
HPX
A GENERAL PURPOSE C++ RUNTIME SYSTEM FOR PARALLEL AND
DISTRIBUTED APPLICATIONS OF ANY SCALE

The Venture Point
TECHNOLOGY DEMANDS NEW RESPONSE

January 30th, 2014
A GENERAL PURPOSE C++ RUNTIME SYSTEM FOR PARALLEL AND DISTRIBUTED APPLICATIONS OF

ANY SCALE (HTTP://STELLAR.CCT.LSU.EDU/)
2

Technology Demands new Response

January 30th, 2014
A GENERAL PURPOSE C++ RUNTIME SYSTEM FOR PARALLEL AND DISTRIBUTED APPLICATIONS OF

ANY SCALE (HTTP://STELLAR.CCT.LSU.EDU/)
3

Technology Demands new Response

January 30th, 2014
A GENERAL PURPOSE C++ RUNTIME SYSTEM FOR PARALLEL AND DISTRIBUTED APPLICATIONS OF

ANY SCALE (HTTP://STELLAR.CCT.LSU.EDU/)
4

Technology Demands new Response

January 30th, 2014
A GENERAL PURPOSE C++ RUNTIME SYSTEM FOR PARALLEL AND DISTRIBUTED APPLICATIONS OF

ANY SCALE (HTTP://STELLAR.CCT.LSU.EDU/)
5

Technology Demands new Response

January 30th, 2014
A GENERAL PURPOSE C++ RUNTIME SYSTEM FOR PARALLEL AND DISTRIBUTED APPLICATIONS OF

ANY SCALE (HTTP://STELLAR.CCT.LSU.EDU/)
6

Tianhe-2’s projected theoretical peak performance: 54.9 PetaFLOPs

16,000 nodes, ~3,200,000 computing cores (32,000 Intel Ivy Bridge Xeons, 48,000 Xeon Phi Accelerators)

Amdahl’s Law (Strong Scaling)

S: Speedup

P: Proportion of parallel
code

N: Number of processors

January 30th, 2014
A GENERAL PURPOSE C++ RUNTIME SYSTEM FOR PARALLEL AND DISTRIBUTED APPLICATIONS OF

ANY SCALE (HTTP://STELLAR.CCT.LSU.EDU/)
7

𝑆 =
1

1 − 𝑃 +
𝑃
𝑁

Figure courtesy of Wikipedia (http://en.wikipedia.org/wiki/Amdahl's_law)

Starvation
◦ Insufficient concurrent work to maintain high

utilization of resources

Latencies
◦ Time-distance delay of remote resource access and

services

Overheads
◦ Work for management of parallel actions and

resources on critical path which are not necessary
in sequential variant

Waiting for Contention resolution
◦ Delays due to lack of availability of oversubscribed

shared resources

January 30th, 2014
A GENERAL PURPOSE C++ RUNTIME SYSTEM FOR PARALLEL AND DISTRIBUTED APPLICATIONS OF

ANY SCALE (HTTP://STELLAR.CCT.LSU.EDU/)
8

The 4 Horsemen of the Apocalypse: SLOW

Starvation
◦ Insufficient concurrent work to maintain high

utilization of resources

Latencies
◦ Time-distance delay of remote resource access and

services

Overheads
◦ Work for management of parallel actions and

resources on critical path which are not necessary
in sequential variant

Waiting for Contention resolution
◦ Delays due to lack of availability of oversubscribed

shared resources

January 30th, 2014
A GENERAL PURPOSE C++ RUNTIME SYSTEM FOR PARALLEL AND DISTRIBUTED APPLICATIONS OF

ANY SCALE (HTTP://STELLAR.CCT.LSU.EDU/)
9

The 4 Horsemen of the Apocalypse: SLOW

The Challenges
We need to find a usable way to fully parallelize the applications

Goals are
◦ Defeat The Four Horsemen

◦ Provide manageable paradigms for handling parallelism

◦ Expose asynchrony to the programmer without exposing concurrency

◦ Make data dependencies explicit, hide notion of ‘thread’, ‘communication’, and ‘data
distribution’

