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Abstract

In structural dynamics, the importance of parallel computing cannot be overstated. Structural

dynamic simulations often involve vast amounts of data and intricate mathematical models that

demand substantial computational power. To tackle these challenges effectively, the parallel

implementation of such simulations is imperative. Parallel computing enables engineers and

scientists to expedite their analyses, thereby providing quicker insights into the behavior of

complex structural systems. Moreover, it allows for investigating more detailed and accurate

models that would be practically infeasible with sequential computing.

This project delves into the core of this need for parallelism in structural dynamics, focusing

on a simple yet illustrative spring-mass system. Employing Euler’s solver iteratively, the project

leverages the power of parallel computing to simulate this system. The choice of the FleCSI library

for this task exemplifies the significance of utilizing modern parallel computing frameworks.

The study not only focuses on the parallel implementation using the FleCSI library but also

conducts a comprehensive performance analysis of MPI and HPX backends of FleCSI. The results

unearth insights into the behavior of parallel solvers, revealing that, with sufficient problem size,

the MPI backend exhibits great scalability across a range of ranks from 1 to 40. It can achieve

a maximum of 17 times speedups with 32 ranks(input size = 2 million). However, for smaller

problems, performance gains are limited due to considerable communication overhead dominated.

The HPX backend, designed to excel in task-based parallelism, falls short in this specific

simulation. There is no performance scaling at all across the cores. Its performance is worse than

the MPI backend across various cores because of the application does not expose task parallelism.

The application doesn’t add parallelism on the flecsi task level because the tasks are strongly

sequential. Therefore, the problem’s simplicity and limited task dependencies result in a task tree

too narrow for HPX to showcase its parallel processing capabilities, highlighting the importance

of tailored parallelism for specific problems. In essence, the outcomes from the HPX backend

confirm that inefficiency arises from a lack of task dependency parallelism, particularly the width
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of the task tree and the magnitude of work within each dependency task.

These findings offer valuable guidance for enhancing performance with the HPX backend.

This may involve optimizing algorithms to promote local parallelism and ensuring that tasks

contain substantial workloads.

To address this issue, we introduced a parallel for-loop known as forall() and replaced the

conventional for-loop within the application’s solver. This optimization allows for more efficient

workload distribution, fully harnessing the capabilities of the HPX backend. Our solution yields

favorable performance scaling across multiple cores. Notably, as the input size increases, the

performance of the HPX backend becomes comparable to, and in some cases even surpasses, that

of the MPI backend.

This 1-dimensional structural dynamic system simulation project serves as an introductory

case study for newcomers to the FleCSI library. It also marks the first time primary attempt

to assess the performance of the HPX backend of FleCSI, offering a foundation for future

enhancements and optimizations in parallel computing for structural dynamic simulations.

Keywords: Flecsi library, parallel computing, Euler’s method, optimization, performance

analysis, MPI backend, HPX backend.
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Chapter 1

Introduction

Structural dynamics lies at the heart of numerous engineering applications, from earthquake

engineering to aerospace design and mechanical systems analysis. These systems are often

governed by second-order ordinary differential equations (ODEs), and the numerical integration

methods used to solve them have played a crucial role in simulating their behavior. However,

as computational demands grow and simulations become increasingly complex, there is a

pressing need to explore parallel computing techniques to enhance solver efficiency and reduce

computational time.

To address this challenge, high-performance computing techniques have become essential for

efficiently addressing complex simulations. This project comprehensively examines the FleCSI

(Flexible Computational Science Infrastructure) library and its role in implementing simulations

for structural dynamic problems.

The FleCSI Library

The FleCSI library, developed by the Los Alamos National Laboratory (LANL), is a

powerful tool designed to provide flexibility and adaptability to various computational science

simulations. FleCSI offers a compelling framework for constructing highly parallelized

applications, specifically focusing on managing data dependencies and orchestrating complex

simulations.

FleCSI’s data-driven design philosophy is instrumental in managing complex simulation data

dependencies. This design allows for the explicit definition of data relationships between different

simulation components, streamlining the parallel execution of tasks. By abstracting complex

data-task interactions, FleCSI simplifies the expression and comprehension of parallelism, helping

mitigate issues like data races and ensuring accurate and efficient execution within parallel and

distributed computing environments.
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Motivation

The motivation behind exploring FleCSI lies in the existence of challenging problems that

demand innovative solutions. For example, consider using the Euler solver to simulate an arbitrary

number of spring-mass structural dynamic systems. This scenario encompasses engineering,

physics, and computational science, involving the simulation and analysis of complex systems’

vibrational and dynamic behavior. FleCSI’s adaptability and multi-backend support make it a

valuable tool for addressing such intricate problems efficiently.

