;

some_shape_type inputs;

auto f1 = [](){ /*..compute..*/ return t_1; };

auto f2 = [](T t_a){ /*..compute..*/ return t_2; };

typedef executor_traits<some_executor_type> traits;

25

Executor Traits for N4406: Example
// Calls f1, returns a future containing the result of f1

future<T> myfut1 = traits::async_execute(exec, f1);

// Calls f2 for each of the inputs,

// returns a future indicating the completion of all of the calls

future<void> myfut2 = traits::async_execute(exec, f2, inputs);

// Calls f1, returns the result

T myval1 = traits::execute(exec, f1);

// Calls f2 and returns once all calls are completed

traits::execute(exec, f2, inputs);

26

HPX and N4406: Yes and Not Quite
Yes
● algorithms can be extended with the .on syntax
● executor_traits provides a convenient, uniform launch mechanism
● easy to define an object meeting executor requirements
● work can be executed in bulk quantities

27

HPX and N4406: Yes and Not Quite
Not Quite
● Want to minimize waiting

future<void> myfut = N4406_traits::async_execute(exec, f2, inputs);

// Has to wait for all functions to finish before my_next_function gets called

myfut2.then(my_next_function);

● The HPX solution

std::vector<future<T> > myfuts = HPX_traits::async_execute(exec, f2, inputs);

// my_other_next_funcion can be called once each element in myfuts is ready

when_each(my_other_next_function, myfuts);

28

29

Executor Traits for HPX
template <typename Executor> // requires is_executor<Executor>
struct executor_traits
{
 using Executor = executor_type;

using execution_category = /* category of Executor */;

template <typename T>
using future = /* future type of Executor or hpx::future<T> */;

// … apply_execute, async_execute and execute implementation
};

30

Additional Traits
● executor_information_traits

○ retrieve number of processing units
○ test if pending closures exist

● timed_executor_traits
○ inherits from executor_traits
○ at and after functions

31

Parallel executor
struct parallel_executor : executor_tag
{
 explicit parallel_executor(BOOST_SCOPED_ENUM(launch) l = launch::async)
 : l_(l)
 {}

 template <typename F>
 hpx::future<typename hpx::util::result_of<
 typename hpx::util::decay<F>::type()
 >::type>
 async_execute(F && f)
 {
 return hpx::async(l_, std::forward<F>(f));
 }
private:
 /* . . . */
};

32

Sequence of Execution
● Primer on work stealing, N3872

e();
spawn f();
g();
sync;
h();

for(int i=0; i<n; ++i)
spawn f(i);

sync;

33

Types of Executors in HPX
● standard executors

○ parallel, sequential

● this thread executors
○ static queue, static priority queue

● thread pool executors, and thread pool os executors
○ local queue, local priority queue
○ static queue, static priority queue

● service executors
○ io pool, parcel pool, timer pool, main pool

● distribution policy executor

34

Taking a Step Back
● Executors provide a mechanism for launching work
● Flexible decision making
● need a general mechanism for grain size control

35

Executor Parameters
● grain size control
● passing information to the partitioner
● Similar to OpenMP Dynamic, Static, Guided

36

Extending with Execution Policies
● The .with syntax to extend parallel algorithms

auto par_auto = par.with(auto_chunk_size()); // equivalent to par

auto par_static = par.with(static_chunk_size());

auto my_policy = par.with(my_exec).on(my_chunk_size);

auto my_task_policy = my_policy(task);

37

The Concepts for Execution Policies

Property C++ Concept Name

Execution restrictions execution_policy

Sequence of execution executor

Where execution happens executor

Grain size of work items executor_parameter

38

Initial Parallel Design: Partitioning
● All algorithms given by the proposal are passed a range, which must be

partitioned and executed in parallel.
● There are a couple different types of partitioners we implemented at HPX

39

foreach_partitioner
● The simplest of partitioners, splits a set of data into equal partitions and

invokes a passed function on each subset of the data.
● Mainly used in algorithms such as foreach, fill where each element is

independent and not part of any bigger picture

40

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

 {1, 2, 3, 4} | {5, 6, 7, 8} | {9, 10, 11, 12}

 f([1,2,3,4]) | f([5,6,7,8]) | f([9, 10, 11, 12])

41

for_each_n
template<typename ExPolicy, typename F>
static typename detail::algorithm_result<ExPolicy, Iter>::type
parallel(ExPolicy const& policy, Iter first, std::size_t count, F && f)
{
 if(count != 0)
 {
 return util::foreach_n_partitioner<ExPolicy>::call(policy, first, count,
 [f](Iter part_begin, std::size_t part_size)
 {
 util::loop_n(part_begin, part_size, [&f](Iter const& curr)
 {
 f(*curr);
 });
 });
 }
 return detail::algorithm_result<ExPolicy, Iter>::get(std::move(first));
}

42

partitioner
● Similar to foreach, but the result of the invocation of the function on each

subset is stored in a vector and an additional function is invoked and passed
that vector.

