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Some Simple Examples 
HELLO WORLD ANYONE?  
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Hello HPX World 

 

 

#include <hpx/hpx.hpp> 

#include <hpx/iostream.hpp> 

 

int hpx_main(int argc, char* argv[]) 

{ 

    hpx::cout << "Hello HPX World!\n"; 

    return hpx::finalize(); 

} 

 

int main(int argc, char* argv[]) 

{ 

    return hpx::init(argc, argv); 

} 
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Hello HPX World 
 

 

void say_hello() 

{ 

    hpx::cout << "Hello HPX World from locality: " <<  

              << hpx::get_locality_id() << "!\n"; 

} 

HPX_PLAIN_ACTION(say_hello);   // defines say_hello_action 

 

int hpx_main() 

{ 

    say_hello_action sayit; 

    for (auto loc: hpx::find_all_localities())  

        hpx::apply(sayit, loc);  

    return hpx::finalize(); 

} 
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Hello HPX World 

 

int hpx_main() 

{ 

 std::vector<hpx::future<void> > ops; 

 say_hello_action sayit; 

 

 for (auto loc: hpx::find_all_localities())  

     ops.push_back(hpx::async(sayit, loc)); 

 

 hpx::wait_all(ops); 

 return hpx::finalize(); 

} 
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Calculating Fibonacci 
FUTURIZATION OF RECURSIVE ALGORITHMS 

February 6th, 2014 FUTURIZATION AND IT'S USES 8 



Stupidest Way to  
Calculate Fibonacci Numbers 

 Synchronous way: 

  

 

// watch out: O(2n) 

int fibonacci_serial(int n) 

{ 

    if (n < 2) return n; 

    return fibonacci_serial(n-1) + fibonacci_serial(n-2); 

} 

 

cout << fibonacci_serial(10) << endl;    // will print: 55  
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Stupidest Way to  
Calculate Fibonacci Numbers 
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Fibonacci Number 

Serial Calculation of Fibonacci Numbers   



Stupidest Way to  
Calculate Fibonacci Numbers 

 Computational complexity is O(2n) – alright, however 

  

 This algorithm is representative for a whole class of applications 
◦ Tree based recursive data structures 

◦ Adaptive Mesh Refinement – important method for wide range of physics simulations 

◦ Game theory 

◦ Graph based algorithms 
◦ Breadth First Search 

 Characterized by very tightly coupled data dependencies between calculations 
◦ But fork/join semantics make it simple to reason about parallelization 

 

 Let’s spawn a new thread for every other sub tree on each recursion level 
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Let’s Parallelize It – Adding Real 
Asynchrony 

 Calculate Fibonacci numbers in parallel 
 

uint64_t fibonacci(uint64_t n) 
{ 
    // if we know the answer, we return the value 
    if (n < 2) return n; 
 
    // asynchronously calculate one of the sub-terms  
    future<uint64_t> f = async(launch::async, &fibonacci, n-2); 
 
    // synchronously calculate the other sub-term 
    uint64_t r = fibonacci(n-1); 
 
    // wait for the future and calculate the result 
    return f.get() + r; 
} 
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Let’s Parallelize It – Adding Real 
Asynchrony 
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Let’s Parallelize It – Adding Real 
Asynchrony 
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Let’s Parallelize It –Adding Real 
Asynchrony 

 What’s wrong? While it does scale, it is still 100 times slower than the serial execution 

  

 Creates a new future for each invocation of fibonacci() (spawns an HPX thread) 
◦ Millions of threads with minimal work each 

◦ Overheads of thread management (creation, scheduling, execution, deletion) are much larger than the 
amount of useful work 
◦ Future overheads: ~1µs (Thread overheads: ~400ns) 

◦ Useful work: ~50ns 

 

 Let’s introduce the notion of granularity of work (grain size of work) 
◦ The amount of work executed in one thread 
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Let’s Parallelize It –  
Introducing Control of Grain Size  
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 Parallel calculation, switching to serial execution below given threshold 
 

 
 
 

uint64_t fibonacci(uint64_t n) 
{ 
    if (n < 2) return n; 
    if (n < threshold) return fibonacci_serial(n); 
 
    // asynchronously calculate one of the sub-terms  
    future<uint64_t> f = async(launch::async, &fibonacci, n-2); 
 