Our investigation will employ a 1D spring-mass system problem as a representative case

study. This problem, while conceptually simple, introduces data dependency challenges that are

emblematic of more complex structural dynamic simulations. By applying FleCSI and numerical

integration methods like Euler to this specific problem, we aim to comprehensively understand the

FleCSI library and how it can be leveraged to advance computational science. We will introduce

key FleCSI concepts, architecture, and backend support, emphasizing its role in addressing data

dependencies and orchestrating the parallel execution of tasks. Furthermore, we will delve into

performance and scalability aspects to gain a holistic perspective on FleCSI’s potential in the realm

of computational science.

Primary Exploration: FleCSI and Its Backend Workings

This thesis embarks on a primary exploration of the FleCSI library, focusing on the role of

different backends in enhancing its capabilities. We will elucidate the core concepts of FleCSI,

its architecture, and the intricacies of its backend support, shedding light on how it enables the

development of simulations across diverse scientific domains.

Performance Testing with Different Backends

In addition to understanding the fundamental concepts of FleCSI, this project also aims

to assess the performance of simulations using different backends, including HPX and MPI.
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Performance metrics such as execution time, speedup, and scalability will be carefully evaluated

to provide insights into each backend’s comparative advantages and trade-offs. This performance

testing will be a critical component of our exploration, guiding researchers and practitioners in

selecting the most suitable backend for their specific computational needs.

Through this research, we aspire to empower readers with a profound appreciation for

the value of FleCSI and its ability to drive advancements in computational science, ultimately

facilitating solutions to complex, cross-disciplinary challenges.

Report Structure

This report is structured as follows: In Chapter 2, we delve into the literature on structural

dynamics systems and provide an overview of the backends of the FleCSI library. Chapter 3

introduces the programming model and the main components of FleCSI, offering insights into

how FleCSI is implemented. Chapter 4 outlines the methodology, including the problem statement

for our structural dynamic system. Chapter 5 presents the implementation code for simulating this

system using FleCSI. Lastly, in Section 6, we detail our experimental setup and benchmarks, share

our key findings, and suggest avenues for future research.
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Chapter 2

Literature Review

In this chapter, we present a comprehensive literature review that lays the foundation for our

project’s objectives. We delve into three critical areas of study: the 1D mass-spring system, the

FleCSI library, and its backends HPX and MPI.

2.1 1D Mass-Spring System

2.1.1 Mechanical Dynamics of Mass-Spring Systems

The 1D mass-spring system represents a fundamental mechanical system widely studied in

the realm of classical mechanics and engineering. One of the cornerstones of this system is Hooke’s

law, formulated by Robert Hooke in 1678. Hooke’s law describes the linear relationship between

the force applied to a spring and the resulting displacement [1]. This law serves as the basis for

modeling the behavior of linear springs in mass-spring systems.

2.1.2 Numerical Simulation of Mass-Spring Systems

In the realm of computational mechanics, researchers have extensively explored numerical

methods to simulate the dynamics of mass-spring systems. These methods include Euler’s method,

Runge-Kutta methods, and finite element methods [2]. For instance, Euler’s method discretizes

time and approximates the solution to the equations of motion, making it a valuable tool for

modeling and analyzing the behavior of mass-spring systems. Such numerical techniques are

pivotal for achieving accurate predictions of mass-spring system behavior, particularly in practical

engineering applications.
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2.2 FleCSI Library overviews

2.2.1 Introduction to FleCSI

The FleCSI (Flexible Computational Science Infrastructure) library has gained prominence

as a versatile computational framework tailored to meet the multifaceted challenges of scientific

simulations. FleCSI’s modular and flexible architecture empowers researchers to compose

simulations by assembling reusable components [3]. Its adaptability makes it a compelling choice

across various scientific domains. The applicability of the FleCSI library extends across a spectrum

of scientific domains.

2.3 FleCSI’s Backends: HPX and MPI

2.3.1 HPX (High-Performance ParalleX)

HPX is a C++-integrated runtime system that excels as an Asynchronous Many Task (AMT)

solution. HPX offers a C++ standard API, complying with standard C++. Its commitment to

aligning with C++ standardization proposals ensures a uniform interface, especially in parallelism

and concurrency, and extends support for distributed and heterogeneous computing.

Many facilities empower HPX parallelism. Such as Threads (thread), Futures (hpx::future),

Asynchronous Tasks (hpx::async), Synchronization primitives( whenall), and so on.

HPX lightweight thread: HPX’s lightweight threading system quickly switches user-level

threads, reducing overhead. Very small overheads empower the program to be divided into

smaller tasks. The minimized overhead, including thread creation, scheduling, and execution

time, supports the scheduling of numerous tasks with minimal performance impact [4]. HPX’s

lightweight threading system, when coupled with upcoming features, offers a significant

advantage: it makes auto-parallelization highly efficient. This means that it allows us to directly

express the dependency graph as a runtime-generated execution tree, streamlining the entire

parallel processing process.

HPX future: serves as a result that has not been computed yet. The benefit from ‘future’
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[5, 6]:

• Enables transparent synchronization with the producer

• effectively concealing the intricacies of thread management

• By encapsulating data dependencies(future represents a data dependency), it renders

asynchrony more manageable.

