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I. INTRODUCTION

High Performance ParalleX (HPX) is a C++ parallel and
distributed runtime system for conventional architectures that
implements the ParalleX [1], [2], execution model and aims
to improve the performance of scaling impaired applications
by employing fine-grained threading and asynchronous com-
munication, replacing the traditional Communicating Sequen-
tial Processes (CSP). Fine-grained threading provides parallel
applications the flexibility to generate large numbers of short
lived user-level tasks on modern multi-core systems. The HPX
runtime system gives applications the ability to use fine-
grained threading to increase the total amount of concur-
rent operations, while making efficient use of parallelism by
eliminating explicit and implicit global barriers. While fine-
grained threading can improve parallelism, it causes overheads
due to creation, contention due to context switching, and
increased memory footprints of suspended threads waiting on
synchronization and pending threads waiting on resources.
Measurements and thorough analysis of overheads and sources
of contention help us determine bounds of granularity for
improved scaling of parallel applications. This knowledge
combined with the capabilities of the HPX runtime sys-
tem pave the way to measure overheads at runtime to tune
performance and scalability. This paper explains the thread
scheduling and queuing mechanisms of HPX, presents detailed
analysis of the measured overheads, and illustrates resulting
granularity bounds for good scaling performance. The quan-
tification of overheads gives substantial information resulting
in determination of granularity and metrics, which can be used
in future work to create dynamic adaptive scheduling.

II. THE HPX RUNTIME SYSTEM

HPX is a general purpose parallel runtime system for
applications of any scale. It exposes a homogeneous pro-
gramming model which unifies the execution of remote and
local operations. The runtime system has been developed
for conventional architectures. Currently supported are SMP
nodes, large Non Uniform Memory Access (NUMA) machines
and heterogeneous systems such as clusters equipped with
Xeon Phi accelarators. Strict adherence to Standard C++ [3]]
and the utilization of the Boost C++ Libraries [4] makes
HPX both portable and highly optimized. The source code
is published under the Boost Software License making it
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accessible to everyone as Open Source Software. It is modular,
feature-complete and designed for best possible performance.
HPX’s design focuses on overcoming conventional limitations
such as (implicit and explicit) global barriers, poor latency
hiding, static-only resource allocation, and lack of support for
medium- to fine-grain parallelism. The framework consists of
four primary modules: The HPX Threading System, Local
Control Objects (LCOs), the Active Global Address Space
(AGAS) and the Parcel Transport Layer.

The HPX Threading System: The HPX Threading Sys-
tem’s core is formed by the thread-manager which is respon-
sible for creation, scheduling, execution and deletion of HPX-
Threads. HPX-Threads are very lightweight user-level threads
which are scheduled cooperatively and non-preemptively. This
implements a M:N or hybrid threading model, which is
essential to enable fine-grained parallelism. The focus of this
paper will be on the Threading System, as such, a detailed
description can be found in Section

Local Control Objects (LCOs): Local Control Objects
(LCOs) are used to organize control flow through event-
driven HPX-thread creation, supension or reactivation. Every
object that creates or re-activates an HPX-thread exposes the
functionality of an LCO. As such they provide an efficient
abstraction to manage concurrency.

The most prominent examples are:

1. Futures [S], [6], [7] are objects representing a results of
which is initially not known yet because the computation of
the value has not yet completed. A future synchronizes access
to this value by either suspending the requesting thread until
the value is available or by allowing the requesting thread to
continue computation unencumbered if the value is already
available.

2. Dataflows [8l], [9], [10] provide a mechanism that manages
asynchronous operation and enables the elimination of global
barriers in most cases. The dataflow LCO construct is event-
driven and acquires result values and updates internal state
until one or more precedent constraints are satisfied. It sub-
sequently initiates further program action dependent on these
condition(s).

The Active Global Address Space (AGAS): AGAS is cur-
rently implemented as a set of distributed services providing
a 128-bit global address space spanning all localities. Each
locality serves as a partition in the global address space. AGAS



provides two naming layers: /. The primary namespace maps
128-bit globally unique identifiers (GIDs) to a tuple of meta-
data which is used to locate an object on the current locality. 2.
A higher-level mechanism which maps hierarchical symbolic
names to GIDs. Unlike PGAS [11]] systems like X10 [12],
Chapel [13]], or UPC [14], AGAS exposes a dynamic, adaptive
address space which evolves over the lifetime of an HPX
application. In addition, objects in AGAS can be migrated,
which leaves the GID the same and merely updates the
internal AGAS mapping. This allows decoupling of objects
with locality information.

The Parcel Transport Layer: Parcels are an extended
form of active messages [15] that are used for inter-locality
communication. Parcels form the mechanisms to implement
remote procedure calls (actions). They contain a GID, the
action to be invoked on the object represented by the GID
and the arguments needed to call that action. A parcel port is
an implementation of a specific network communication layer.
Whenever a parcel is received it will be passed to the parcel
handler which will eventually turn it into an HPX-Thread,
which in turn will execute the specified action.

III. THREADING IN HPX
A. Major Design Principles

HPX’s threading system utilizes the M:N model (also
known as hybrid-threading). Hybrid threading implementa-
tions use a pool of kernel threads (N) to execute library
threads (M). Context switching between library threads is
typically much quicker than kernel-level context switches due
to not requiring system calls which usually lead to expensive
context switches. This allows library threads to synchronize
and communicate with lower overheads than kernel threads
can achieve. In many implementations, including HPX, the
kernel threads are associated directly with specific processing
units and are live throughout the entire execution of a program.
On the other hand, library threads are ephemeral. They can
be quickly created and destroyed, as they do not have to
manage as much state as kernel threads. They may outnumber
the kernel threads by many orders of magnitude without
significant performance penalties. In HPX, kernel threads are
referred to as worker-threads. HPX’s library threads are
called HPX-threads.

One of the core tenants of HPX’s threading model is to be
greedy. Wherever possible and sensible, the HPX threading
system makes locally optimal choices. Localizing control
and decision making reduces the need for synchronization
and communication between different worker-threads. This
localization is essential for multi-threaded cache-coherent and
NUMA systems.

