
Bryce	
  Lelbach	
  (blelbach@cct.lsu.edu),	
  Hartmut	
  Kaiser	
  (Louisiana	
  State	
  University)	
  
Hans	
  Johansen	
  (LBNL,	
  CRD,	
  hjohansen@lbl.gov)	
  

Performance	
  Modeling	
  of	
  a	
  Dependency-­‐Driven	
  Mini-­‐App	
  for	
  Climate	
  

Complex	
  science	
  applicaGons	
  oHen	
  have	
  very	
  complex	
  structures	
  that	
  weave	
  together	
  
numerical	
  and	
  computaGonal	
  soHware	
  with	
  mulG-­‐scale	
  physics	
  components.	
  

As	
  a	
  moGvaGng	
  example,	
  LBNL	
  is	
  developing	
  an	
  adapGve	
  atmospheric	
  dynamical	
  core	
  
(“dycore”)	
  in	
  the	
  Chombo	
  framework	
  (hPp://chombo.lbl.gov)	
  for	
  high-­‐accuracy	
  global	
  
climate	
  simulaGons.	
  	
  

Chombo	
  is	
  a	
  high-­‐order	
  massively	
  scalable	
  finite-­‐
volume	
  framework	
  for	
  robust	
  and	
  accurate	
  soluGon	
  
of	
  parGal	
  differenGal	
  equaGons	
  in	
  arbitrary	
  
geometry.	
  	
  Chombo	
  also	
  provides	
  a	
  block-­‐adapGve	
  
adapGve	
  mesh	
  refinement	
  (AMR)	
  capability	
  to	
  allow	
  
feature	
  isolaGon	
  and	
  tracking.	
  For	
  Climate	
  
applicaGons,	
  this	
  could	
  include	
  weather	
  predicGon	
  

Fig	
  2:	
  Tropical	
  cyclones	
  Lee	
  and	
  KaGa,	
  6	
  
September	
  2011,	
  with	
  tracking	
  trajectories.	
  

Fig	
  3:	
  Lat-­‐lon	
  plot	
  (2D	
  projecGon)	
  of	
  a	
  
shallow	
  water	
  equaGon	
  soluGon	
  with	
  
dynamic	
  AMR.	
  Grid	
  lines	
  show	
  block-­‐
structured	
  boxes,	
  3	
  refinement	
  levels.	
  

AdapGve	
  mesh	
  refinement	
  
has	
  been	
  successfully	
  
employed	
  on	
  a	
  suite	
  of	
  2D	
  
and	
  3D	
  climate-­‐related	
  test	
  
problems	
  to	
  verify	
  accuracy	
  
and	
  robustness	
  of	
  the	
  
algorithm.	
  However,	
  the	
  
complexity	
  of	
  the	
  algorithm	
  
makes	
  it	
  difficult	
  to	
  create	
  an	
  
idealized	
  model	
  for	
  parallel	
  
scaling.	
  Instead,	
  we	
  express	
  
the	
  model	
  as	
  dependencies	
  in	
  
a	
  representaGve	
  mini-­‐app.	
  

Results for Intel Ivybridge Motivation HPX: Imperative vs. Functional 

Research Challenge 

For More Information 

With	
  support	
  from	
  	
  
Intel	
  Parallel	
  CompuGng	
  
Center	
  @	
  NERSC,	
  	
  a	
  	
  
DOE	
  Science	
  Facility	
  

Climate Mini-App Description Future Research Directions 

Speedup on many-core Xeon Phi  

Fig	
  5:	
  Difference	
  stencils	
  include	
  “ghost	
  cell”	
  
regions	
  on	
  neighboring	
  boxes.	
  HPX	
  decomposes	
  
dependencies	
  into	
  swarms	
  of	
  tasks	
  (dependencies,	
  
computaGon,	
  and	
  asynchronous	
  communicaGon)	
  

HPX	
  is	
  a	
  parallel	
  programming	
  framework	
  designed	
  to	
  facilitate	
  asynchronous	
  (funcGonal)	
  
programming	
  on	
  many-­‐core	
  and	
  tradiGonal	
  architectures.	
  HPX	
  is	
  an	
  alternaGve	
  to	
  MPI+OpenMP	
  
(imperaGve),	
  and	
  provides	
  an	
  implementaGon	
  of	
  ISO	
  C++	
  concurrency	
  in	
  the	
  C++11	
  standard.	
  	