• Enabling the coordination of asynchronous execution across multiple tasks.

• Turns concurrency into parallelism

Task Continuation: HPX offers additional support for task-based programming alongside

its lightweight thread and hpx::future features, including task continuation. By employing

hpx::future, one can attach continuations to asynchronous operations instead of waiting for the

result. This approach eradicates the need for blocking waits (such as .get()) and saves resources

that would otherwise be spent on thread polling. Consequently, it greatly enhances program

responsiveness. Additionally, one can create chains of hpx::future instances by linking one to

another, establishing an implicit dependency graph through continuations. This not only optimizes

program performance but also streamlines asynchronous task handling.

Therefore, with advanced parallelism facilities. HPX is an essential backend of FleCSI

library, stands as a task-based parallel programming framework designed for scalability

and efficiency [7]. It facilitates asynchronous task execution, distributed computing, and

high-performance parallelism, rendering it apt for simulations characterized by irregularity and

dynamism.

2.3.2 How HPX backend of flecsi works

When invoking the magic parallel function of flecsi:

1 flecsi::execute< yourtask >
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, flecsi undertakes a sequence of actions to manage task execution and dependencies. What flecsi

does: it has some code that iterates all the arguments and invokes the backend for each of the

arguments. at that point, the backend can decide what to do with each argument.

The HPX backend is responsible for examining annotations associated with these arguments

and making decisions based on their characteristics. For instance, if an argument is labeled

as “read-only,” the HPX backend establishes a read-only dependency for that argument. These

arguments typically reference FLECSI fields.

The HPX backend introduces ”futures” to this process. Each field is associated with a future,

which becomes “ready” when the field is updated. When dependencies are established, the HPX

backend attaches continuations to these futures. Subsequently, when the task runs and makes the

associated ‘hpx::future’ ready, it triggers the execution of continuations for tasks that depend on

it. This mechanism enables the proper sequencing of tasks, as the backend keeps track of implicit

dependencies, such as when one task writes to a field and another reads from it.

To illustrate, when the task is executed, it first writes to the relevant field. Once this

operation is completed, it signals the associated future to become ready, triggering the execution

of continuations for dependent tasks. The task execution order is meticulously orchestrated by

examining annotations and defining the order in which tasks must run. Tasks dependent on a

specific field run as continuations on the ‘hpx::future’ that become ready when the task updates

the field. In essence, the HPX backend reconstructs the dependency graph using the annotations

associated with the parameters of tasks. It leverages the concept of ”futures” to create a precise

task execution sequence and maintain the correct order.

Therefore, all the HPX backend does is launch tasks and run them in parallel whenever

possible. It constructs the dependency tree of these tasks by analyzing the attributes of the

arguments in the FLECSI task. Specifically, it examines the annotations, such as ‘read-only’ or

‘write-only,’ to determine the nature of the dependency. For instance, tasks that involve writing
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must wait for the write to complete before reading.

This dependency information is expressed through continuations on futures. Each field is

associated with its own future, and when the field is updated, the future becomes ‘ready.’ This

readiness triggers all the associated dependencies automatically. In essence, the HPX backend

utilizes these mechanisms to coordinate and optimize the execution of tasks, ensuring they run in

the correct sequence.

In sum, when one uses flecsi::execute< yourtask >, FLECSI manages task execution

and dependencies. The HPX backend examines argument annotations, such as ‘read-only’ or

‘write-only,’ to establish dependencies. It uses ‘futures’ associated with fields to coordinate tasks,

triggering continuations when the tasks are ready. This mechanism ensures the correct sequence of

tasks. The HPX backend optimizes task execution by running tasks in parallel whenever possible

and reconstructs the task dependency tree based on argument attributes. Implicit dependencies,

like write-then-read, are automatically managed. In essence, it automates task scheduling and

execution while maintaining proper sequencing.

2.2.3 MPI (Message Passing Interface)

MPI, or the Message Passing Interface, serves as a ubiquitous standard for message-passing

parallelism in scientific computing [8]. Renowned for its adeptness in distributed memory parallel

computing, MPI finds extensive usage in high-performance computing (HPC) systems and clusters.

2.2.4 Parallelization in MPI and HPX backend of FleCSI

FleCSI is empowered with different backends for high-performance computing.

MPI bakend: FleCSI employs the MPI backend with a one-rank-per-core approach. In this

configuration, parallelization happens across ranks instead of within a single rank. To illustrate,

FLECSI first split the array into partitions with workload balance, distributing them across the

various ranks so that each rank has its own amount of work and communicates behind the scenes

to do the boundary exchanges.
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HPX bakend:

The HPX backend employs a parallelization strategy by running multiple threads within a

single rank. Usually, HPX is designed to facilitate parallel execution, encompassing both across

ranks(distributing) and inside the locality.

Parallelization within a locality benefits applications that inherently expose parallelism.