HPX operates under the assumption that it is probable that
HPX applications either have ample work to perform, or will
have ample work at some point in the near future. Since
HPX is designed to facilitate the overlap of communication
with computation, this assumption tends to hold true. So, the
HPX worker-threads prefer to avoid yielding control of their
processing unit whenever feasible.

The class of highly dynamic applications that HPX targets
may have unpredictable load imbalances which need to be
rapidly corrected at runtime. The HPX threading system
utilizes a work-queue model which enables the use of work-
stealing for resolving these load imbalances. When load im-
balances occur, worker-threads, depleted of sufficient work,
immediately begin looking for work to steal from their neigh-
bors. The level of “aggression” of work-stealing algorithms
may be constrained by the runtime to limit the contention
overheads associated with work-stealing.

HPX-threads are cooperatively scheduled. The HPX sched-
uler will never time-slice or involuntarily interrupt an HPX-
thread. However, HPX-threads may voluntarily choose to
return control to the scheduler. HPX applications are often the
most qualified decision-makers, because they have access to
application-specific information that may influence decision-
making.

B. HPX-Threads

HPX-threads are instruction streams that have an execution
context and a thread state [1]. An HPX-thread context
contains the information necessary to execute the HPX-thread.
Each HPX-thread also has an associated state, which defines
the invariants of the HPX-thread. Additionally, HPX-threads
are first-class objects, meaning that they have a unique global
name (a GID). So, HPX-threads are executable entities that
are globally addressable.

In any HPX application, there are two types of HPX-threads.
The first, application HPX-threads, are the most apparent.
Application (or user) HPX-threads are HPX-threads that ex-
ecute application code at some point during their lifetime.
The second type of HPX-threads are system HPX-threads.
System HPX-threads may be created directly by the runtime,
or indirectly by the application.

An HPX-thread that sets the value of a future LCO and
then executes a continuation attached to the future by the
application is an application HPX-thread. An HPX-thread that
only changes the state of another HPX-thread is a system
HPX-thread. The distinction between application HPX-threads
and system HPX-threads is significant from a performance
analysis viewpoint. System HPX-threads can be treated as pure
overhead (in the vast majority of cases). The overheads of
application HPX-threads must be specifically identified.

1) HPX-Thread Attributes: In addition to context and state,
HPX-threads have other characteristics. Collectively, we call
these HPX-thread attributes. In this section, we will describe
the most important of these attributes.

Each HPX-thread has an associated payload. A payload
is the starting point of execution for an HPX-thread. In the
simplest form, a payload is simply a reference to a function
to execute. A payload may also include arguments passed
to the function. If the payload is a method on a globally
named HPX object, then the HPX-thread is said to target that
object. The payload duration of an HPX-thread begins when
payload execution begins, and ends when the payload function
is completely finished executing. Amortized payload duration



is an important measure of application granularity that we will
utilize in this paper.

The HPX-thread context is the data required to start or
resume execution of the payload. HPX-thread contexts may
be hardware, operating system or operation specific. Currently,
stack-based contexts are used in almost all circumstances in
HPX.

Stack-based contexts use a call stack and a stack pointer to
represent the execution state. When the HPX-thread is created,
the runtime places a function call into the stack (a trampoline)
which will invoke the payload. When the scheduler needs to
execute the HPX-thread (either to start execution or to resume
it), it performs a context switch. The scheduler first pushes its
register set to the scheduler stack and pops the register set from
the HPX-thread stack. Next, the scheduler stores its own stack
pointer, and loads the HPX-thread stack pointer. Finally, the
scheduler performs an unconditional jump to the HPX-thread’s
program counter. If the HPX-thread needs to return control to
the scheduler, a context switch in the opposite direction is
performed.

A priority may be associated with an HPX-thread. In HPX,
priorities may only be set by the entity creating an HPX-
thread, and the priority of an HPX-thread is immutable. The
HPX scheduler has no recourse for upgrading or downgrading
the priority of HPX-threads.

2) HPX-Thread States: HPX-threads are finite state ma-
chines. Each state imposes different conditions on an HPX-
thread which neither the HPX scheduler nor application code
is allowed to violate. The HPX scheduler’s primary role is
to transition HPX-threads from one state to another, while
enforcing the invariants of each HPX-thread state. There are
four HPX-thread states:

o Pending - An HPX-thread that is ready for execution.

e Active - An HPX-thread that is executing.

o Suspended - An HPX-thread that is not ready for execu-
tion yet.

o Terminated - An HPX-thread that has finished execution.

An HPX-thread may voluntarily choose to return control to
the HPX-thread scheduler. When this occurs, the HPX-thread
specifies a requested new state, which is called the exiting
state. HPX-threads are allowed to place themselves into any
state (except, of course, active).

When an HPX-thread needs to wait for synchronization or
communication to continue execution, it can suspend itself
and wait to be woken up by the party that will provide the
resources or data necessary for the HPX-thread to continue
execution. Recall that any first-class object which, when
triggered, resumes or creates an HPX-thread is an LCO. When
an HPX-thread is suspended, it acts as an LCO, since setting
its state to pending (i.e. triggering it) will resume its execution.

HPX-threads can also postpone execution by transitioning
from active to pending. Such a state transition does not require
a second actor to resume execution, which allows for very
short suspensions. An HPX-thread that is using a live-waiting
synchronization primitive such as a spinlock may make use

of active to pending transitions to reduce pressure on a highly
contended resource.

Finally, when an HPX-thread has finished executing its
payload function, it returns to the scheduler with an exiting
state of terminated. While execution of an HPX-thread may
never be resumed, a terminated HPX-thread still has a global
name and therefore is still a first class object.

In addition to voluntary state changes initiated by an HPX-
thread, there are three mechanisms by which external entities
can cause HPX-threads to undergo state transitions. The first
we have already discussed. Any entity that knows the global
name of a suspended HPX-thread can trigger it by setting
its state to pending, which will resume the HPX-thread.
Additionally, the HPX scheduler is the only construct that
can transition pending HPX-threads to active. Last but not
least, HPX-Threads have defined interruption points. An entity
holding a reference to a thread, may request the thread to be
interrupted.