  
	
  
HPX	
  uses	
  dependencies	
  (“futures”)	
  for	
  expressing	
  distributed	
  communicaGon	
  between	
  and	
  
within	
  nodes,	
  using	
  millions	
  of	
  lightweight	
  tasks	
  per	
  hardware	
  core.	
  On	
  most	
  architectures,	
  HPX	
  
can	
  schedule	
  tasks	
  with	
  sub-­‐microsecond	
  overheads,	
  enabling	
  fine-­‐grained	
  parallelism.	
  

HPX’s	
  programming	
  model:	
  
•  “Future”:	
  proxy	
  for	
  a	
  dependency	
  that	
  

is	
  needed	
  by	
  another	
  task.	
  
•  Composable:	
  futures	
  can	
  express	
  

control	
  flows	
  and	
  work	
  queues	
  
through	
  their	
  dependencies.	
  

•  Dynamic	
  Load	
  Balancing:	
  Work	
  is	
  
scheduled	
  as	
  dependencies	
  complete,	
  
with	
  a	
  work-­‐stealing	
  thread	
  scheduler.	
  

•  Unified	
  APIs:	
  Remote	
  communicaGon	
  
and	
  local	
  in-­‐memory	
  work	
  use	
  same	
  
object-­‐oriented	
  API	
  for	
  dependencies.	
  

The	
  Climate	
  mini-­‐app	
  is	
  a	
  parameter-­‐driven	
  applicaGon	
  that	
  serves	
  as	
  a	
  proxy	
  for	
  computaGon	
  
and	
  communicaGon	
  paPerns	
  in	
  the	
  AMR	
  Climate	
  code:	
  
•  Uses	
  explicit	
  and	
  verGcal	
  implicit	
  block-­‐structured	
  discreGzaGons	
  
•  Explicit	
  operator	
  is	
  compute	
  or	
  memory-­‐bound	
  depending	
  on	
  its	
  ghost	
  cells,	
  stencil	
  footprint	
  
•  VerGcal	
  implicit	
  operator	
  is	
  compute-­‐bound	
  by	
  1D	
  non-­‐linear	
  solves,	
  no	
  ghost	
  cells	
  
•  ARK4	
  Gme	
  integraGon	
  expresses	
  complex	
  implicit-­‐explicit	
  coupling	
  dependencies	
  
•  AMR	
  Gme	
  refinement	
  creates	
  another	
  layer	
  of	
  dependencies	
  

Fig	
  1:	
  Global	
  grid	
  with	
  
block-­‐structured	
  AMR.	
  

64#

256#

1024#

4096#

16384#

0#

10#

20#

30#

40#

50#

60#

0# 5# 10# 15# 20# 25# 30# 35#

#"
of
"B
ox
es
"

W
al
l,
m
e"
[s
]"

Max"Box"Size"

Wall,me"vs"Max"Box"Size"
Intel"Xeon"Phi"SE10P,"240"cores"

Wall.me#

##of#Boxes#

Fig	
  6:	
  This	
  graph	
  
shows	
  the	
  tradeoff	
  
between	
  more,	
  
smaller	
  boxes	
  (less	
  
work	
  per	
  box,	
  more	
  
communicaGon)	
  and	
  
efficiency	
  (larger	
  
boxes,	
  more	
  work	
  
per	
  communicaGon)	
  

0%#

5%#

10%#

15%#

20%#

25%#

30%#

35%#

40%#

Ver,cal#
Implicit#Solve#

Horizontal#
Explicit#
Operator#

Horizontal#
Refluxing#

ARK4#
Overheads#

Ghost#Zone#
Exchanges#

Array#Copies# Parallel#
Overheads#

%
"o
f"W

al
l(
m
e"

Breakdown"of"Wall(me"
Intel"Ivybridge"E5:2670"v2,"10"cores"

57.6#Boxes/Core#(Excessive#Synchroniza,on)#

7.2#Boxes/Core#

0.9#Boxes/Core#(Insufficient#Parallelism)#

Fig	
  8:	
  Even	
  A	
  single	
  parameter,	
  such	
  as	
  the	
  #	
  of	
  boxes	
  per	
  core,	
  can	
  affect	
  scaling	
  
dramaGcally.	
  This	
  shows	
  the	
  balance	
  between	
  parallel	
  overheads	
  (~5%	
  indicates	
  good	
  
parallelism	
  for	
  the	
  middle	
  case)	
  and	
  useful	
  work	
  (numerical	
  calculaGons).	
  