● Useful in a majority of algorithms copy, find, search, etc...

43

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

 {1, 2, 3, 4} | {5, 6, 7, 8} | {9, 10, 11, 12}

 v=
 {f([1, 2, 3, 4] , f([5, 6, 7, 8]) , f([9, 10, 11, 12])}

 g(v)
44

reduce
template <typename ExPolicy, typename FwdIter, typename T_, typename Reduce>
static typename detail::algorithm_result<ExPolicy, T>::type
parallel(ExPolicy, const& policy, FwdIter first, FwdIter last, T_ && init, Reduce && r)
{
 // check if first == last, return initial value if true

 return util::partitioner<ExPolicy, T>::call(policy,
 first, std::distance(first, last),
 [r](FwdIter part_begin, std::size_t part_size) -> T
 {
 T val = *part_begin;
 return util::accumulate_n(++part_begin, --part_size,
 std::move(val), r);
 },
 hpx::util::unwrapped([init, r](std::vector<T> && results)
 {
 return util::accumulate_n(boost::begin(results),
 boost::size(results), init, r);
 }));
} 45

parallel vector dot product
● No intermediate function, forces us to use a tuple instead of a simple double
● Reduce requirements can not be worked around, a new function is needed

int xvalues[] = //…
int yvalues[] = //…

double result =
 std::accumulate(
 make_zip_iterator(std::begin(xvalues), std::being(yvalues)),
 make_zip_iteartor(std::end(xvalues), std::end(yvalues)),
 0.0,
 [](double result, reference it) {
 return result + get<0>(it) + get<1>(it)
 });

46

parallel vector dot product

● N4505 is the newest revision to include transform_reduce, as proposed by
N4167

● Without transform_reduce the solution is horribly hacky

 tuple<double, double> result =
 hpx::parallel::reduce(hpx::parallel::par,
 make_zip_iterator(boost::begin(xvalues), boost::begin(yvalues)),
 make_zip_iterator(boost::end(xvalues), boost::end(yvalues)),
 hpx::util::make_tuple(0.0, 0.0),
 [](tuple<double, double> res, reference it) {
 return hpx::util::make_tuple(
 get<0>(res) + get<0>(it) * get<1>(it),
 1.0);
 });

47

transform_reduce
template <typename ExPolicy, typename FwdIter, typename T_, typename Reduce, //…
static typename detail::algorithm_result<ExPolicy, T>::type
parallel(ExPolicy const& policy, FwdIter first, FwdIter last, T_ && init, Reduce && r, Convert && conv)
{
 typedef typename std::iterator_traits<FwdIter>::reference reference;
 return util::partitioner<ExPolicy, T>::call(policy, first,
 std::distance(first, last),
 [r, conv](FwdIter part_begin, std::size_t part_size) -> T
 {
 T val = conv(*part_begin);
 return util::accumulate(++part_begin, --partsize, std::move(val),
 [&r, &conv](T const& res, reference next)
 {
 return r(res, conv(next));
 });
 },
 hpx::util::unwrapped([init, r](std::vector<T> && results)
 {
 return util::accumulate_n(boost::begin(results),
 boost::size(results) init, r);
 }));
} 48

simplified dot product
int hpx_main()
{
 std::vector<double> xvalues(10007);
 std::vector<double> yvalues(10007);

 using …;

 double result =
 hpx::parallel::transform_reduce(hpx::parallel::par,
 make_zip_iterator(boost::begin(xvalues), boost::begin(yvalues)),
 make_zip_iterator(boost::end(xvalues), boost::end(yvalues)),
 0.0,
 std::plus<double>(),
 [](tuple<double, double> r)
 {
 return get<0>(r) * get<1>(r);
 }
);

 hpx::cout << result << hpx::endl;
 return hpx::finalize();
}

49

scan_partitioner
● The scan partitioner has 3 stepts

○ Partition the data and invoke the first function
○ Invoke a second function as soon as the current and left partition are ready
○ Invoke a third function on the resultant vector of step 2