3) Ephemerality of HPX-threads: HPX-threads are de-
signed to be short-lived relative to overall execution time and
numerous relative to the number of available processing units.
The use of many, short-lived HPX-threads can be essential for
parallel applications that may suffer from frequent unavoidable
communication and/or load imbalances. Finer HPX-thread
granularity localizes synchronization and execution control.
This has the potential to allow computation to proceed further
before waiting for required synchronization or communication.
Additionally, dynamic load imbalances can be better redis-
tributed if HPX-thread payloads are small. Finer granularity,
of course, is not without overheads because the scheduler must
manage a greater number of HPX-threads.

Parallel applications may not have complete control over the
number or duration of HPX-threads that they use. However,
every application has some mechanism of controlling how
work is divided and therefore has some degree of control
over the number of HPX-threads that it uses and the average
payload duration - the grain size - of those HPX-threads. We
call this granularity control.

C. HPX-Thread Schedulers

In the previous section, we introduced the important aspects
of HPX-threads. Now we will discuss the constructs that
are responsible for implementing HPX-threads - HPX-thread
schedulers. An HPX-thread scheduler is composed of three
components:

¢ Core Scheduling - Generic code shared by all HPX-thread
schedulers.

o Scheduling Policy - A set of routines and data structure
that implement the creation, distribution, execution and
destruction of HPX-threads. These routines and data
structures plug into the core scheduler.

¢ Queuing Policy - A set of routines and data structures
that implements a queuing mechanism which is used by
the scheduling policy.

HPX-thread schedulers are modular and easily extendable

by implementing a defined interface. Any scheduling policy



can be combined with any queuing policy. Application devel-
opers can either select from a collection of scheduling and
queuing policies, or create policies suited to their specific
needs.

All HPX-thread schedulers make use of the dual-queuing
model. This model requires that every HPX-thread move
through two queues before becoming active. When an HPX-
thread scheduler is instructed to create an HPX-thread, it
constructs an HPX-thread description and places it into a
queue. An HPX-thread description is an object that contains
all of the attributes of an HPX-thread except for a context. An
HPX-thread description represents a staged HPX-thread, and
so we call this first queue a staged queue. Eventually, the HPX-
thread scheduler will remove the HPX-thread description from
the staged queue. At this point, the HPX-thread description
is converted into a bona fida HPX-thread object, which has
a context. This conversion is the state transition from staged
to pending. The pending HPX-thread is now placed into a
pending queue.

The dual-queuing model allows for fast, asynchronous cre-
ation of HPX-thread. HPX-thread descriptions are cheaper
to create than HPX-thread objects. HPX-threads require the
acquisition of an HPX-thread context, which requires a large
chunk of contiguous memory for the HPX-thread’s call stack.
Furthermore, HPX-thread contexts are hardware dependent,
which makes it more expensive and difficult to migrate them
between nodes of different micro-architectures. By using
HPX-thread descriptions, the HPX-thread scheduler is able
to defer the acquisition of an HPX-thread context. This al-
lows the creation operation to rapidly return to the caller.
Additionally, stealing HPX-thread descriptions to resolve load
imbalances is far cheaper than stealing HPX-thread objects.
Stealing an HPX-thread object may move HPX-thread contexts
across NUMA boundaries. Even in the case of steals that are
performed within the same socket, cache and TLB penalties
may be experienced.

A terminated list is also prescribed by the dual queuing
model, for recording HPX-threads that need to be destroyed.
The terminated list allows the destruction of HPX-threads to
be deferred, similar to the deferral of creation operations.
When HPX-thread objects are removed from the terminated
list by the HPX-thread scheduler, they are partially reset. Every
attribute of the HPX-thread object is restored to a pristine
state, except for the HPX-thread context, which is not touched.
We say that an HPX-thread object that has been reset in this
manner is sanitized.

The final component of the dual-queuing model a recycling
manager. A recycling manager is responsible for provid-
ing HPX-thread objects when HPX-thread descriptions are
transitioned from staged to pending. The recycling manager
receives sanitized HPX-thread objects that are removed from
the terminated list. When the recycling manager needs to
acquire an HPX-thread object, it either uses a sanitized HPX-
thread object, or it creates a new one. If a sanitized HPX-thread
object is used, then its context must be reset and loaded with
the new payload function.

A collection of these four data structures - a staged queue,
a pending queue, a terminated list and a recycling system - is
referred to as a queue package. Every HPX scheduling policy
uses queue packages. The quantity and hierarchy of queue
packages may change from policy to policy. Additionally, two
scheduling polices that use the same topology of queue pack-
ages may distinguish themselves by using different algorithms
for load balancing between the queue packages. On the other
hand, queue packages use HPX queuing policies. An HPX
queuing policy specifies the implementation of the underlying
container used by queue packages.

D. The Priority Local-FIFO Scheduler

In this paper, we present results using the Priority Local-
FIFO scheduler, which is the name given to the scheduler
formed by the composition of the default scheduling policy
(Priority Local) and the default queuing policy (Lockfree
FIFO).

The Priority Local scheduling policy uses one queue pack-
age per worker-thread for normal-priority HPX-threads. Each
queue package “owns” the queue package that is associated
with it, and will try to find work from that queue package
before searching for work in other queues packages (e.g. work
stealing). The queue package that is associated with a worker-
thread is called the worker-thread’s local queue package.
Additionally, this scheduling policy uses a number of queue
packages for high-priority HPX-threads and a single queue
package per locality for low-priority threads.

Under the Priority Local algorithm, each worker-thread uses
the following algorithm to find work to for it to do:

1) Check the local pending queue.

2) Check the local staged queue.

3) Steal from other staged queues.

4) Steal from other pending queues.

5) Perform maintenance (cleanup terminated HPX-threads,

etc).

The Priority Local algorithm prefers to steal HPX-thread
descriptions over pending HPX-thread objects because moving
HPX-thread descriptions between processing units and across
socket boundaries imposes fewer cache and NUMA penalties.

