Parallelizing the C++
Standard Template Library

Grant Mercer(gmercer015@gmail.com)
Daniel Bourgeois(dcbourg@gamail.com)
CppCon2015

Q STE||ARGROUP

mailto:gmercer015@gmail.com
mailto:dbourg@gmail.com

About Grant Mercer

Third year student at UNLV, computer science major

Recent work with the STE||AR research group

Primarily worked on C++ Standards Proposal N4505 inside of HPX
N4505 is a technical specification for extensions for parallelism

About Daniel Bourgeois

e Fourth year student at LSU, mathematics major

e Currently works with the STE||AR Research group

e Primarily worked on C++ Standards proposals N4505 and N4406 inside of
HPX

Background Information

e STEJ||AR is about shaping a scalable future with a new approach to parallel
computation

e Most notable ongoing project by STE||AR is HPX: A general purpose C++
runtime system for parallel and distributed applications of any scale

HPX

e HPX enables programmers to write fully asynchronous code using hundreds
of millions of threads

e First open source implementation of the ParallelX execution model
o Starvation
o Latencies
o Overhead
o Waiting

Focus Points

Reasons we should parallelize the STL
Features these algorithms should offer
Our experience at HPX

Benchmarking

Future work

So Why Parallelize the STL?

e Multiple cores are here to stay, parallel programming is becoming more and
more important.

o Amping up processor speed only gives so much. Memory lag, RC delay and Power are all
reasons why increasing the processor speed is not the answer

e Scalable performance gains, user flexibility

e Build widespread existing practice for parallelism in the C++ standard
algorithms library

Moores law will eventually slow down

10,000,000,000
Sandy Bridge
.0 e % |
1,000,000,000 Gem h:a::.lem'o vy
S
o % i
8,0
100,000,000 ..P Hum M
Pentium “ G5 hlaall
g
2 Pentium Il
5 10,000,000 Pentium MMX %'
b7 Pentium Pro..' 3
= Pentiumgy ® 604e
7} n| ..604
% 80486 601@ 603e
» 1,000,000 ol
= 68040
80386
80286 m ® W 68030
100,000 ® 68020
M 68000
8086@® @ 8088
8085
10,000 80§0 o
8038 =
® 6800
4004
1'000 I 1 1 I I
1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Year

107

Parallelism is growing!

106

105

104_

¢ Transistors (Thousands)
= Frequency (MHz)

4 Power (W)
* Cores

1975 1980 1985 1990 1995 2000

2005

2010

c'°$ frequency (MHz) 5.7 GHz !!
10,000 ~ N
°® 20 Se :
’_3..?..*-.’.-’] °
1000 - "*1“.’4' --- ‘FJ‘_. """"" o
,0°,§'*% ! eo8 ®.
. 293 ®
100 __1‘52?
. .
10 1 1 1 1 1 1 1 1 1 1 J

1992 1994 1996

1998 2000 2002 2004 2006 2008 2010 2012 2014

Standards Proposal N4505

e A technical specification for C++ extensions for parallelism, or implementation

details for a parallel STL

Not all algorithms can be parallelized (e.g. std::accumulate), so N4505
defines a list of algorithms to be reimplemented

10

Proposed Algorithms

adjacent_difference
copy

count_if

fill n

find_if

generate
inner_product
is_partitioned
max_element

mismatch
partial_sort

reduce

remove_if

replace_if
rotate_copy
set_intersection
stable_partition
transform_exclusive_scan
uninitialized_copy_n

unique_copy

adjacent_find
copy_if

equal

find
find_if_not

generate_n

inplace_merge

is_sorted

merge

move

partial_sort_copy

remove

replace

reverse

search
set_symmetric_difference
stable_sort
transform_inclusive_scan

uninitialized fill

all of

copy_n
exclusive_scan

find_end
for_each
includes
is_heap
is_sorted_until
min_element
none_of
partition
remove_copy
replace_copy
reverse_copy
search_n
set_union

swap_ranges

transform_reduce

any_of

count

fill
find_first_of
for_each_n
inclusive_scan
is_heap_until
lexicographical_compare
minmax_element
nth_element
partition_copy
remove_copy_if
replace_copy_if
rotate
set_difference
sort

transform

uninitialized_copy

uninitialized fill n unique

11

Aimed for acceptance into C++17

e Implementation at HPX takes advantage of C++11
e Compenents of TS will lie in std::parallel::experiemental::v1. Once

standardized, they are expected to be placed in std
e HPX implementation lies in hpx::parallel