Take-­‐away:	
  Unlike	
  tradiGonal	
  processors,	
  Xeon	
  Phi	
  is	
  
an	
  in-­‐order	
  execuGon,	
  many-­‐core	
  architecture.	
  Each	
  
Xeon	
  Phi	
  core	
  has	
  4	
  hw	
  threads	
  (240	
  total),	
  and	
  every	
  
cycle	
  the	
  processor	
  context	
  switches	
  to	
  a	
  new	
  thread	
  
(barrel	
  threading).	
  Each	
  Phi	
  core	
  is	
  slower	
  but	
  
enables	
  more	
  hardware	
  thread-­‐parallelism	
  –	
  if	
  an	
  
applicaGon	
  can	
  take	
  advantage	
  of	
  it.	
  The	
  ring-­‐bus	
  
topology	
  and	
  a	
  distributed	
  hash	
  table	
  manage	
  global	
  
caches,	
  so	
  core-­‐cache	
  locality	
  is	
  complex	
  –	
  creaGng	
  
programming	
  complexity.	
  But	
  higher	
  memory	
  
bandwidth	
  and	
  SIMD	
  vector	
  instrucGons	
  improve	
  
performance	
  (e.g.	
  Intel	
  MKL	
  for	
  LAPACK).	
  

Future	
  research	
  topics	
  will	
  focus	
  on	
  predicGve	
  applicaGon	
  performance	
  on	
  Xeon	
  Phi:	
  
•  Include	
  space-­‐Gme	
  AMR	
  dependencies,	
  and	
  higher-­‐order	
  FLOP-­‐intensive	
  stencils	
  
•  Model	
  different	
  domain	
  decomposiGon	
  strategies	
  (verGcal,	
  polyhedral,	
  etc.)	
  
•  Evolve	
  to	
  representaGve	
  kernels	
  for	
  the	
  full	
  Climate	
  app	
  performance	
  behavior,	
  

including	
  calls	
  to	
  complex	
  “physics”	
  rouGnes	
  
•  Compare	
  flat	
  MPI,	
  MPI+OpenMP,	
  and	
  the	
  HPX	
  version	
  on	
  Xeon	
  Phi	
  
•  Use	
  HPX’s	
  built-­‐in	
  performance	
  monitoring	
  to	
  opGmize	
  performance	
  for	
  Xeon	
  Phi	
  

ScienGfic	
  applicaGons	
  include:	
  
	
  

•  Greater	
  resoluGon	
  of	
  dynamic	
  features	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (squall	
  lines,	
  atmospheric	
  rivers)	
  
•  Regional	
  weather	
  phenomena	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (tropical	
  cyclones,	
  coastal	
  climate)	
  
•  Grid	
  refinement	
  studies	
  for	
  new	
  physics	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (cloud	
  parameterizaGons)	
  
•  EvaluaGon	
  of	
  Gme	
  discreGzaGon	
  errors	
  from	
  	
  
1D	
  operator	
  splirng	
  (“column	
  physics”)	
  

RK#stage#1#=##

+me#n#

stage#2#

stage#3#

stage#4#

stage#5#

stage#6#

+me#n+1#

Explicit#

Implicit#

Fig	
  4:	
  Space	
  and	
  Gme	
  
refinement	
  with	
  higher-­‐order	
  
ARK4	
  ImEx	
  integrator	
  creates	
  
complex	
  communicaGon	
  and	
  
computaGon	
  dependencies.	
  

exchange(
ghost(cells(

calculate(
fluxes(

exchange(
fluxes(

calculate(
operator(

…	
  …	
   xj-­‐2	
   xj-­‐1	
   xj	
   xj+2	
  xj+1	
  ti	
  

…	
   …	
  xj	
  ti+1	
  

…	
  ti+2	
  

Box	
  1	
   Box	
  2	
  

!me$
step$

t$

level$

Level$0$
(domain)$

!me$$
n+1$

!me$$
n$

(f!c)$

(c!f)$

Level$1$

Level$2$

0"

60"

120"

180"

240"

0" 60" 120" 180" 240"

Sp
ee
du

p&

HW&Threads&

Speedup&vs&HW&Threads&
Intel&Xeon&Phi&SE10P,&240&max&

Measured"

Theore2cal"

Fig	
  7:	
  The	
  HPX	
  task	
  
scheduler	
  has	
  very	
  low,	
  
stable	
  overheads.	
  Using	
  
asynchronous	
  data	
  
communicaGon	
  and	
  
Intel’s	
  MKL,	
  we	
  achieve	
  
72%	
  of	
  theoreGcal	
  
speedup	
  on	
  Xeon	
  Phi’s	
  
240	
  hardware	
  threads.	
  	
  

Contact	
  Bryce	
  or	
  Hans	
  via	
  email,	
  	
  
or	
  follow	
  this	
  QR	
  code	
  for	
  more:	
  