The Lockfree FIFO queuing policy uses a first-in, first-out
queue implemented with compare-and-swap (CAS) atomics
for pending and staged queues. Since LIFO queuing exhibits
better cache behavior, and applications will not care about the
order in which terminated lists are processed, we use a lockfree
LIFO to implement the terminated list.

Lockfree algorithms generally have lower latencies than
lock-based algorithms, because the lockfree code will never
yield control back to the kernel. Keeping enqueuing/dequeuing
latencies low is critical for HPX, as the runtime must be able
to handle large quantities of small, short-lived HPX-threads.

The LIFO and FIFO used by this queuing policy are
provided by the Boost.Lockfree library [4]. The FIFO imple-
mentation is based on the well known algorithm by Michael
and Scott [16], [17]. The algorithm uses compare-and-swap
atomic operations to implement a linked list. One downside



to using a linked-listed based FIFO is that it causes work-
stealing to have O(n) time complexity. Currently, the Priority
Local-FIFO algorithm does not implement bulk work stealing,
instead searching for a single HPX-thread when it runs out of
work. In practice, this limitation does not significantly reduce
performance, except in artificial pathological situations. The
lockfree LIFO is implemented as a CAS-based linked list, and
has a less complex implementation as only one end of the list
needs to be recorded [18]], [17].

The Priority Local-FIFO scheduler features optional support
for NUMA-sensitive scheduling, which may be enabled at
runtime by users. These features include throttling of work-
stealing across NUMA-boundaries and ”smart” placement of
HPX-threads so that they will execute on the socket where
their data lives. Additionally, this scheduler’s recycling sys-
tem keeps reusable HPX-thread contexts from being moved
between cores to reduce NUMA effects and increase cache
performance.

Now, we turn our attention to the main results of this paper;
an analysis of the fundamental overheads of HPX threading.

E. Experimental Setup

TABLE I: Test Platforms

System Name Ariel Stampede Lyra
Processors Intel Xeon E5-2690 | Intel Xeon Phi | AMD Opteron 8431
Sandy Bridge Knight’s Corner Istanbul
Clock Freq. 2.9 GHz 1.1 GHz 2.4 GHz
Hardware Threading | 2-way (deactivated) 4-way No
Cores 16 2 X8) 61 48 (8 X 6)
NUMA Domains 2 1 8
Memory/Core 32KBLID &I [32KBLID &I| 64KBLID &1
256KB L2 512KB L2 512KB L2
Shared 29MB L3,
Memory 32GB DDR3 8 GB 98 GB

All of our experiments were performed with HPX V0.9.8,
using version 1.55.0 of the Boost libraries. All x86-64 runs
were performed on a system running Debian GNU/Linux Un-
stable and version 3.8.13 of the Linux kernel (non-preemptive).
Xeon Phi runs were performed using the MPSS software
stack (Linux 2.6.38). The jemalloc memory allocator was used
for the x86-64 platforms, and tbbmalloc was used on the
Xeon Phi. The default HPX build configuration was used,
with guard pages turned off and RDTSCP-based timestamps
enabled where available.

IV. HPX PERFORMANCE COUNTERS

To conduct a thorough analysis of the benchmarks studied
in this paper, we used HPX’s introspective performance mon-
itoring mechanism, Performance Counters, to investigate both
hardware and software performance behavior. Performance
Counters are first-class representations of a singular-valued
dependent variable which describes some aspect of software
or hardware performance. They can be used for runtime
decision making as well as post-run performance analysis and
debugging. Counters fall into four categories:

o Hardware Counters, are obtained from hardware perfor-

mance monitoring mechanisms. Examples: total clock
cycles, number of L1 DTLB misses.

o Kernel Counters, values relating to aspects of the exe-
cution that are managed by the kernel. Examples: peak
resident memory, number of virtual memory mappings.

o Runtime Counters, are exposed by the HPX runtime
and describe the internal state of the runtime system.
Examples: HPX-thread queue length, cumulative HPX-
threads executed.

o Application Counters, which are implemented by user
code and describe metrics specific to a particular appli-
cation.

e Derived Counters, which take one or more Performance
Counters as an input and produce a singular output value.

In addition to having a global identifier (GID), each Per-
formance Counter has a unique, hierarchal string which is
bound to it’s GID. This symbolic binding is akin to the
association of domain names to numeric IP addresses in the
Domain Name System. The advantage of this binding is
that any performance counter can be accessed remotely at
any point of time during application execution, even if the
running program never distributed the GIDs of its performance
counters to the interested parties. This enables performance
monitoring programs on hand-held devices to be able to query
performance data from HPX applications in real time.

In the research described in this paper, we used performance
counters (primarily hardware and runtime counters) to evaluate
and eliminate invalid hypothesis about runtime performance,
and to quantify the effects of our valid hypothesis. Perhaps
most importantly, we were able to identify many complex bugs
that had been overlooked by traditional debugging methods.
Some of these bugs not only had substantial performance
impacts but also caused incorrect semantics.

Most of the performance counters that are presented in this
paper report memory and address resolution behavior on the
Intel systems. The impacts of the memory subsystems were
determined using hardware counters (provided via PAPI) for
data cache and translation lookaside buffer (TLB) misses,
number of cycles used for TLB walks, the total number of
clock cycles, and for the Xeon Phi system the number of
cycles used for computational instructions. Hardware counters
are shown in Table

We compute cache and TLB impacts based on the average
cycle latency reported by Intel [19] [20] multiplied by the
measured counts, with the exception of DTLB walk duration
(which measures cycles directly). Table [[IIlshows the formulae
for computing the percentage of execution time wasted. The
cache overheads only consider data loads and stores. Other
potential memory overheads, such as instruction cache misses
and store forwarding blocks were measured on the Sandy
Bridge system and found to be insignificant.