12

e All algorithms will conform to their predecessors, no new requirements will be
placed on the functions

template< class ForwardItl, class ForwardIt2 >
ForwardItl search(ForwardItl first, ForwardItl last, ForwardIt2 s _first, ForwardIt2 s last);

template< class ForwardItl, class ForwardIt2, class BinaryPredicate >

ForwardItl search(ForwardItl first, ForwardItl last, ForwardIt2 s_first, ForwardIt2 s_last,
BinaryPredicate p);

13

Inside N4505: Execution Policies

e An object of an execution policy type indicates the kinds of parallelism
allowed in the execution of the algorithm and express the consequent
requirements on the element access functions

e Officially supports seq, par, par_vec

14

std::vector<int> v = ...

// standard sequential sort
std::sort(v.begin(), v.end());

using namespace hpx::parallel;

// explicitly sequential sort
sort(seq, v.begin(), v.end());

// permitting parallel execution
sort(par, v.begin(), v.end());

// permitting vectorization as well
sort(par_vec, v.begin(), v.end());

// sort with dynamically-selected execution
size_t threshold = ...
execution_policy exec = seq;
if (v.size() > threshold)
{
exec = par;

}

sort(exec, v.begin(), v.end());

15

e Par: Itis the caller’s responsibility to ensure correctness

e Data races and deadlocks are the caller’s job to prevent, the algorithm will
not do this for you

e Example of what not to do (data race)

using namespace hpx::parallel;

int a[] = {@,1};
std::vector<int> v;

for_each(par, std::begin(a), std::end(a), [&](int i) {
v.push_back(i*2+1);
1)

16

More about parallel execution policies

e Just because you type par, doesn’'t mean you’re guaranteed parallel
execution due to iterator requirements

e You are permitting the algorithm to execute in parallel, not forcing it

e For example, calling copy with input iterators and a par tag will execute
sequentially. Input iterators cannot be parallelized!

17

Exception reporting behavior

e If temporary resources are required and none are available, throws std::

bad alloc
e If the invocation of the element access function terminates with an uncaught

exception for par, seq: all uncaught exceptions will be contained in an
exception _list

18

Task execution policy for HPX

e The task policy was added by us at HPX to give users a choice of when to
join threads back into the main program. Returns and hpx::future of the result

// permitting parallel exeuction
auto f =
sort(par(task), v.begin(), v.end());

f.wait();

19

User Interaction with the Algorithms

Restrictions of execution

Runtime decision making

Where work is executed

Size of work to be executed

Abstractions usable for the parallel algorithms and elsewhere

// sort with dynamically-selected execution
size_t threshold = ...

execution policy exec = seq;

if (v.size() > threshold)

{
¥

for_each(exec, v.begin(), v.end());

exec = par;

20

Inside N4406: Parallel Algorithms Need Executors

e Letthe programmer specify where work is executed
e Attach to parallel algorithms

21

Extending On Execution Policies

The .on syntax to attach to parallel algorithms
Not all combinations of policies and executors should be allowed

// should compile, done in parallel
for_each(par.on(parallel _executor()), f, 1, &F)

// should compile, but not done in parallel
for_each(par.on(sequential executor()), f, 1, &F)

// This does not make sense thus should not compile!
for_each(seqg.on(parallel _executor()), f, 1, &F)

22

But how, N44067? The requirements to be met...

e Execution policies should accept an executor
e An executor should advertise restrictions
e uniform API for parallel algorithms

23

Executor Traits for N4406

e Can be called with objects that meet the requirements of an executor

e Executor_traits provides four main function calls
o async_execute - asynchronously calls a function once
o async_execute - asynchronously calls a function more than once
o execute - calls a function once
o execute - calls a function more than once