● Specific cases such as copy_if, inclusive/excusive_scan

50

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

{1, 2, 3, 4} | {5, 6, 7, 8} | {9, 10, 11, 12}

 f[5,6,7,8]

 f[1,2,3,4}] ,
 v

0
 =

 { }

 , f[9,10,11,12]
 v

1
 =

 { }

r =
 { g(v

0
) , g(v

1
) }

 h(r) 51

copy_if

int lst[] = {1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1};

int res[8];

hpx::parallel::copy_if(par, boost::begin(lst), boost::end(lst), boost::begin(res),
 [](int i){ return i == 1; });

1 1 1 1 2 2 1 1 2 1 2 2 1
1 1 1 1 1 1 1 1

● Not just as simple as copying what returns true, the resultant arrays need’s to
be squashed

52

copy_if
typedef util::scan_partitioner(ExPolicy, Iter, std::size_t> scan_partitioner _type;
return scan_partitioner_type::call(
 policy, hpx::util::make_zip_iterator(first, flags.get()),
 count, init,
 [f](zip_iterator part_begin, std::size_t part_size) -> std::size_t
 {
 // flag any elements to be copied
 },
 hpx::until::unwrapped([](std::size_t const& prev, std::size_t const& curr)
 {
 // determine distance to advance dest iter for each partition
 return prev + curr;
 }),
 [=](std::vector<hpx::shared_future<std::size_t> > && r,
 std::vector<std::size_t> const& chunk_sizes) mutable -> result_type
 {
 // copy element to dest in paralle;
 }
);

53

Designing Parallel Algorithms
● Some algorithms are easy to implement, other … not so much
● Start simple, work up the grape vine towards more difficult algorithms
● Concepts from simple algorithms can be brought into more difficult and

complex solutions

54

fill_n
● fill_n can be implemented is two lines using for_each_n

template <typename ExPolicy, typename T>
static typename detail::algorithm_result<ExPolicy, OutIter>::type
parallel(ExPolicy const& policy, OutIter first, std::size_t count, T const& val)
{
 typedef typename std::iterator_traits<OutIter>::value_type type;

 return
 for_each_n<OutIter>().call(
 policy, boost::mpl::false_(), first, count,
 [val](type& v) {
 v = val;
 });
}

55

Completed algorithms as of today

56

void measure_parallel_foreach(std::size_t size)
{
 std::vector<std::size_t> data_representation(size);
 std::iota(boost::begin(data_representation),
 boost::end(data_representation),
 std::rand());

 // create executor parameters object
 hpx::parallel::static_chunk_size cs(chunk_size);

 // invoke parallel for_each
 hpx::parallel::for_each(hpx::parallel::par.with(cs),
 boost::begin(data_representation),
 boost::end(data_representation),
 [](std::size_t) {
 worker_timed(delay);
 });
}
boost::uint64_t average_out_parallel(std::size_t vector_size)
{
 boost::uint64_t start = hpx::util::high_resolution_clock::now();

 // average out 100 executions to avoid varying results
 for(auto i = 0; i < test_count; i++)
 measure_parallel_foreach(vector_size);

 return (hpx::util::high_resolution_clock::now() - start) / test_count;
}

57

Benchmarking
● Comparing seq, par, task execution policies
● Task is special in that executions can be written to overlap
● User can wait to join execution after multiple have been sent off

58

● The big question is whether these functions
actually offer a gain in performance when
used.

● Grain size: amount of work executed per
thread.

● In order to test this we look to simulate the
typical strong scaling graph:

Getting the most out of performance

59

Hardware Used

60

Sequential vs. Parallel

61

62

Parallel vs. Task

63

HPXCL: OpenCL backend
● Uses hpx::parallel::for_each

○ Grouping work-items into work packets

hpx::parallel::for_each(hpx::parallel::par,
 nd_range_iterator::begin(dim_x, dim_y, dim_z),
 nd_range_iterator::end(dim_x, dim_y, dim_z),
 [&ta](nd_pos const& gid)
 {
 workgroup_thread(&ta, gid);
 });

64

65

Future Work
● Not all of the algorithms are implemented
● Perform more benchmarking on different algorithms
● Grain size control and non-partitioned algorithms
● Experiment with custom policies

○ if_gpu_then.on(numa).with(chunker)

● introspection tools (using performance counters to make adjustments)
● minimization executor (power, idle_rate, other performance counter stuff)

66

Additional Resources
● HPX - https://github.com/STEllAR-GROUP/hpx
● STE||AR - http://stellar.cct.lsu.edu/
● N4505 - http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4505.pdf
● N4406 - http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4406.pdf

67

https://github.com/STEllAR-GROUP/hpx
http://stellar.cct.lsu.edu/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4505.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4406.pdf

