
HPX
A GEN ERAL PURPOSE C ++ RUN TIM E SY STEM FOR PARALLEL AN D
D ISTRIB UTED APPLIC ATION S OF AN Y SC ALE

HARTM UT K AISER (HK AISER@C C T.LSU.ED U)

HPX on the Xeon Phi

February 6th, 2014 FUTURIZATION AND IT'S USES 2

HPX on the Xeon Phi

February 6th, 2014 FUTURIZATION AND IT'S USES 3

Some Simple Examples
HELLO WORLD ANYONE?

February 6th, 2014 FUTURIZATION AND IT'S USES 4

Hello HPX World

#include <hpx/hpx.hpp>

#include <hpx/iostream.hpp>

int hpx_main(int argc, char* argv[])

{

 hpx::cout << "Hello HPX World!\n";

 return hpx::finalize();

}

int main(int argc, char* argv[])

{

 return hpx::init(argc, argv);

}

5 February 6th, 2014 FUTURIZATION AND IT'S USES

Hello HPX World

void say_hello()

{

 hpx::cout << "Hello HPX World from locality: " <<

 << hpx::get_locality_id() << "!\n";

}

HPX_PLAIN_ACTION(say_hello); // defines say_hello_action

int hpx_main()

{

 say_hello_action sayit;

 for (auto loc: hpx::find_all_localities())

 hpx::apply(sayit, loc);

 return hpx::finalize();

}

6 February 6th, 2014 FUTURIZATION AND IT'S USES

Hello HPX World

int hpx_main()

{

 std::vector<hpx::future<void> > ops;

 say_hello_action sayit;

 for (auto loc: hpx::find_all_localities())

 ops.push_back(hpx::async(sayit, loc));

 hpx::wait_all(ops);

 return hpx::finalize();

}

7 February 6th, 2014 FUTURIZATION AND IT'S USES

Calculating Fibonacci
FUTURIZATION OF RECURSIVE ALGORITHMS

February 6th, 2014 FUTURIZATION AND IT'S USES 8

Stupidest Way to
Calculate Fibonacci Numbers

 Synchronous way:

// watch out: O(2n)

int fibonacci_serial(int n)

{

 if (n < 2) return n;

 return fibonacci_serial(n-1) + fibonacci_serial(n-2);

}

cout << fibonacci_serial(10) << endl; // will print: 55

February 6th, 2014 FUTURIZATION AND IT'S USES 9

Stupidest Way to
Calculate Fibonacci Numbers

February 6th, 2014 FUTURIZATION AND IT'S USES 10

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

10,000,000,000

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

N
u

m
b

e
r

o
f

C
a

lls
 to

 F
ib

(x
)

T
im

e
 [

s]

Fibonacci Number

Serial Calculation of Fibonacci Numbers

Stupidest Way to
Calculate Fibonacci Numbers

 Computational complexity is O(2n) – alright, however

 This algorithm is representative for a whole class of applications
◦ Tree based recursive data structures

◦ Adaptive Mesh Refinement – important method for wide range of physics simulations

◦ Game theory

◦ Graph based algorithms
◦ Breadth First Search

 Characterized by very tightly coupled data dependencies between calculations
◦ But fork/join semantics make it simple to reason about parallelization

 Let’s spawn a new thread for every other sub tree on each recursion level

February 6th, 2014 FUTURIZATION AND IT'S USES 11

Let’s Parallelize It – Adding Real
Asynchrony

 Calculate Fibonacci numbers in parallel

uint64_t fibonacci(uint64_t n)
{
 // if we know the answer, we return the value
 if (n < 2) return n;

 // asynchronously calculate one of the sub-terms
 future<uint64_t> f = async(launch::async, &fibonacci, n-2);

 // synchronously calculate the other sub-term
 uint64_t r = fibonacci(n-1);

 // wait for the future and calculate the result
 return f.get() + r;
}

February 3rd, 2013 FUTURIZATION AND IT'S USES 12

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

0 5 10 15 20 25 30

Ti
m

e
[s

]

Fibonacci Number

Fibonacci (1st Parallel Version)

1 Core

2 Cores

4 Cores

8 Cores

12 Cores

16 Cores

20 Cores

24 Cores

Serial

std::future

Let’s Parallelize It – Adding Real
Asynchrony

February 3rd, 2013 FUTURIZATION AND IT'S USES 13

Let’s Parallelize It – Adding Real
Asynchrony

February 3rd, 2013 FUTURIZATION AND IT'S USES 14

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25

Sp
ee

du
p

Number of Cores

Fibonacci - Scaling (1st Parallel Version)

Fib(2)

Fib(4)

Fib(8)

Fib(12)

Fib(16)

Fib(20)

Fib(24)

Fib(28)

Let’s Parallelize It –Adding Real
Asynchrony

 What’s wrong? While it does scale, it is still 100 times slower than the serial execution

 Creates a new future for each invocation of fibonacci() (spawns an HPX thread)
◦ Millions of threads with minimal work each

◦ Overheads of thread management (creation, scheduling, execution, deletion) are much larger than the
amount of useful work
◦ Future overheads: ~1µs (Thread overheads: ~400ns)