    // synchronously calculate the other sub-term 
    uint64_t r = fibonacci(n-1); 
 
    // wait for the future and calculate the result 
    return f.get() + r; 
} 



Let’s Parallelize It – 
Introducing Control of Grain Size  
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Grain Size Control - The New Dimension 
 Parallelizing code introduces Overheads (SLOW) 

 Overheads are caused by code which 
◦ Is executed in the parallel version only 

◦ Is on the critical path (we can’t ‘hide’ it behind useful work) 

◦ Is required for managing the parallel execution 
◦ i.e. task queues, synchronization, data exchange 

◦ NUMA and core affinities 

 Controlling not only the amount of resources used but also the granularity of work is an 
important factor 

 Controlling the grain size of work allows finding the sweet-spot between too much overheads 
and too little parallelism 
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Futurization 
 Special technique allowing to automatically transform code 

◦ Delay direct execution in order to avoid synchronization 

◦ Turns ‘straight’ code into ‘futurized’ code 

◦ Code no longer calculates results, but generates an execution tree representing the original 
algorithm 

◦ If the tree is executed it produces the same result as the original code 

◦ The execution of the tree is performed with maximum speed, depending only on the data 
dependencies of the original code 

◦ Simple transformation rules: 
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Straight Code Futurized Code 

T func() {…} future<T> func() {…} 

rvalue: n make_ready_future(n) 

T n = func(); future<T> n = func(); 

future<T> n = async(&func, …); future<future<T> > n = async(&func, …); 



Let’s Parallelize It – Apply Futurization 
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future<        > 
 
                      make_ready_future( )  
                              make_ready_future(                   ) 
 
    future<                >  
    future<        > 
 

              dataflow( 
           [](future<uint64_t> f1, future<uint64_t> f2) { 
               return f1.get() + f2.get(); 
           },  
                   ,   );                   

 
 
 
 
 

 Parallel way, futurize algorithm to remove suspension points 
 

 
       uint64_t  fibonacci(uint64_t n) 
{ 
    if (n < 2) return                   n ; 
    if (n < threshold) return                   fibonacci_serial(n) ; 
 
           future<uint64_t>   f = async(launch::async, &fibonacci, n-2); 
           uint64_t  r = fibonacci(n-1); 
 

       return 
         
         
          
           f.get()  r 

} 



Let’s Parallelize It – Unwrap Inner Futures 
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future<uint64_t> fibonacci(uint64_t n) 
{ 
    if (n < 2) return make_ready_future(n); 
    if (n < threshold) return make_ready_future(fibonacci_serial(n)); 
 
    future<uint64_t> f = async(launch::async, &fibonacci, n-2).unwrap(); 
    future<uint64_t> r = fibonacci(n-1); 
 

       return dataflow( 
           [](future<uint64_t> f1, future<uint64_t> f2) { 
               return f1.get() + f2.get(); 
           },  
           f, r); 
   } 



Let’s Parallelize It – Unwrap Argument 
Futures 
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Guess what? – This is 10% faster than straight version! 

 

 
 
 
future<uint64_t> fibonacci(uint64_t n) 
{ 
    if (n < 2) return make_ready_future(n); 
    if (n < threshold) return make_ready_future(fibonacci_serial(n)); 
 
    future<uint64_t> f = async(launch::async, &fibonacci, n-2);  
    future<uint64_t> r = fibonacci(n-1); 
 

       return dataflow( 
           unwrapped([](uint64_t r1, uint64_t r2) { 
                return r1 + r2; 
           }),  
           f, r); 
   } 



So What’s the Deal? 
 Too much parallelism is as bad as is too little 

◦ Sweet spot is determined by the Four Horsemen, mainly by contention 

 Granularity control is crucial 
◦ Optimal grain size depends very little on number of used resources 

◦ Optimal grain size is determined by the Four Horsemen, mainly by overheads, starvation, and latencies 

 Even problems with (very) strong data dependencies can benefit from parallelization 

 Doing more is not always bad 
◦ While we added more overheads by futurizing the code, we still gained performance 

◦ This is a result of the complex interplay of starvation, contention and overheads in modern hardware 

 Avoid explicit suspension as much as possible, prefer continuation style execution flow 
◦ Dataflow style programming is key to managing asynchrony 
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