Because FleCSI constructs a task dependency tree, while HPX schedules tasks based on these

dependencies. However, parallelism is limited if the task tree lacks width and is linear, leading to

increased overhead without significant gains. The linear tasks means don’t get any parallelization

because the dependencies do not allow that. That means, on the one hand, applications don’t

get any parallelization from that but pay for the overhead that the hpx backend introduced.

Additionally, hpx tasks have a certain overhead associated with them, approximately in the order

of milliseconds per task. That means if there is less work inside the task, then applications have to

pay more overhead cost than gain benefit from parallelism.

Therefore, two key factors for HPX to be efficient:

• Abundant Local Parallelism:

HPX performs most efficiently when the application inherently exposes substantial local

parallelism. This means having a wide dependency tree where multiple tasks depend on a

single task. In this scenario, HPX can spawn and run all the dependent tasks concurrently.

Hence, the first requirement for efficiency is a wealth of local parallelism.

• Sufficiently Workload Within Tasks:

HPX tasks come with some inherent overhead. For instance, a simple addition operation

executed as a FLECSI task generates an HPX thread with just that operation. This results in

paying a tremendous amount of overhead, which is not there in the MPI case, because MPI

directly executes that function without spawning a new thread.

In contrast, in the MPI context, FleCSI tasks are executed in line without any additional

scheduling. So don’t pay any overhead for small fleCSI tasks, but pay a lot of overhead for
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small fleCSI tasks in the HPX back end. Therefore, the second condition for efficiency is to

ensure tasks are substantial enough to offset the overhead introduced by HPX.

In summary, HPX operates most efficiently when your application exhibits ample local

parallelism and contains tasks with workloads large enough to compensate for the inherent

overhead. However, in situations with trivial applications, the MPI backend may outperform HPX

due to the absence of this overhead.

Therefore, for performance analysis of the application, focus on two key criteria:

1. How much parallelism does it expose: What is the dependency of those tasks, and how wide

is it. Is it just one task wide, or is it ten tasks wide or 100 tasks wide

2. And the second thing is how much work is inside each of the dependency tasks.

This assessment will help determine how effectively HPX performs within the application based

on these criteria.

2.4 Gap Analysis: Identifying Research Objectives

While existing literature provides invaluable insights into simulation, the FleCSI library,

HPX, and MPI, a notable gap emerges in the context of harmoniously integrating these

components.

In this section, we outline the specific research objectives and gaps that motivate our project.

These objectives are driven by the need to integrate the HPX backend into FleCSI, enhance its

performance, and address the lack of a 1D simulation problem application within the FleCSI

framework.

2.4.1 Integration of HPX Backend

Objective 1: The integration of the HPX backend into the FleCSI library represents a crucial

step in expanding the library’s capabilities. Historically, FleCSI lacked a dedicated HPX backend,
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which limited its potential for high-performance parallelism and distributed computing. Our

objective is to seamlessly integrate the HPX backend into FleCSI, enabling researchers to leverage

its features for enhanced parallelism and improved performance.

Rationale: By integrating HPX into FleCSI, we empower users with a powerful backend

that excels in asynchronous task execution and distributed computing. This integration fills a

critical gap in the FleCSI ecosystem, opening the door to a broader range of applications and

computational challenges.

2.4.2 Bridging the Gap: 1D Spring-Mass Simulation

Objective 2: Another significant gap in the FleCSI library is the absence of a 1D spring-mass

simulation problem application. While FleCSI is a versatile framework, it currently lacks a

straightforward example that introduces new users to the world of 1D simulations. Our objective is

to develop a comprehensive 1D spring-mass simulation using FleCSI, serving as a valuable entry

point for newcomers to the library.

Rationale: Providing a 1D spring-mass simulation within the FleCSI framework not only

addresses the lack of a basic example but also offers new users a practical and intuitive introduction

to the library’s capabilities. This example will serve as a valuable resource for researchers and

students looking to embark on simulation work using FleCSI.

2.4.3 Advancing the FleCSI Ecosystem

By achieving these objectives, we contribute to the advancement of the FleCSI ecosystem.

The integration of the HPX backend enhances the library’s parallel computing capabilities,

making it a more competitive choice for high-performance scientific simulations. Simultaneously,

the development of a 1D spring-mass simulation within FleCSI expands its applicability and

accessibility to a broader user base, fostering growth and innovation within the community.

In the following chapters, we will detail our approach to accomplishing these objectives and

demonstrate how they align with our project’s overarching goals.
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Chapter 3

Programming model and main components of FleCSI library

In this chapter, we embark on a comprehensive journey into the core of the FleCSI

(Flexible Computational Science Infrastructure) library. At the heart of FleCSI lies a modular

architecture that reshapes the landscape of scientific software development. This architecture

promotes code reusability, organization, and flexibility, allowing simulations to comprise a

collection of interchangeable components. We explore the FleCSI library’s programming model

architecture, delve into the key components(data, execution, and control models) and some

important concepts(ghost copy, boundary layers), and explore how they work together within the

context of scientific simulations.