◦ Useful work: ~50ns

 Let’s introduce the notion of granularity of work (grain size of work)
◦ The amount of work executed in one thread

February 3rd, 2013 FUTURIZATION AND IT'S USES 15

Let’s Parallelize It –
Introducing Control of Grain Size

February 3rd, 2013 FUTURIZATION AND IT'S USES 16

 Parallel calculation, switching to serial execution below given threshold

uint64_t fibonacci(uint64_t n)
{
 if (n < 2) return n;
 if (n < threshold) return fibonacci_serial(n);

 // asynchronously calculate one of the sub-terms
 future<uint64_t> f = async(launch::async, &fibonacci, n-2);

 // synchronously calculate the other sub-term
 uint64_t r = fibonacci(n-1);

 // wait for the future and calculate the result
 return f.get() + r;
}

Let’s Parallelize It –
Introducing Control of Grain Size

February 3rd, 2013 FUTURIZATION AND IT'S USES 17

0.1

1

10

100

0 10 20 30 40 50

Ti
m

e
[s

]

Serial Threshold

Fibonacci(40), 12 Cores

Serial

Parallelized

Grain Size Control - The New Dimension
 Parallelizing code introduces Overheads (SLOW)

 Overheads are caused by code which
◦ Is executed in the parallel version only

◦ Is on the critical path (we can’t ‘hide’ it behind useful work)

◦ Is required for managing the parallel execution
◦ i.e. task queues, synchronization, data exchange

◦ NUMA and core affinities

 Controlling not only the amount of resources used but also the granularity of work is an
important factor

 Controlling the grain size of work allows finding the sweet-spot between too much overheads
and too little parallelism

February 3rd, 2013 FUTURIZATION AND IT'S USES 18

Futurization
 Special technique allowing to automatically transform code

◦ Delay direct execution in order to avoid synchronization

◦ Turns ‘straight’ code into ‘futurized’ code

◦ Code no longer calculates results, but generates an execution tree representing the original
algorithm

◦ If the tree is executed it produces the same result as the original code

◦ The execution of the tree is performed with maximum speed, depending only on the data
dependencies of the original code

◦ Simple transformation rules:

February 3rd, 2013 FUTURIZATION AND IT'S USES 19

Straight Code Futurized Code

T func() {…} future<T> func() {…}

rvalue: n make_ready_future(n)

T n = func(); future<T> n = func();

future<T> n = async(&func, …); future<future<T> > n = async(&func, …);

Let’s Parallelize It – Apply Futurization

February 3rd, 2013 FUTURIZATION AND IT'S USES 20

future< >

 make_ready_future()
 make_ready_future()

 future< >
 future< >

 dataflow(
 [](future<uint64_t> f1, future<uint64_t> f2) {
 return f1.get() + f2.get();
 },
 ,);

 Parallel way, futurize algorithm to remove suspension points

 uint64_t fibonacci(uint64_t n)
{
 if (n < 2) return n ;
 if (n < threshold) return fibonacci_serial(n) ;

 future<uint64_t> f = async(launch::async, &fibonacci, n-2);
 uint64_t r = fibonacci(n-1);

 return

 f.get() r

}

Let’s Parallelize It – Unwrap Inner Futures

February 3rd, 2013 FUTURIZATION AND IT'S USES 21

future<uint64_t> fibonacci(uint64_t n)
{
 if (n < 2) return make_ready_future(n);
 if (n < threshold) return make_ready_future(fibonacci_serial(n));

 future<uint64_t> f = async(launch::async, &fibonacci, n-2).unwrap();
 future<uint64_t> r = fibonacci(n-1);

 return dataflow(
 [](future<uint64_t> f1, future<uint64_t> f2) {
 return f1.get() + f2.get();
 },
 f, r);
 }

Let’s Parallelize It – Unwrap Argument
Futures

February 3rd, 2013 FUTURIZATION AND IT'S USES 22

Guess what? – This is 10% faster than straight version!

future<uint64_t> fibonacci(uint64_t n)
{
 if (n < 2) return make_ready_future(n);
 if (n < threshold) return make_ready_future(fibonacci_serial(n));

 future<uint64_t> f = async(launch::async, &fibonacci, n-2);
 future<uint64_t> r = fibonacci(n-1);

 return dataflow(
 unwrapped([](uint64_t r1, uint64_t r2) {
 return r1 + r2;
 }),
 f, r);
 }

So What’s the Deal?
 Too much parallelism is as bad as is too little

◦ Sweet spot is determined by the Four Horsemen, mainly by contention

 Granularity control is crucial
◦ Optimal grain size depends very little on number of used resources

◦ Optimal grain size is determined by the Four Horsemen, mainly by overheads, starvation, and latencies

 Even problems with (very) strong data dependencies can benefit from parallelization

 Doing more is not always bad
◦ While we added more overheads by futurizing the code, we still gained performance

◦ This is a result of the complex interplay of starvation, contention and overheads in modern hardware

 Avoid explicit suspension as much as possible, prefer continuation style execution flow
◦ Dataflow style programming is key to managing asynchrony

 February 3rd, 2013 FUTURIZATION AND IT'S USES 23