The Xeon Phi L2 cache miss counters include prefetch
misses, which makes it difficult to measure the impact of
L2 cache misses. We compute an estimated latency impact
(ELD [20] by dividing the number of cycles not used for
computation minus loads and stores by demand L1 data
misses. An ELI close to the L2 data access latency of 21
cycles indicates the majority of L1 data misses are hitting in



TABLE II: Intel Hardware Performance Counters

Sandy Bridge
Symbol PAPI Counter Impact Cause
cycles CPU_CLK_UNHALTED Reference
L2hit MEM_LOAD_UOPS_RETIRED:L2_HIT Missed L1, hit L2
L3hit MEM_LOAD_UOPS_RETIRED:L3_HIT Hit L3, no snoop
L3hitxs MEM_LOAD_UOPS_LLC_HIT_RETIRED:XSNP_HIT Hit on-package core cache w/ clean snoop hit
L3hitxsm | MEM_LOAD_UOPS_LLC_HIT_RETIRED:XSNP_HITM | Hit on-package core cache w/ snoop hit & conflict
L3miss MEM_LOAD_UOPS_MISC_RETIRED:LLC_MISS Missed LLC, accessed main memory
STLBhit DTLB_LOAD_MISSES:STLB_HIT Miss Ist level, hit 2nd level
DTLBwalk DTLB_LOAD_MISSES:WALK_DURATION Cycles spent in page walks
Xeon Phi
Symbol PAPI Counter Impact Cause
cycles CPU_CLK_UNHALTED Reference
L1miss DATA_READ_MISS_OR_WRITE_MISS L1 data cache misses
L1misshpf DATA_HIT_INFLIGHT_PF1 L1 miss, hit prefetch from L2
EXECcycles EXEC_STAGE_CYCLES Cycles executed computational instructions
LDST DATA_READ_OR_WRITE Loads and Stores seen by L1 data cache
L2ldmiss PAPI_L2_LDM L2 load misses
DTLB1 DATA_PAGE_WALK Level 1 TLB data misses
DTLB2 LONG_DATA_PAGE_WALK Level 2 TLB data misses

TABLE III: Intel TLB and Cache Impact

Sandy Bridge
Formula
(12 % L2y;¢)/cycles
(26 * L3nir + 43 * L3nszas + 60 * L3nitasm)/cycles
(200 * L3,,is5)/cycles
(7+ STLBpit + DTLByaik)/cycles

Impact
L1 Miss Penalty
L2 Miss Penalty
L3 Miss Penalty
TLB Miss Penalty

Xeon Phi
Impact Formula
L1 Miss Penalty (25 * (Llmiss + Llmisshps))/cycles
ELI (cycles — execcyc — LDST)/Llmiss

L2 Miss Penalty
TLB Miss Penalty

250 * L2iqmiss/cycles
(25 * DTLB1yair + 100 * DTLB2ya1)/cycles

L2. Although L2 cache miss counters may include prefetch
data misses, we measured the L2 load misses to determine
how they relate to the ELIL

V. RESULTS

To study the overheads of the HPX threading subsystem,
we require a controlled environment. Our primary goal is to
quantify “’baseline” overheads that can be used as a launching
point for future studies into the behavior of overheads in HPX.
Additionally, we wanted to explore the costs associated with
different degrees of application granularity.

Since every HPX subsystem makes use of HPX-threads, it
is necessary to understand the costs of HPX-threads before
we can hope to understand the overheads associated with
other parts of the HPX runtime. This led us to restrict our
study to shared-memory systems, as we wanted to isolate HPX
threading overheads from network overheads originating in the
parcel subsystem.

There are also overheads within the HPX threading subsys-
tem that we want to eliminate, in order to make the scope of
our “baseline” study feasible. We wanted to restrict our set of
independent variables to:

« Amount of Processing Units, which controls the degree
of parallelism.
« Payload Duration, which controls the grain size.

¢ Quantity of HPX-threads, which controls the length of
the queues and the number of HPX-threads that the HPX
scheduler must manage.

« Quantity of Suspensions, which affects the efficiency of
the HPX-thread context recycling system.

Notably, none of these independent variables has a non-
trivial effect on the amount of work-stealing that occurs. In
fact, we actively seek to ensure that negligible work-stealing
occurs in our results. While work-stealing is an important and
distinctive feature of HPX, we decided to exclude it from this
study, both to limit the scope of our experiment and because
we believe that this work is a prerequisite for any study of
work-stealing in HPX. Work-stealing algorithms are usually
the primary distinguishing factor between HPX schedulers,
so it would further be necessary for us to present a detailed
analysis and comparison of different HPX schedulers for us
to discuss work-stealing.

We developed a synthetic application, the Homogeneous
Timed Task Spawn (HTTS) benchmark, to implement our de-
sired testing environment. HTTS spawns a controllable number
of HPX-threads, each with an identical payload function which
has a controllable duration. This controllable payload function
performs no computation and makes negligible memory ac-
cesses; it performs live-waiting until it has reached its target
duration. HTTS has the capability to simulate different condi-
tions of load balance between queue packages. Additionally,
artificial synchronization can be modelled by indicating that a
certain ratio of HPX-threads should suspend.

As mentioned, in this study we will not examine the
overheads of work-stealing. To ensure that no work-stealing
occurs in our runs, we configure HTTS to statically partition
all of the HPX-threads that it spawns. We are using the
Priority Local-FIFO scheduler, so there is one queue package
associated with each worker-thread. In our runs HTTS places
an approximately equal number of HPX-threads, each with an
identical payload duration, into each worker-thread’s queue
package.

We began by investigating HTTS with no suspensions. In



Fig. 1: HTTS EP Efficiency: Platform Survey
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this case, there is little to no communication or synchro-
nization (artificial or otherwise) because no work-stealing
occurs and all of the HPX-threads spawned by HTTS execute
completely independent of each other.

Under these conditions of no work-stealing and no suspen-
sions, HTTS is an embarrassingly parallel (EP) problem. We
will call HTTS configured in this fashion HTTS under EP
conditions or HTTS EP.