3.1 Runtime Model

The FleCSI runtime model offers a simple interface to inquire about the system’s status. This

includes details on runtime initialization like the total threads, number of processes, and threads

per process. It also provides task-specific information, such as the number of colors and the color

of the current point task when executing.

3.2 Control Model: Orchestrating Simulation Execution

Among the key components of the FleCSI library, the Control Model plays a central role

in orchestrating the execution of simulations. It governs task sequencing, coordination, and

synchronization, ensuring coherent simulation flow. The control model enables users to define

application structure with a control-flow graph (CFG). Each control point hosts a directed acyclic

graph (DAG) of actions, where actions often trigger tasks, each operating on a specific data subset

or “color”. Task launches produce concurrent point task instances for each color.

In particular, control Points are static markers, defining a control-flow graph (CFG) that

may contain cycles. Actions, which are C++ functions executed within control points, have
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developer-defined dependencies, shaping a directed acyclic graph (DAG). Additionally, tasks are

C++ functions launched by actions for distributed data interaction. FleCSI dynamically performs

topological sorting of these actions within each control point during runtime, thereby establishing

a sequential program order.

This model substitutes the conventional hardcoded execution structure of an application with

a clearly defined and extensible mechanism, offering easy verification and visualization.

3.2.1 Visualization of Control model

FleCSI provides the command-line option “–control-model,” which enables users to generate

dot files for visualizing both the control model and the sequential ordering of registered actions, as

shown in Figure 3.1.

Figure 3.1: Flecsi Control Model [9]

The benefit of this model is that it enables users to easily add new actions with dependencies

to the model’s DAGs without altering upstream code. Figure 3.2 demonstrates the integration of
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a new node, action N(), under Control Point 2. FleCSI’s data model ensures seamless integration,

promoting extensibility.

Figure 3.2: Flecsi Control Model After adding extra action

3.2.2 Advantages of Control model

• Control Flow Management

The Control Model within FleCSI encapsulates the control flow of a simulation. It defines the

sequence of control points, actions, and tasks required to advance the simulation in a coherent

manner. This capability is essential for simulations with complex dependencies or those that

involve multiple interacting components.

• Task Scheduling and Coordination

Enables asynchronous task execution, optimizing performance.

Underpinning the Control Model is the ability to schedule and coordinate tasks. FleCSI’s
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task-based parallelism relies on asynchronous execution, allowing tasks to be scheduled and

executed independently. The Control Model ensures that tasks are executed in a logical sequence

while taking advantage of parallelism to enhance performance.

• Synchronization and Data Dependencies

Manages data dependencies and maintains consistency.

In simulations, synchronization is often necessary to satisfy data dependencies. The Control Model

manages synchronization points, ensuring that tasks that rely on shared data or resources are

executed in the correct order. This helps maintain data consistency and accuracy throughout the

simulation.

• Integration with Other Components

The Control Model seamlessly integrates with other key components of FleCSI, such as the

Mesh Topology, Data Management, and Specialization components. This integration ensures

that simulation execution is tightly aligned with data access and manipulation, enhancing overall

efficiency.

• Facilitating Complex Simulations

Abstracts task scheduling intricacies, facilitating focus on scientific aspects.

In scientific simulations, complexity is often inherent. The Control Model empowers researchers

to manage and navigate this complexity efficiently. It abstracts the intricacies of task scheduling

and synchronization, allowing users to focus on the scientific aspects of their simulations.

3.3 Data Model

Defining topology instances and fields:

FleCSI offers a data model that seamlessly integrates with task and kernel abstractions,

facilitating straightforward registration and access to diverse data types while automatically
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tracking dependencies. Since tasks can run in various memory spaces, the runtime handles

data management, ensuring copies are available in the relevant memory space and changes are

propagated to subsequent tasks that require it [9].

The FleCSI library’s data model is a fundamental aspect of its design, providing a structured

way to manage and interact with data within FleCSI-based applications. It serves as a framework

for organizing and accessing various data types while also automatically tracking dependencies.

Key components and concepts of the FleCSI library’s data model include:

• Fields: Fields are the primary data containers in FleCSI, representing various data types such

as scalars, arrays, or complex data structures. These fields can be declared and accessed

within the program to store and manipulate data.

• Accessors: Accessors are used to interact with fields, providing a way to read from or write

to them. Accessors are equipped with privileges, such as read-only or read-write, which

dictate how data consistency is maintained.

• Memory Management: As FleCSI allows tasks to execute in various memory spaces, it

manages data efficiently by copying it to the relevant memory space when needed. This

ensures that data is accessible and up-to-date for tasks executing in different contexts.

• Header Declarations: When using fields in header files, it’s essential to declare them as inline

const to adhere to the One-Definition Rule (ODR), preventing potential issues with multiple

definitions of the same data.