24

Executor Traits for N4406: Example

// Some Definitions

some_executor_type exec;
some_shape_type inputs;

auto f1
auto f2

[JO{ /*..compute..*/ return t_1; };
[J(T t a){ /*..compute..*/ return t_2; };

typedef executor traits<some_executor type> traits;

25

Executor Traits for N4406: Example

// Calls f1, returns a future containing the result of f1
future<T> myfutl = traits::async_execute(exec, f1l);

// Calls f2 for each of the inputs,
// returns a future indicating the completion of all of the calls
future<void> myfut2 = traits::async_execute(exec, f2, inputs);

// Calls f1, returns the result
T myvall = traits::execute(exec, f1);

// Calls f2 and returns once all calls are completed
traits::execute(exec, f2, inputs);

26

HPX and N4406: Yes and Not Quite

Yes
e algorithms can be extended with the .on syntax
e executor_traits provides a convenient, uniform launch mechanism
e easy to define an object meeting executor requirements
e work can be executed in bulk quantities

27

HPX and N4406: Yes and Not Quite

Not Quite
e \Want to minimize waiting

future<void> myfut = N4406 traits::async_execute(exec, f2, inputs);
// Has to wait for all functions to finish before my_next_function gets called

myfut2.then(my next function);

e The HPX solution

std::vector<future<T> > myfuts = HPX traits::async_execute(exec, f2, inputs);
// my_other_next_funcion can be called once each element in myfuts is ready
when_each(my_other_next_function, myfuts);

28

Speedup

20.00

18.00

16.00

14.00

6.00

4.00

2.00

0.00

Amdahl’s Law

/
7 //
/ Parallel Portion
- 50%
/ —75%
90%
—95%
/ |
/
A A
/’/
///
___—l‘
/
- ~N < [++] (] [+o] < ~N <
EEEEEERRRER

Number of Processors

65536

29

Executor Traits for HPX

template <typename Executor> // requires is_executor<Executor>
struct executor_traits

{
using Executor = executor_ type;

using execution category = /* category of Executor */;

template <typename T>
using future = /* future type of Executor or hpx::future<T> */;

// ... apply_execute, async_execute and execute implementation

s

30

Additional Traits

e executor_information_traits
o retrieve number of processing units
o testif pending closures exist

e timed executor traits

o inherits from executor_traits
o atand after functions

31

Parallel executor

struct parallel executor : executor_tag

{
explicit parallel executor(BOOST SCOPED _ENUM(launch) 1 = launch::async)
1 (1)
{}
template <typename F>
hpx: :future<typename hpx::util::result of<
typename hpx::util::decay<F>::type()
>:itype>
async_execute(F && f)
{
return hpx::async(l_, std::forward<F>(f));
}
private:
/¥ . . 0¥/
}s

32

Sequence of Execution

e Primer on work stealing, N3872 e()

e();

spawn f();

90) 9()

sync;

h();

for (int 1=0; i<n; ++1) |1()
spawn f (1)

Sync; v

Types of Executors in HPX

standard executors
o parallel, sequential
this thread executors
o static queue, static priority queue
thread pool executors, and thread pool os executors

o local queue, local priority queue
o static queue, static priority queue

service executors
o io pool, parcel pool, timer pool, main pool
distribution policy executor

34

Taking a Step Back

e Executors provide a mechanism for launching work
e Flexible decision making
e need a general mechanism for grain size control

35

Executor Parameters

e (grain size control
e passing information to the partitioner
e Similar to OpenMP Dynamic, Static, Guided

36

Extending with Execution Policies

e The .with syntax to extend parallel algorithms

auto par_auto = par.with(auto_chunk size()); // equivalent to par
auto par_static = par.with(static_chunk_size());
auto my policy = par.with(my_exec).on(my_chunk size);

auto my task policy = my policy(task);

37

The Concepts for Execution Policies

Property

Execution restrictions
Sequence of execution
Where execution happens

Grain size of work items

C++ Concept Name
execution policy
executor
executor

executor parameter

38

Initial Parallel Design: Partitioning

e All algorithms given by the proposal are passed a range, which must be
partitioned and executed in parallel.
e There are a couple different types of partitioners we implemented at HPX