January 30th, 2014
A GENERAL PURPOSE C++ RUNTIME SYSTEM FOR PARALLEL AND DISTRIBUTED APPLICATIONS OF

ANY SCALE (HTTP://STELLAR.CCT.LSU.EDU/)
10

Runtime Systems
THE NEW DIMENSION

January 30th, 2014
A GENERAL PURPOSE C++ RUNTIME SYSTEM FOR PARALLEL AND DISTRIBUTED APPLICATIONS OF

ANY SCALE (HTTP://STELLAR.CCT.LSU.EDU/)
11

HPX – A General Purpose Runtime System
Solidly based on a theoretical foundation - ParalleX

◦ A general purpose runtime system for applications of any scale
◦ http://stellar.cct.lsu.edu/

◦ https://github.com/STEllAR-GROUP/hpx/

Exposes an uniform, standards-oriented API for ease of programming parallel and distributed
applications.

◦ Enables to write fully asynchronous code using hundreds of millions of threads.

◦ Provides unified syntax and semantics for local and remote operations.

Enables writing applications which outperform and out-scale existing ones

Is published under Boost license and has an open, active, and thriving developer community.

January 30th, 2014
A GENERAL PURPOSE C++ RUNTIME SYSTEM FOR PARALLEL AND DISTRIBUTED APPLICATIONS OF

ANY SCALE (HTTP://STELLAR.CCT.LSU.EDU/)
12

http://stellar.cct.lsu.edu/
https://github.com/STEllAR-GROUP/hpx/

HPX – A General Purpose Runtime System
Governing principles
◦ Active global address space (AGAS) instead of PGAS

◦ Message driven instead of message passing

◦ Lightweight control objects instead of global barriers

◦ Latency hiding instead of latency avoidance

◦ Adaptive locality control instead of static data distribution

◦ Moving work to data instead of moving data to work

◦ Fine grained parallelism of lightweight threads instead of Communicating Sequential
Processes (CSP/MPI)

January 30th, 2014
A GENERAL PURPOSE C++ RUNTIME SYSTEM FOR PARALLEL AND DISTRIBUTED APPLICATIONS OF

ANY SCALE (HTTP://STELLAR.CCT.LSU.EDU/)
13

HPX – The API
Fully asynchronous
◦ All possibly remote operations are asynchronous by default

◦ ‘Fire & forget’ semantics (result is not available)

◦ ‘Pure’ asynchronous semantics (result is available via hpx::future)

◦ Composition of asynchronous operations (N3634)
◦ hpx::when_all, hpx::when_any, hpx::when_n

◦ hpx::future::then(f)

◦ Can be used ‘synchronously’, but does not block
◦ Thread is suspended while waiting for result

◦ Other useful work is performed transparently

January 30th, 2014
A GENERAL PURPOSE C++ RUNTIME SYSTEM FOR PARALLEL AND DISTRIBUTED APPLICATIONS OF

ANY SCALE (HTTP://STELLAR.CCT.LSU.EDU/)
14

HPX – The API
As close as possible to C++11 standard library, where appropriate, for instance

◦ std::thread  hpx::thread

◦ std::mutex  hpx::mutex

◦ std::future  hpx::future (including N3634)

◦ std::async  hpx::async

◦ std::bind  hpx::bind

◦ std::function  hpx::function

◦ std::tuple  hpx::tuple

◦ std::any  hpx::any (N3508)

◦ std::cout  hpx::cout

◦ etc.

January 30th, 2014
A GENERAL PURPOSE C++ RUNTIME SYSTEM FOR PARALLEL AND DISTRIBUTED APPLICATIONS OF

ANY SCALE (HTTP://STELLAR.CCT.LSU.EDU/)
15

HPX – The API
Fully move enabled (using C++11 move semantics)

◦ hpx::bind, hpx::function, hpx::tuple, hpx::any

Fully type safe remote operation
◦ Extends the notion of a ‘callable’ to remote case (actions)

◦ Everything you can do with functions is possible with actions as well

Data types are usable in remote contexts
◦ Can be sent over the wire (hpx::bind, hpx::function, hpx::any)

◦ Can be used with actions (hpx::async, hpx::bind, hpx::function)

Unifies local and remote operation for the application programmer
◦ Object migration to other localities

January 30th, 2014
A GENERAL PURPOSE C++ RUNTIME SYSTEM FOR PARALLEL AND DISTRIBUTED APPLICATIONS OF

ANY SCALE (HTTP://STELLAR.CCT.LSU.EDU/)
16

The Future
WHERE DO WE GO?