1 // field definition

2 inline const field<double>::definition<topology, topology::entities> myVar;

Listing 3.1: field define

Overall, the FleCSI library’s data model is designed to simplify the management of data

within parallel and distributed applications, offering a structured and efficient way to work with

data while ensuring data consistency and proper parallel execution.
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3.4 Execution Model

Launching tasks and kernels:

FleCSI employs “Tasks” and “Kernels” mechanisms to express work: Tasks operate on

distributed data, ensuring memory consistency via data privileges. Kernels work on data within

a single address space and require explicit barriers for consistency (relaxed-consistency memory

model).

Task Execution example :

Task-based parallelism lies at the heart of FleCSI’s execution model. Here, tasks are created,

scheduled, and executed asynchronously. This approach optimizes performance, promotes load

balancing, and adapts to various computing architectures.

List 3.1 demonstrates utilizing the execute method to trigger a task(line 13). Triggering tasks

using the execute function is where the real FleCSI magic happens to implement parallelism.

1 // field definition

2 const field<double>::definition<topology, topology::entities> myVar;

3 // task definition

4 void

5 project_namespace::

6 task::initdata(topology::accessor<ro> tp,

7 field<double>::accessor<rw>f){

8 forall(data, tp.entities()) {

9 f(data) = 0.0; // dummy initialization

10 }

11 // task execution

12 void

13 exec_init() {

14 execute<task::initdata, /*accelerator*/ >(topo, values(topo));

15 }

Listing 3.2: Task execution example
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For this example, several notable points can be learned:

• Using the execute function to trigger the tasks.

• Passing accessors’ privileges to the task:

Accessors’ privileges, like ”rw” in line 7, dictate the memory consistency operations

executed on the data when the next task is invoked. Available privileges include “na” (no

access), “ro” (read-only), “wo” (write-only), and “rw” (read-write). “na” privilege can be

employed to delay consistency updates.

3.5 Topologies of FleCSI

The following sections provide important concepts and also offer a starting point for

simulation in flecsi specialization.

A topology is a distributed-memory entity that holds user-registered fields across one or more

index spaces. It can also retain structural details needed to interpret those fields in a context

relevant to the topology category, like a structured mesh. Users can create multiple instances

of any topology as needed.

3.5.1 Specialization

Customize data structure(mesh, narray), interface, coloring method, or runtime behaviors

to align with the specific demands of the application. FleCSI’s specialization involves defining

each topology type as a customized version of the core topology types provided by FleCSI. These

customizations specify various properties, including the mesh’s dimensionality and which types of

connectivity information should be explicitly stored.

3.5.2 Index Space

Define the index Space in specialization:
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In FleCSI, index spaces are crucial in defining field arrays that store user data. To simplify,

consider an index space as a way to list an array’s elements. Indeed, within FleCSI, index spaces

represent the logical components or entities across all of our topology types.

3.5.3 Coloring

Define the coloring method in specialization: A coloring defines how the indices within an

index space should be divided or partitioned. In FleCSI, colorings define how to partition indices

within an index space, without implying size or being linked to any specific execution space. This

differs from the static rank-to-process mapping in MPI.

3.5.4 Domain

The domain enumeration classifies the types of partition entities that can be requested from a

topology specialization created using this particular type.

These domains in Figure 3.3 are crucial in various interface methods, offering details about

an axis, including size, extents, and offsets.

Figure 3.3: Layouts for one possible orientation

Table 1 shows the details for each domain of FleCSI library.

As determined by the coloring algorithm, the domain enumeration in a mesh part represents

particular characteristics. And specify the ghost layer and boundary layer in the coloring method.

When the boundary layer is integrated into the coloring function, the zero-based logical index space

transitions to an n-based index space, with ‘n’ indicating the depth of your customized boundary.
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Table 1: Annotations for each domain

Enumerator

logical the logical, i.e., the owned part of the axis
extended the boundary padding along with the logical part
all the ghost padding along with the logical part
boundary low the boundary padding on the lower bound of the axis
boundary high the boundary padding on the upper bound of the axis
ghost low the ghost padding on the lower bound of the axis
ghost high the ghost padding on the upper bound of the axis
global global info about the mesh, the meaning depends on what is being queried

3.6 Ghost Layer and Boundary Layer in FleCSI

In the context of the FleCSI library and parallel computing, the terms ”ghost layer” and

”boundary layer” refer to specialized layers of data that are used to manage communication and

data exchange between adjacent domains or partitions in a parallel simulation. These layers play

a crucial role in ensuring that data dependencies and interactions are correctly handled across

distributed memory systems.

Ghost Layer:

• Definition: The ghost layer, also known as the ghost zone or halo region, represents a layer of

data that extends beyond the boundary of a local domain or partition in a parallel simulation.

• Purpose: The ghost layer is used to store data associated with mesh elements or other

computational entities that are not entirely contained within a single domain. These

entities may have interactions with neighboring domains, and the ghost layer facilitates

communication and synchronization between adjacent domains.