We can define a concise theoretical performance model un-
der these conditions. With m HPX-threads per worker-thread,
n worker-threads, a payload duration of p, the theoretical
walltime wy is simply:

HPX-threads

wr=|——"-—"-—

T Worker-thread
wr = mp

> (Payload Duration)

If the measured walltime for a run is wy, then the efficiency
FE of that run is:

Theoretical Walltime

Measured Walltime
wr mp

E = =
wWmM wnm

Figure[I] presents HTTS efficiency results cycles on our test
systems: a 2-socket Intel Sandy Bridge system and a Xeon
Phi co-processor. We used 500k HPX-threads per core for all

platforms (e.g. 250k HPX-threads per hardware-thread on the
Xeon Phi). Figure [2| shows the HTTS efficiency results on the
Xeon Phi for differing levels of hyperthreading.

To account for different clock speeds, we defined the
payload in terms of cycles, and computed payload durations
for each platform. The payload selected was 217.5k cycles,
corresponding to 75 ps on the Sandy Bridge system, and 198
ps on the Xeon Phi. Despite the embarrassingly parallel nature
of our problem, we can clearly see that efficiency retains some
dependence on the degree of parallelism.

On the Intel Xeon system, we observed largely linear
behavior across a wide range of parameters, and multi-socket
penalties appear to be negligible. The Xeon Phi is a single-
socket system, so we expected to see linear behavior.

We performed a simple linear regression on the Sandy
Bridge and Xeon Phi efficiency data, with efficiency on the
y-axis, and the number of processing units minus 1 (e.g. n—1)
on the x axis. The y-intercept of such a linear regression
represents the serial efficiency of the application, or what
percentage of theoretical performance is achieved when the
application is run on one processing unit. If the behavior of
efficiency with respect to the number of processing units is
monotonically decreasing - that is, as long as Amdahl’s law is
not violated - then the 1-core case is the most efficient case.

The slope in these linear fits depicts the change in efficiency
divided by the change in amount of parallelism (e.g. number
of processing units). For the scope of the work we present
in this paper, we assume that this value is negative. We say
the magnitude of the slope is the inefficiency gradient of
an application that exhibits linear efficiency behavior on a
particular system. We can view this metric as a representation
of scalability, or how well running the application in parallel
(e.g. n > 1) performs compared to the 1-core case.

It is critical to consider both serial efficiency and scalability
when studying a parallel application, because comparing appli-
cations using just one of these metrics will hide differences in
performance. Two applications may exhibit the same speedup
characteristics but have very different serial efficiencies, and
vice versa. These concepts need not be limited to linear
efficiency behavior.

In Table we list the 1-core efficiency and inefficiency
gradients for various runs on our Xeon Phi and Sandy Bridge
system. We also list the coefficients of determination (0 <
R? < 1) obtained from the runs - the closer R? is to 1,
the better the fit is. The high R? for the Sandy Bridge node
indicates there is no significant change of the behavior when
we cross the socket boundary (from 8 cores to 9 cores). Our
analysis indicates that we can be confident that HTTS EP
scales linearly on both platforms.

In the 75 ps payload runs on the Sandy Bridge platform,
we achieve 98.8% efficiency in the 1-core case, so we know
that the serial overheads are very low relative to the payload
duration. For these runs, we lose only 0.03% efficiency
with each additional core that we add, indicating very strong
scalability.



On the Xeon Phi, we were interested in examining how
well HTTS EP would perform when running with different
hardware-thread to core ratios. The Knight’s Corner generation
of Xeon Phi co-processors has four hardware-threads per core,
which helps to hide instruction latency. The Phi is not capable
of executing from the hardware context for two cycles in a
row [20] . For optimal performance, it is necessary to use at
least two of these hardware-threads per core. We note that our
selection of grain size for these runs was made both to account
for limitations of the hardware clock and because the 1056 ps
grain size is of the same magnitude of the granularity used in
some of the existing HPX applications we wish to run on the
Phi.

When we compare the results shown in Figures[I]and[T] with
the models from Table [[V] we see that our linear models fall
within the range of confidence of our measured data across
most of our data set. In Table [V| we show the predicted and
measured efficiencies for the runs with maximal parallelism
(e.g. the largest number of cores).

VI. THE HPX-THREAD LIFE CYCLE

We will now discuss our technique for quantifying the
overheads of threading in HPX applications, and apply it to
HTTS under EP conditions.

As discussed in Section HPX-threads are finite-state
machines. To quantify the overheads of HPX-threads, we
identify the measurable events that happen to HPX-threads
throughout their lifetime. These events form the HPX-thread
life cycle. Each of these steps involves at least one expen-
sive operation; a large memory allocation/deallocation/access,
locking, or atomics. The steps are followed sequentially by
every HPX-thread, with the exception of a single three-way
branch. Deferred execution (e.g. fire and forget semantics)
separates some of the steps. We now outline each step, and
explain its expected performance effects.

o Describe: Users of the HPX-threading subsystem create
HPX-threads by passing an HPX-thread description to
the HPX scheduler. This operation is inexpensive, as it
involves no locking, atomics or large allocations (since
the HPX-thread description has no HPX-thread context).

o Push Staged: The HPX-scheduler pushes the HPX-
thread description to a staged queue in one of the
queue packages that it manages. This operation has
O(1) complexity, and involves compare-and-swap (CAS)
operations.

o Pop Staged: Eventually, the HPX-scheduler pops the
HPX-thread description from the staged queue (uses
atomics).

o Create: The staged HPX-thread description is used to
create a pending HPX-thread. This step involves a large
memory allocation, if a new HPX-thread context must
be acquired from the kernel. If the HPX-thread context
is provided by the recycling manager, the HPX-thread
context will still need to be reset and rebound to the
HPX-thread’s payload function. In both cases, expensive
calls must be made into the OS virtual memory manager,

and pressure will be placed on the TLB and data caches.
The Create step may also require locking or atomic
operations.

o Push Pending: The HPX-thread, which is now pend-
ing, is pushed to a pending queue. This operation uses
compare-and-swap atomics.

o Pop Pending: A worker-thread selects the HPX-thread
for execution by popping it from the pending queue.

o Scheduler to HPX-thread: The HPX scheduler context-
switches to the HPX-thread. The HPX-thread is now ac-
tive, and will execute the payload function. The overhead
here is simply the cost of a context switch, which we can
measure via a microbenchmark.

o Scheduler to HPX-thread: Once the payload function
has been executed, the HPX-thread will context-switch
back to the scheduler. Depending on the supplied exiting
state, one of three paths is taken:

— If the exiting state is suspended, the HPX-thread
waits until an external entity set its state to pending.
Then, return to Push Pending.