January 30th, 2014
A GENERAL PURPOSE C++ RUNTIME SYSTEM FOR PARALLEL AND DISTRIBUTED APPLICATIONS OF

ANY SCALE (HTTP://STELLAR.CCT.LSU.EDU/)
17

What is a (the) future
A future is an object representing a result which has not been calculated yet

August 8th, 2013 MANAGING ASYNCHRONY IN C++ USING HPX 18

Locality 1

Suspend
consumer
thread

Execute
another
thread

Resume
consumer
thread

Locality 2

Execute
Future:

Producer
thread

Future object

Result is being
returned

 Enables transparent synchronization with
producer

 Hides notion of dealing with threads

 Makes asynchrony manageable

 Allows for composition of several
asynchronous operations

 Turns concurrency into parallelism

What is a (the) Future?
Many ways to get hold of a future, simplest way is to use (std) async:

int universal_answer() { return 42; }

void deep_thought()

{

future<int> promised_answer = async(&universal_answer);

// do other things for 7.5 million years

cout << promised_answer.get() << endl; // prints 42

}

January 30th, 2014
A GENERAL PURPOSE C++ RUNTIME SYSTEM FOR PARALLEL AND DISTRIBUTED APPLICATIONS OF

ANY SCALE (HTTP://STELLAR.CCT.LSU.EDU/)
19

HPX – The API

R f(p...)
Synchronous

(return R)
Asynchronous

(return future<R>)
Fire & Forget
(return void)

Functions
(direct)

f(p…) async(f, p…) apply(f, p…)

Functions
(lazy)

bind(f, p…)(…) async(bind(f, p…), …) apply(bind(f, p…), …)

Actions
(direct)

HPX_ACTION(f, a)
a(id, p…)

HPX_ACTION(f, a)
async(a, id, p…)

HPX_ACTION(f, a)
apply(f, id, p…)

Actions
(lazy)

HPX_ACTION(f, a)
bind(a, id, p…)(…)

HPX_ACTION(f, a)
async(bind(a, id, p…), …)

HPX_ACTION(f, a)
apply(bind(a, id, p…), …)

January 30th, 2014
A GENERAL PURPOSE C++ RUNTIME SYSTEM FOR PARALLEL AND DISTRIBUTED APPLICATIONS OF

ANY SCALE (HTTP://STELLAR.CCT.LSU.EDU/)
20

C++

C++ Library

HPX

Some Simple Examples
A CLOSER LOOK

January 30th, 2014
A GENERAL PURPOSE C++ RUNTIME SYSTEM FOR PARALLEL AND DISTRIBUTED APPLICATIONS OF

ANY SCALE (HTTP://STELLAR.CCT.LSU.EDU/)
21

Hello HPX World

#include <hpx/hpx.hpp>

#include <hpx/iostream.hpp>

int hpx_main()

{

hpx::cout << "Hello HPX World!\n";

return hpx::finalize();

}

int main(int argc, char* argv[])

{

return hpx::init(argc, argv);

}

22January 30th, 2014
A GENERAL PURPOSE C++ RUNTIME SYSTEM FOR PARALLEL AND DISTRIBUTED APPLICATIONS OF

ANY SCALE (HTTP://STELLAR.CCT.LSU.EDU/)

Hello HPX World

void say_hello()
{

hpx::cout << "Hello HPX World from locality: " <<
<< hpx::get_locality_id() << "!\n";

}
HPX_PLAIN_ACTION(say_hello); // defines say_hello_action

int hpx_main()
{

say_hello_action sayit;
for (auto loc: hpx::find_all_localities())

hpx::apply(sayit, loc);
return hpx::finalize();

}

23January 30th, 2014
A GENERAL PURPOSE C++ RUNTIME SYSTEM FOR PARALLEL AND DISTRIBUTED APPLICATIONS OF

ANY SCALE (HTTP://STELLAR.CCT.LSU.EDU/)

Hello HPX World

int hpx_main()

{

std::vector<hpx::future<void> > ops;

say_hello_action sayit;

for (auto loc: hpx::find_all_localities())

ops.push_back(hpx::async(sayit, loc));

hpx::wait_all(ops);

return hpx::finalize();