• Communication: During simulation, data in the ghost layer is exchanged or ”ghosted”

between neighboring domains to ensure that each domain has access to the data it requires for

computation. This communication is typically performed using message-passing libraries

like MPI (Message Passing Interface) or HPX (High-Performance ParalleX).
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• Efficiency: Careful management of the ghost layer is essential for minimizing

communication overhead in parallel simulations. Techniques like ghost layer aggregation

and optimizing data transfer can enhance simulation efficiency.

Boundary Layer:

• Definition: The boundary layer is a term that is sometimes used interchangeably with the

ghost layer. It refers to the portion of the ghost layer that is closest to the boundary of a

domain.

• Purpose: The boundary layer specifically focuses on the part of the ghost layer that is

adjacent to the domain’s true boundary. It contains data points or entities that are near the

domain boundary and are involved in interactions with entities from neighboring domains.

• Local Computations: The boundary layer is typically involved in local computations, and

its data is used in conjunction with data from the local domain to ensure consistency in the

simulation results.

Overall, ghost layers and boundary layers are essential elements in parallel simulations

to facilitate inter-domain communication, enforce boundary conditions, and enable accurate

modeling of physical phenomena near domain boundaries.
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Chapter 4

Methodology

In this chapter, we outline the problem statement for our project, which revolves around

simulating a 1D spring-mass system and addressing the challenges associated with it. We will

introduce the structure of the 1D Spring-Mass system, discuss the governing equations, explain

our choice of the numerical integration method, and highlight the data dependency issues that need

to be considered during implementation in parallel later. In order to improve simulation efficiency,

we implement it using flecsi library and will compare the performance of different backends(MPI,

HPX).

4.1 Theoretical Backgrounds

A second-order hyperbolic system of ordinary differential equations typically characterizes

structural dynamics problems. In our study, we choose to use a simplified 1D spring-mass system

as our experimental case. This choice allows us to streamline our focus, bypassing the complexities

of intricate physics. Instead, we can concentrate primarily on implementing parallel simulation

techniques for solving structural dynamics problems.

4.1.1 Spring-Mass Systems

1D spring-mass systems are fundamental mechanical systems that consist of an arbitrary

number of masses attached to springs. The behavior of these systems has been extensively studied

in classical mechanics. Hooke’s law describes the relationship between the force applied to a spring

and its resulting displacement. Key equations governing the motion of such systems, including

Newton’s second law and the equation of motion, are well-established [Newton, 1687]. To

solve this problem, discretizes a complex problem into smaller, simpler elements, approximating

solutions over the entire domain.
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4.1.2 Structure of the 1D Spring-Mass System

Figure 4.1: 1D Spring-Mass System

The structure of the 1D spring-mass system can be visualized in Figure 4.1: The components

and their interactions within the system are clearly depicted in the diagram. It illustrates how the

mass, spring, and external forces are interconnected.

4.1.3 Governing Second-Order Differential Equations (ODEs)

mathematical model:

The dynamics of a 1D undamped spring-mass system are described by second-order differential

equations (ODEs) that model the behavior of the mass-spring system. The general form of the

governing ODEs is:

m · x′′(t) + c · x′(t) + k · d(t) = F (t) (4.0.1)

Where:

• m represents the mass of the object.

• x′′(t) is the acceleration of the mass.

• c represents damping (optional).

• x′(t) is the velocity of the mass.

• k represents the spring constant.

• x(t) is the displacement of the mass.
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• F (t) represents any external forces applied.

These equations govern the motion of the mass and are central to our simulation. In our case, we

actually simulate an undamped spring-mass system, which means c = 0. Therefore, the governing

equation of the undamped spring-mass system should be:

m · x′′(t) + k · d(t) = F (t) (4.0.2)

4.2 Numerical Integration Method: Euler’s Method

Numerical integration, also known as numerical methods for ordinary differential equations

(ODEs), is a fundamental technique in computational science and engineering. It plays a crucial

role in simulating dynamic systems, including the behavior of 1D spring-mass systems. The

primary purpose of numerical integration is to approximate the solution of ODEs when analytical

solutions are not readily available or practical. In our project, we will explore using Euler’s method

for its simplicity and clarity.

4.2.1 Background of Numerical Integration

The need for numerical integration arises from the fact that many real-world problems involve

complex differential equations that cannot be solved analytically. These differential equations

describe the behavior of dynamic systems over time. In engineering, physics, biology, and various

scientific disciplines, numerical integration methods are employed to obtain numerical solutions to

these equations.

One of the earliest and simplest numerical integration methods is Euler’s method, named after

the Swiss mathematician Leonhard Euler. Euler’s method is based on the idea of approximating the

solution to an ODE by taking discrete time steps and updating the state of the system incrementally.

This method is conceptually straightforward and provides a clear way to understand the dynamics

of a system over time.
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4.2.2 Euler’s Method

Euler’s method involves two primary steps for updating the state variables (e.g., position and

velocity) of a dynamic system:

Displacement Update:

xn+1 = xn +∆t · x′
n (4.0.3)

Velocity Update:

x′
n+1 = x′

n +∆t · x′′
n (4.0.4)

Where:

• xn and x
′
n represent the displacement and velocity at the time step n;

• ∆t is the time step size.