39

foreach_partitioner

e The simplest of partitioners, splits a set of data into equal partitions and
invokes a passed function on each subset of the data.

e Mainly used in algorithms such as foreach, fillwhere each element is
independent and not part of any bigger picture

40

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

{1, 2, 3, 4} | {5, 6, 7, 8} | {9, 10, 11, 12}

t([1,2,3,4]) | t([5,6,7,8]) | f([9, 10, 11, 12])

41

for_each_n

template<typename ExPolicy, typename F>
static typename detail::algorithm_result<ExPolicy, Iter>::type
parallel(ExPolicy const& policy, Iter first, std::size t count, F && f)

{

if(count != 0)

{
return util::foreach n_partitioner<ExPolicy>::call(policy, first, count,
[f](Iter part begin, std::size_t part _size)
{
util::loop_n(part_begin, part size, [&f](Iter const& curr)
{
f(*curr);
})s
})s
}

return detail::algorithm result<ExPolicy, Iter>::get(std::move(first));

42

partitioner

e Similar to foreach, but the result of the invocation of the function on each
subset is stored in a vector and an additional function is invoked and passed
that vector.

e Useful in a majority of algorithms copy, find, search, efc...

43

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

- I

{1, 2, 3, 4} | {5, 6, 7, 8} | {9, 1o, 11, 12}

V=
{f([1, 2, 3, 4] , F([5, 6, 7, 8]) , f([9, 10, 11, 12])}

g(v) "

reduce

template <typename ExPolicy, typename FwdIter, typename T_, typename Reduce>

static typename detail::algorithm_result<ExPolicy, T>::type
parallel(ExPolicy, const& policy, FwdIter first, FwdIter last, T && init, Reduce && r)

{

// check if first == last, return initial value if true

return util::partitioner<ExPolicy, T>::call(policy,
first, std::distance(first, last),
[r](FwdIter part_begin, std::size_t part_size) -> T

{
T val = *part_begin;
return util::accumulate_n(++part_begin, --part_size,
std::move(val), r);
}s
hpx::util::unwrapped([init, r](std::vector<T> && results)
{
return util::accumulate_n(boost::begin(results),
boost::size(results), init, r);
1)

45

parallel vector dot product

e No intermediate function, forces us to use a tuple instead of a simple double
e Reduce requirements can not be worked around, a new function is needed

//...
//...

int xvalues[]
int yvalues[]

double result =
std::accumulate(
make zip_iterator(std::begin(xvalues), std::being(yvalues)),
make zip_ iteartor(std::end(xvalues), std::end(yvalues)),
0.0,
[](double result, reference it) {
return result + get<@>(it) + get<1>(it)

1)

46

parallel vector dot product

tuple<double, double> result =
hpx::parallel::reduce(hpx::parallel::par,
make_zip_ iterator(boost::begin(xvalues), boost::begin(yvalues)),
make zip_iterator(boost::end(xvalues), boost::end(yvalues)),
hpx::util::make_tuple(0.0, 0.0),
[](tuple<double, double> res, reference it) {
return hpx::util::make_tuple(
get<@>(res) + get<@>(it) * get<1>(it),
1.9);
})s

e N4505 is the newest revision to include transform _reduce, as proposed by
N4167
e \Without transform_reduce the solution is horribly hacky

47

transform_reduce

template <typename ExPolicy, typename FwdIter, typename T_, typename Reduce, //...
static typename detail::algorithm_result<ExPolicy, T>::type
parallel(ExPolicy const& policy, FwdIter first, FwdIter last, T_ && init, Reduce && r, Convert && conv)
{
typedef typename std::iterator_traits<FwdIter>::reference reference;
return util::partitioner<gExPolicy, T>::call(policy, first,
std::distance(first, last),
[r, conv](FwdIter part begin, std::size t part size) -> T

{
T val = conv(*part_begin);
return util::accumulate(++part_begin, --partsize, std::move(val),
[&r, &conv](T const& res, reference next)
{
return r(res, conv(next));
1)
s
hpx::util::unwrapped([init, r](std::vector<T> && results)
{
return util::accumulate_n(boost::begin(results),
boost::size(results) init, r);
1)