— If the exiting state is pending, return to Push Pend-
ing.

— If the exiting state is terminated, proceed to the next
step.

o Append Terminated: The HPX-thread is appended to
the ferminated list. The terminated list is implemented in
this scheduler using a lockfree LIFO, so this operation
involves atomics.

o Remove Terminated: When the HPX scheduler decides
to perform maintenance, the HPX-thread will be removed
from the terminated list.

« Recycle: Finally, the HPX-thread is sanitized and recy-
cled. This is a potentially expensive operation. It requires
the acquisition of locks inside of the HPX scheduler
and may destroy (possibly remote) objects that have
references bound to the terminated HPX-thread.

We start by addressing steps that consist solely of operations
on the lockfree queues. As we mentioned in Section the
staged and pending queues are FIFOs, and the terminated list
is a LIFO. Both are lockfree CAS-based implementations.

These steps of the life cycle are the simplest to address
because we can easily microbenchmark them. We determined
the cost of the push and pop operations of both the LIFO
and the FIFO by amortized analysis. We did not consider the
performance of either data structure under concurrent access,
as we know that this will not occur in HTTS EP (due to a
lack of work stealing). Our objective was to determine a lower
bound cost. In the microbenchmark, each OS-thread pushes a
specified number of objects into a locally created queue, and
then removes the same number of objects from the queue.
The test performs and times a few hundred to a few thousand
iterations at a time (a chunk of the total requested iterations),
to ensure that the test is not skewed by memory effects. We
summarize our results in Table The cost per lockfree
operation under these embarrassingly parallel conditions grows



TABLE IV: Linear Models of HTTS Efficiency on Intel Platforms: Simple linear regressions of efficiency vs processing
units on our Intel systems. A fixed theoretical walltime of 37.5 seconds was used for the Sandy Bridge runs, and 25k HPX-
threads per hardware-thread were used for the Xeon Phi. We used a payload of 1056 ps ( 1.1 million cycles)for the Xeon Phi

runs.

TABLE V: Comparison of Linear Models to Measured Data: The linear models presented in Table line up well with

Sandy Bridge Models

Parameters

Inefficiency Gradient
(Magnitude of Slope)

Serial Efficiency | R?
(y-intercept)

500k HPX-threads/core
75 ps (217.5k cyc)

0.0339%

98.8% 0.972

Xeon Phi Models

Parameters

Inefficiency Gradient
(Magnitude of Slope)

Serial Efficiency | R”
(y-intercept)

2 HW-threads/core 0.0728% 98.7% 0.986
3 HW-threads/core 0.0849% 98.5% 0.987
4 HW-threads/core 0.0879% 98.0% 0.995

our measurements. The linear models remain within the range of confidence of the measured data.

Sandy Bridge Models

Parameters
500k HPX-threads/core
75 ps (217.5k cyc)

Predicted Efficiency
98.3% on 16 cores

98.4% =+ 0.1% on 16 cores

Measured Efficiency

Xeon Phi Models

Parameters

Predicted Efficiency

Measured Efficiency

2 HW-threads/core

90.0% on 120 cores

89.4% + 0.6% on 120 cores

3 HW-threads/core

83.2% on 180 cores

82.7% + 0.5% on 180 cores

4 HW-threads/core

76.9% on 240 cores

76.8% =+ 0.3% on 240 cores

very slowly with respect to the number of cores.

Every HPX-thread will incur at least 2 FIFO pushes (Push
Pending and Push Staged), 2 FIFO pops (Pop Pending and Pop
Staged), 1 LIFO push (Append Terminated) and 1 LIFO pop
(Remove Terminated) during it’s lifetime. Each suspension
will invoke at least two more, as a suspended HPX-thread
must re-enter a pending queue.

Using these regressions, an approximate lower bound for
cost of queuing per HPX-thread on the Sandy Bridge is
4.412n + 130 nanoseconds (where n is the number of worker-
threads). In the 1-core case, this is 12% of total inefficiency
per HPX-thread and in the 16-core case the cost is 10% of
total inefficiency per HPX-thread. On the Xeon Phi, the cost
of queuing per HPX-thread is 0.4934n 4 1775 nanoseconds.
This is 7% of the total inefficiency per HPX-thread in the 2-PU
case, and 5% of the total inefficiency per HPX-thread in the
120-PU case. The decrease in percentage of total inefficiency
indicates that the queuing costs are not the factor driving the
inefficiency of HTTS EP.

Using a microbenchmark, we were able to measure the
amortized overheads of the context-switching routine used
by Scheduler to HPX-thread and HPX-thread to Scheduler
steps. The results of the microbenchmark indicated that this
overhead was not dependent on the number of cores used by
the application. Thus, we were able to come up with simple
estimates for the context-switching overhead per HPX-thread.
On the Sandy Bridge platform, the overhead per context switch
is 45 ns £+ 3 ns ( 6% of the total inefficiency). On the Xeon
Phi, the overhead per context switch is 1300 ns 4 40 ns ( 10%
of the total inefficiency). Because this cost does not depend
on the amount of parallelism, it cannot be a driving factor of

TABLE VI. Lockfree Push/Pop Costs in HTTS EP: We
modeled the amortized costs of the FIFO/LIFO operations
using simple linear regressions of the data, with the number
of cores (n) as the independent variable.

Sandy Bridge Models
Operation | Amortized Cost (n cores) R?

FIFO Push 0.715n 4 20.0 0.934
FIFO Pop 1.11n 4 13.7 0.950
LIFO Push 0.176n + 13.8 0.922
LIFO Pop 0.205n + 16.6 0.919

Xeon Phi Models
Operation | Amortized Cost (n cores) | R

FIFO Push 0.0883 * = + 306.6 0.914
FIFO Pop 0.0617 * x + 248.6 0.899
LIFO Push 0.0489 * x + 164.1 0.885
LIFO Pop 0.0478 * x + 168.2 0.882

the inefficiency of HTTS EP.