}

24January 30th, 2014
A GENERAL PURPOSE C++ RUNTIME SYSTEM FOR PARALLEL AND DISTRIBUTED APPLICATIONS OF

ANY SCALE (HTTP://STELLAR.CCT.LSU.EDU/)

Fibonacci Number Sequence

int fibonacci(int n)

{

if (n < 2) return n;

hpx::future<int> f = hpx::async(fibonacci, n-1);

int r = fibonacci(n-2);

return f.get() + r;

}

25January 30th, 2014
A GENERAL PURPOSE C++ RUNTIME SYSTEM FOR PARALLEL AND DISTRIBUTED APPLICATIONS OF

ANY SCALE (HTTP://STELLAR.CCT.LSU.EDU/)

Fibonacci Number Sequence

int fibonacci(int n);

HPX_PLAIN_ACTION(fibonacci); // defines fibonacci_action

fibonacci_action fib;

int fibonacci(int n)

{

if (n < 2) return n;

hpx::id_type loc = hpx::find_here();

hpx::future<int> f = hpx::async(fib, loc, n-1);

int r = fib(loc, n-2);

return f.get() + r;

}

26January 30th, 2014
A GENERAL PURPOSE C++ RUNTIME SYSTEM FOR PARALLEL AND DISTRIBUTED APPLICATIONS OF

ANY SCALE (HTTP://STELLAR.CCT.LSU.EDU/)

Recent Results

27January 30th, 2014
A GENERAL PURPOSE C++ RUNTIME SYSTEM FOR PARALLEL AND DISTRIBUTED APPLICATIONS OF

ANY SCALE (HTTP://STELLAR.CCT.LSU.EDU/)

N-Body Code based on LibGeoDecomp

January 30th, 2014
A GENERAL PURPOSE C++ RUNTIME SYSTEM FOR PARALLEL AND DISTRIBUTED APPLICATIONS OF

ANY SCALE (HTTP://STELLAR.CCT.LSU.EDU/)
28

N-Body Code based on LibGeoDecomp

January 30th, 2014
A GENERAL PURPOSE C++ RUNTIME SYSTEM FOR PARALLEL AND DISTRIBUTED APPLICATIONS OF

ANY SCALE (HTTP://STELLAR.CCT.LSU.EDU/)
29

N-Body Code based on LibGeoDecomp

January 30th, 2014
A GENERAL PURPOSE C++ RUNTIME SYSTEM FOR PARALLEL AND DISTRIBUTED APPLICATIONS OF

ANY SCALE (HTTP://STELLAR.CCT.LSU.EDU/)
30

Conclusions

January 30th, 2014
A GENERAL PURPOSE C++ RUNTIME SYSTEM FOR PARALLEL AND DISTRIBUTED APPLICATIONS OF

ANY SCALE (HTTP://STELLAR.CCT.LSU.EDU/)
31

Conclusions
Be aware of the Four Horsemen

Embrace parallelism, it’s here to stay, avoid concurrency

Asynchrony is your friend if used correctly

Think in terms of data dependencies, make them explicit

Avoid thinking in terms of threads

Continuation style, dataflow based programming is key for successful parallelization

Granularity control allows to find ‘optimal’ mode of operation

January 30th, 2014
A GENERAL PURPOSE C++ RUNTIME SYSTEM FOR PARALLEL AND DISTRIBUTED APPLICATIONS OF

ANY SCALE (HTTP://STELLAR.CCT.LSU.EDU/)
32

Where to get HPX
Main repository: https://github.com/STEllAR-GROUP/hpx/ (Boost licensed)

Main website: http://stellar.cct.lsu.edu/

Mailing lists: hpx-users@stellar.cct.lsu.edu, hpx-devel@stellar.cct.lsu.edu

IRC channel: #ste||ar on freenode

January 30th, 2014
A GENERAL PURPOSE C++ RUNTIME SYSTEM FOR PARALLEL AND DISTRIBUTED APPLICATIONS OF

ANY SCALE (HTTP://STELLAR.CCT.LSU.EDU/)
33

https://github.com/STEllAR-GROUP/hpx/
http://stellar.cct.lsu.edu/
mailto:hpx-users@stellar.cct.lsu.edu
mailto:hpx-devel@stellar.cct.lsu.edu