48

simplified dot product

int hpx_main()

{
std::vector<double> xvalues(10007);
std::vector<double> yvalues(10007);

using ...;

double result =
hpx::parallel::transform_reduce(hpx::parallel::par,
make_zip_iterator(boost::begin(xvalues), boost::begin(yvalues)),
make_zip_ iterator(boost::end(xvalues), boost::end(yvalues)),
0.0,
std::plus<double>(),
[](tuple<double, double> r)

{
}

return get<@>(r) * get<1>(r);
)s

hpx::cout << result << hpx::endl;
return hpx::finalize();

49

scan_partitioner

e The scan partitioner has 3 stepts
o Partition the data and invoke the first function
o Invoke a second function as soon as the current and left partition are ready
o Invoke a third function on the resultant vector of step 2

e Specific cases such as copy If, inclusive/excusive _scan

50

r

Vo

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

/ RN

{1, 2, 3, 4y | {5,6, 7,8 | {9, 1o, 11, 12}

| | |

= v, =
{f[1,2,3,4}] , {f[5,6,7,8]} , f[9,10,11,12]}

ST~

g(v,) g(v,)

\/
h(r)

51

copy _if

int 1st[] = {1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1};
int res[8];

hpx::parallel::copy_if(par, boost::begin(lst), boost::end(lst), boost::begin(res),
[1(int 1){ return i == 1; });

22 221

1111 1121
1111 11 1 1

e Not just as simple as copying what returns true, the resultant arrays need’s to
be squashed

52

copy _if

typedef util::scan partitioner(ExPolicy, Iter, std::size t> scan_partitioner _type;
return scan_partitioner_type::call(

)s

policy, hpx::util::make_zip iterator(first, flags.get()),
count, init,
[f](zip_iterator part _begin, std::size t part _size) -> std::size t

{
}s

hpx::until::unwrapped([](std::size t const& prev, std::size t const& curr)

{

// flag any elements to be copied

// determine distance to advance dest iter for each partition
return prev + curr;

})s

[=](std::vector<hpx::shared future<std::size t> > && r,
std::vector<std::size_t> const& chunk_sizes) mutable -> result_type

{
}

// copy element to dest in paralle;

53

Designing Parallel Algorithms

e Some algorithms are easy to implement, other ... not so much

e Start simple, work up the grape vine towards more difficult algorithms

e Concepts from simple algorithms can be brought into more difficult and
complex solutions

54

fill_n

e fill_n can be implemented is two lines using for_each_n

template <typename ExPolicy, typename T>
static typename detail::algorithm_result<ExPolicy, OutIter>::type
parallel(ExPolicy const& policy, OutIter first, std::size t count, T const& val)

{
typedef typename std::iterator_traits<OutIter>::value_type type;

return
for_each_n<OutIter>().call(
policy, boost::mpl::false (), first, count,
[val](type& v) {
v = val;

1)

55

Completed algorithms as of today

adjacent_difference

inner_product
= - '
max—element
mismateh
partial_sort

reduce

remove_if
replace—if
rotate—copy

5 .

stable_partition

adjacent_find
copy_if
equal
find
find—3ifnet
generate—n
inplace_merge
is—serted
merge

move
partial_sort_copy

remove

replace

set—symmetpic_difference

stable_sort

transform_exclusive_scan transform_inclusive_scan

initialized copy_ nitialized £ill

unique_copy

is_heap_until
lexicographical—compare
minmax—element

nth_element

partition_copy

56

void measure_parallel foreach(std::size t size)

{

}

std::vector<std::size_t> data_representation(size);
std::iota(boost::begin(data_representation),
boost::end(data_representation),
std::rand());

// create executor parameters object
hpx::parallel::static_chunk _size cs(chunk_size);

// invoke parallel for_each
hpx::parallel::for_each(hpx::parallel::par.with(cs),
boost::begin(data_representation),
boost::end(data_representation),
[1(std::size_t) {
worker_timed(delay);