To determine the cost of the Describe step, we look at the
three computational phases of the timed portion of HTTS EP’s
kernel. These phases are:

e Warmup Phase: The period of time in which HPX-
threads are still being created. We can measure the
duration of this phase by using an HPX performance
counter that measures the total length of all staged and
pending queues. We evaluate this performance counter
at regular intervals ( 10 ps) during the execution of the
timed portion of HTTS EP. The warmup phase ends when
this performance counter achieves a maximum value.

o Hot Phase: The period of time in which no HPX-threads
are created and no work stealing happens. This is the
phase that we are primarily interested in measuring. To



determine the length of this interval, we look at the
queue length counter as well as a counter that records
the cumulative number of HPX-threads stolen throughout
the system. If we are in the hot phase, queue lengths
are decreasing and the number of HPX-threads stolen
remains constant. These are necessary but not sufficient
conditions, although we have found them to be suitable
except in the case of payloads smaller than 1 ps.

o Cooldown Phase: The period of time in which no tasks
are being created and work stealing is happening. We say
cooldown is the period in which no new HPX-threads are
being created and work stealing is occuring. During the
cooldown phase, queue lengths are decreasing and the
number of HPX-threads stolen is increasing.

In HTTS EP, the Describe step for every application HPX-
thread occurs during the warmup phase. During the warmup
period, all worker-threads are enqueuing HPX-threads - each
worker-thread enqueues an equal number of HPX-threads. A
synchronization primitive is used to ensure that the none of the
worker-threads begin executing HPX-threads before all HPX-
threads have been enqueued. We have found the warmup phase
to have a negligble duration relative to the hot phase, except
in the case of very small payloads and very large HPX-thread
quantities.

The Creation and Recycle steps are difficult to measure
in a microbenchmark, because they are tightly integrated
with the HPX scheduler. Since we were unable to extract
a microbenchmark to measure these overheads, we instead
added new HPX performance counters which would record
the amount of walltime spent performing operations associated
with these steps.

We observed that on both the Xeon Phi and the Sandy
Bridge, the majority of scheduler overhead (40-60%) could be
associated with the Creation step. This result is not surprising,
since the Creation step (and to a lesser degree the Recycle step)
is the only place in the HPX-thread life cycle where:

o Non-Trivial Memory Allocation Occurs HPX-thread
contexts are stack-based data structures which typically
occupy multiple pages of virtual memory. Storage space
for these thread contexts usually dominants the memory
profile of fine-grained HPX applications. HPX’s thread
context recycling mechanism is capable of mitigating the
overheads of these allocations, but the initial allocation of
virtual memory from the operating system is a non-trivial
operation that blocks at the OS-level. Thus, in comparison
to the rest of the life cycle steps, the allocations which
may occur in the Creation step have significant overheads
and scaling limitations.

« Thread Contexts are Accessed Directly While recycled
thread contexts reduce overheads by removing unneces-
sary allocations at the OS level, the Creation and Recycle
steps must ensure that encapsulation and system security
are maintained by clearing and reinitializing terminated
thread contexts. The order in which HPX-thread contexts
are recycled is inherently irregular. New thread contexts
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are allocated from sequential regions of virtual memory,
but thread contexts are recycled with FIFO semantics.
FIFO recycling reduces the algorithmic overhead of recy-
cling and should promote good cache behavior, however
it also leads to memory fragmentation and TLB thrashing.

Therefore, we conclude that the Creation and Recycle steps
are the limiting factor behind HPX-thread overheads. Figures
B] and [ show the breakdown of the measured per-HPX-
thread overhead in HTTS EP. As we have discussed, the
context switching overheads are fixed and represent a small
portion of the total overheads. The queuing overheads grow
linearly as we add more parallelism, but the rate of growth
is comparatively minor. The overheads associated with the
Creation and Recycle steps are significant contributors to the
overall scheduler overhead, and these overheads increase when
more execution units are utilized.

Our results indicate that the efficiency of the HPX scheduler
will be affected by the behavior of the HPX-thread recycling
system and the quantity of live HPX-thread contexts in an
application. Since the recycling system is unable to reuse
suspended HPX-thread contexts, this leads us to conclude
that applications which frequently suspend HPX-threads may
experience degraded performance due to excessive thread
context allocations.



VII. RELATED WORK

Comparable multi-threading runtime systems with work
stealing threading solutions include Qthreads library [21]],
[22], Intel Thread Building Blocks (TBB) [23], and Cilk++
[24]. The Qthreads library supports lightweight threads with
fast user level context switching and thread stealing mecha-
nisms. Qthreads uses full empty bit (FEB) synchronization of
each memory location for fast context switching and employs
futures and mutex synchronizations. Using the Rose Com-
piler, OpenMP source code can be transformed into Qthreads
applications, breaking the larger OpenMP loops into smaller
lightweight gthreads. TBB, a C++ parallel library, distributes
tasks among parallel processors, supports partition affinity
for loops and implements random task stealing. Charms++, a
C++ parallel library, uses communicating objects called chares
which exchange data through remote method invocations.
The runtime system captures statistics for load balancing.
Cilk++ is a compiler based lightweight threading solution
which implements local spawn methods with local barriers
and parallel for loops. Cilk is an extension that gives users an
easy way to implement parallelism to conventional codes, but
employs conventional CSP processing for limited scaling of
applications.

VIII. FUTURE WORK

These experiments quantify the overheads of the threading
system of HPX without the complication of work stealing and
synchronization. It gives us the groundwork and measurements
necessary to compare the various thread scheduling policies
of HPX and to further investigate work stealing and synchro-
nization overheads. The results from these experiments also
indicate some additions to our work stealing algorithms such
as skipping the staged state when pending work is depleted.
Further work needs to be done by making similiar measure-
ments and comparison of irregular and regular applications or
benchmarks using the HPX runtime system. Future research
is planned in applying the knowledge gained from metrics at
runtime to tune thread scheduling dynamically.
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