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Some Simple Examples

HELLO WORLD ANYONE?




Hello HPX World

#include <hpx/hpx.hpp>
#include <hpx/iostream.hpp>

int hpx_main(int argc, char* argv[])

{ hpx::cout << "Hello HPX World!\n";
return hpx::finalize();

}

int main(int argc, char* argv[])

{
return hpx::init(argc, argv);

}
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Hello HPX World

void say hello()

{
hpx::cout << "Hello HPX World from locality: " <<

<< hpx::get_locality id() << "!\n";
}
HPX_PLAIN_ACTION(say hello); // defines say hello action

int hpx_main()

{
say _hello action sayit;
for (auto loc: hpx::find all localities())
hpx::apply(sayit, loc);
return hpx::finalize();
}
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Hello HPX World

int hpx_main()

{

std: :vector<hpx: :future<void> > ops;

say hello action sayit;

for (auto loc: hpx::find _all localities())
ops.push_back(hpx: :async(sayit, loc));

hpx: :wait_all(ops);

return hpx::finalize();
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Calculating Fibonacci

FUTURIZATION OF RECURSIVE ALGORITHMS




Stupidest Way to
Calculate Fibonacci Numbers

Synchronous way:

// watch out: 0(2")
int fibonacci serial(int n)

{

if (n < 2) return n;
return fibonacci_serial(n-1) + fibonacci_serial(n-2);

}

cout << fibonacci serial(10) << endl; // will print: 55
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Stupidest Way to
Calculate Fibonacci Numbers
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Stupidest Way to
Calculate Fibonacci Numbers

Computational complexity is O(2") — alright, however

This algorithm is representative for a whole class of applications
> Tree based recursive data structures

o Adaptive Mesh Refinement — important method for wide range of physics simulations

°  Game theory
° Graphbased algorithms
> Breadth First Search

Characterized by very tightly coupled data dependencies between calculations
o But fork/join semantics make it simple to reason about parallelization

Let’s spawn a new thread for every other sub tree on each recursion level
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Let’s Parallelize It — Adding Real
Asynchrony

Calculate Fibonacci numbers in parallel

uinté4_t fibonacci(uint64 t n)

{
// if we know the answer, we return the value
if (n < 2) return n;
// asynchronously calculate one of the sub-terms
future<uinte4_t> f = async(launch::async, &fibonacci, n-2);
// synchronously calculate the other sub-term
uinté4 t r = fibonacci(n-1);
// wait for the future and calculate the result
return f.get() + r;

}
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Let’s Parallelize It — Adding Real
Asynchrony
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Let’s Parallelize It — Adding Real
Asynchrony
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Let’s Parallelize It —Adding Real
Asynchrony

What’s wrong? While it does scale, it is still 100 times slower than the serial execution

Creates a new future for each invocation of fibonacci() (spawns an HPX thread)
o Millionsof threads with minimal work each

o Overheads of thread management (creation, scheduling, execution, deletion) are much larger than the
amount of useful work

o Futureoverheads: ~1us (Thread overheads: ~400ns)
o Usefulwork: ~50ns

Let’s introduce the notion of granularity of work (grain size of work)
o The amount of work executed in one thread
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et’s Parallelize It —
ntroducing Control of Grain Size

Parallel calculation, switching to serial execution below given threshold

uintéd4_t fibonacci(uint64 t n)

if (n < 2) return n;
if (n < threshold) return fibonacci_serial(n);

// asynchronously calculate one of the sub-terms
future<uint64 t> f = async(launch::async, &fibonacci, n-2);

// synchronously calculate the other sub-term
uinté4 t r = fibonacci(n-1);

// wait for the future and calculate the result
return f.get() + r;
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Grain Size Control - The New Dimension

Parallelizing code introduces Overheads (SLOW)

Overheads are caused by code which
° |s executed in the parallel version only
° |s on the critical path (we can’t ‘hide’ it behind useful work)
° |s required for managing the parallel execution

° j.e. task queues, synchronization, data exchange
> NUMA and core affinities

Controlling not only the amount of resources used but also the granularity of work is an
important factor

Controlling the grain size of work allows finding the sweet-spot between too much overheads
and too little parallelism
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Futurization

Special technique allowing to automatically transform code
o Delay direct execution in order to avoid synchronization
o Turns ‘straight’ code into ‘futurized’ code

o Code no longer calculates results, but generates an execution tree representing the original
algorithm

° |f the tree is executed it produces the same result as the original code

> The execution of the tree is performed with maximum speed, depending only on the data
dependencies of the original code

o Simple transformation rules:

Straight Code Futurized Code

T func() {..} future<T> func() {..}
rvalue: n make_ready_ future(n)
T n = func(); future<T> n = func();

future<T> n = async(&func, ..); future<future<T> > n = async(&func, ..);
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Let’s Parallelize 1t — Apply Futurization

Parallel way, futurize algorithm to remove suspension points

future<uint64_t> fibonacci(uint64_t n)
{
if (n < 2) return make_ready_future(n);
if (n < threshold) return make_ready future(fibonacci serial(n));

future<future<uint64 _t>> f = async(launch::async, &fibonacci, n-2);
future<uint64 t> r = fibonacci(n-1);

return dataflow(
[ ](future<uint64 t> f1, future<uinted t> f2) {
return fl.get() + f2.get();

}s
F°get() s )3
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Let’s Parallelize It — Unwrap Inner Futures

future<uint64 t> fibonacci(uint64 t n)

{

if (n < 2) return make ready future(n);
if (n < threshold) return make ready future(fibonacci serial(n));

async(launch::async, &fibonacci, n-2).unwrap();
fibonacci(n-1);

future<uint64d_t> f
future<uinted4 t> r

return dataflow(
[ ](future<uint64_t> fl1l, future<uint6d_t> f2) {

return fl.get() + f2.get();
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_et’s Parallelize It — Unwrap Argument
-utures

future<uint64_t> fibonacci(uint64_t n)

{

if (n < 2) return make_ready_ future(n);
if (n < threshold) return make ready future(fibonacci_serial(n));

async(launch::async, &fibonacci, n-2);
fibonacci(n-1);

future<uinted t> f
future<uint64 _t> r

return dataflow(
unwrapped([](uint64 t r1, uint6d4_t r2) {
return rl + r2;
})s

Ty P2

Guess what? —This is 10% faster than straight version!
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So What'’s the Deal?

Too much parallelism is as bad as is too little
> Sweet spot is determined by the Four Horsemen, mainly by contention

Granularity control is crucial
o Optimal grain size depends very little on number of used resources

o Optimal grain size is determined by the Four Horsemen, mainly by overheads, starvation, and latencies
Even problems with (very) strong data dependencies can benefit from parallelization

Doing more is not always bad
° While we added more overheads by futurizing the code, we still gained performance

° Thisis a result of the complexinterplay of starvation, contentionand overheadsin modern hardware

Avoid explicit suspension as much as possible, prefer continuation style execution flow
o Dataflowstyle programmingis key to managing asynchrony
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