1)

boost::uint64_t average out_parallel(std::size_t vector_size)

{

boost::uint64_t start = hpx::util::high_resolution_clock: :now();
// average out 100 executions to avoid varying results
for(auto i = @; i < test_count; i++)

measure_parallel foreach(vector_size);

return (hpx::util::high resolution_clock::now() - start) / test_count;

57

Benchmarking

e Comparing seq, par, task execution policies
e Task is special in that executions can be written to overlap
e User can wait to join execution after multiple have been sent off

58

Getting the most out of performance -

e The big question is whether these functions B Sequential

actually offer a gain in performance when
used.

e Grain size: amount of work executed per
thread.

e [n order to test this we look to simulate the
typical strong scaling graph: _/

Grain Size

59

Hardware Used

Name

Classification
Role

of Nodes
OEM
Syste:
System Model
IDM

Model

CPU(s) Frequency [GHz] “
#of cPus _ INNFINEN NI
#of Cores |INRCHNNN BRI -
Type | Registered |Unregistered | 772 |
IS ZECE ODR3 | DDR3 | DDR3
Main Memory | _Speed [MT/s] [IERCC NN LI B E
DIMMs

RUE 128 | 32 | 24 |

Controller Dell PERC LSl Intel 82801JI
' H710 SAS1068E ICH

Storage Bus
TS GGl 10000 | 7200 | 7200 |

[#of Disk Drives [N DRI D

[Storage (18] _ [INNEIN IR B E7

—— | #of Gigk ports_ [N IR A
Network I of QDR 1B ports (IENEEIN DI B
Max Load [W] ——

Execution time(s)

Sequential vs. Parallel

» 500 nanosecond delay per iteration

» Vector size of 10,000

Time

0.03
0.025
0.02
0.015
0.01

o : \c\i———_=/<
0

1 10 100 1000 10000
Grain Size

Magnitude of scaling

Scale

1 10 100 1000 10000

Grain Size

61

Sequential vs. Parallel

« 1000 nanosecond delay per iteration
« Vector size of 100,000

Time Scale

o
N

e

Execution time(s)
Magnitude of scaling

1 10 100 1000 10000 100000 1 10 100 1000 10000 100000

Grain Size Grain Size

62

Execution Time(s)

Parallel vs. Task

« 1000 nanosecond delay per iteration
« Vector size of 1,000,000

Time Scale

o) N
o I

o

14

1.4 o
£12

o

1.2 o
« 10

L @
S 8

0.8 E

=
6

0.6 E
0.4 4
0.2 2

o
o

1 10 100 1000 10000 1000001000000 1 10 100 1000 10000 1000001000000

Grain Size Grain Size

63

HPXCL: OpenCL backend

e Uses hpx::parallel::for each
o Grouping work-items into work packets

hpx::parallel::for_each(hpx::parallel::par,
nd_range iterator::begin(dim_x, dim_y, dim_z),
nd_range iterator::end(dim_x, dim_y, dim_z),
[&ta](nd_pos const& gid)

{
workgroup_thread(&ta, gid);
})s

64

Work-Items:
35 —o— 1 1S

= 2 US
30/ |« 4 S

—— 8 us
25 16 us

Speedup vs sequential
N
o

16 32 64 128 256 512 1024
Grain Size

65

Future Work

Not all of the algorithms are implemented
Perform more benchmarking on different algorithms
Grain size control and non-partitioned algorithms

Experiment with custom policies
o if_gpu_then.on(numa).with(chunker)

introspection tools (using performance counters to make adjustments)
minimization executor (power, idle_rate, other performance counter stuff)

66

Additional Resources

HPX - https://github.com/STEIAR-GROUP/hpx

STE||AR - http://stellar.cct.Isu.edu/

N4505 - http://www.open-std.org/jtc1/sc22/wag21/docs/papers/2015/n4505.pdf
N4406 - http://www.open-std.org/jtc1/sc22/wa21/docs/papers/2015/n4406.pdf

67

https://github.com/STEllAR-GROUP/hpx
http://stellar.cct.lsu.edu/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4505.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4406.pdf