Euler’s method is computationally straightforward and provides an explicit update scheme.

Euler’s method allows us to approximate the system’s state at each time step, which is crucial for

simulating dynamic systems.

Here are the steps for applying Euler’s Method in a structural dynamic system:

1. Define the problem:

Clearly define the structural dynamic system you want to analyze. This includes specifying

the physical properties of the structure, such as mass, stiffness, and damping, as well as the

external forces or loads acting on it.

2. Formulate the governing ODEs:

Write down the governing differential equations that describe the motion of the structure.

These equations typically involve second-order ODEs, which relate the displacements,

velocities, and accelerations of the structural components.
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3. Discretize the time domain:

Choose a time step ( ∆t) for the numerical integration. This step size will determine the

accuracy and computational efficiency of the analysis. Smaller time steps provide more

accurate results but require more computational resources.

4. Initialize the system: Set the initial conditions for the system. This includes specifying the

initial displacements and velocities of the structural components.

5. Time-stepping loop:

Implement a loop that iterates through the time steps from the initial time (t = 0) to the final

time (t = T), where T is the total duration of the analysis.

6. Update velocities and displacements:

Within each iteration of the time-stepping loop, calculate the velocities and displacements of

the structural components at the current time step based on the governing ODEs. Use Euler’s

Method to perform the updates:

7. Update the displacement and velocity at time t using equations 4.0.3, 4.0.4.

8. Store or analyze the results:

Recording the time history of displacements, velocities, and accelerations for further analysis.

This data can be used to study the dynamic response of the structure to different loading scenarios

or to extract key performance indicators, such as natural frequencies and mode shapes.

Euler’s method is computationally straightforward and provides an explicit update scheme.

Euler’s method allows us to approximate the system’s state at each time step, which is crucial for

simulating dynamic systems.

However, it has limitations, especially regarding accuracy and stability. It may introduce

errors in simulations with highly oscillatory behavior or stiff systems.
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For more accurate simulations, higher-order numerical integration methods like the

Runge-Kutta methods [10] or implicit methods such as the Backward Euler method are often

preferred. These methods can mitigate some of the issues associated with Euler’s method, but

they are computationally more demanding.

In our project, we will explore the use of Euler’s method for its simplicity and clarity, but

we will also consider the potential need for more sophisticated numerical integration techniques,

especially when dealing with structural dynamics problems that demand high accuracy and

stability. The choice of integration method will depend on the specific requirements of our

simulation and the trade-offs between accuracy and computational efficiency.

4.3 Data Dependency Issues

In the context of simulating dynamic systems, data dependencies arise due to the

interdependence of variables at different time steps. The solution at time step n+1 depends on

the values at time step n. Also, in the 1D spring-mass system, at each time step, we need to update

one element using its left and right neighbors’ values. This complicated data dependency makes

parallelization and efficient computation challenging.

Figure 4.2: Space decomposition and iterations over the time windows
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Pasetto and et.al research illustrated the dependency in Figure 4.2 [11]: the Space

decomposition and iterations over the time windows. The continuous lines represent the solutions

obtained for each iteration while the dashed lines are the converged solutions; the dot points

represent the values at the end of each time window, taken as initial conditions for the subsequent

one.

4.4 Solution

To address data dependency issues, we need a computational framework that can manage

dependencies and efficiently execute simulations in parallel. In the next chapter, we will introduce

the FleCSI library and how to implement this simulation using flecsi, and compare the performance

of its associated backends, HPX and MPI.

In summary, our project focuses on simulating a 1D spring-mass system with a clear

understanding of its theoretical background, structure, governing equations, the numerical

integration method (Euler’s method), and the data dependency issues that need to be resolved.

And learn how to implement this simulation using flecsi and compare the performance of different

backends of flecsi library. The following chapter will introduce the FleCSI library and its backends

as key components of our solution.
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Chapter 5

Implementations

In this chapter, we have presented the implementation details of our 1D spring-mass system

simulation using the FleCSI library. We harnessed FleCSI’s modular components for efficient

data management, and employed Euler’s method for time integration. Challenges related to load

balancing, data consistency, and performance optimization were addressed effectively.

5.1 Structure of Code

This section provides an overview of the structure of our simulation code, which is designed

to simulate 1D spring-mass systems using the FleCSI library. Understanding the code organization

to present how different components interact and contribute to the simulation.

As previously discussed in the Control Model section, a FleCSI application’s control flow is

structured around a hierarchy consisting of control points - actions - tasks. Figure 5.1 provides a

visual representation of Springmass’s overall control flow.

Figure 5.1: 1D spring-mass simulation control model

There are four control points: readfile, initialize, solve, and finalize, which will be executed

in serial.
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• The ’readfile’ component aims to enhance the code’s extensibility by enabling it to read

an arbitrary number of elements, such as springs and masses, along with their associated

variables from external files

• Within the ‘initialize’ section, two critical actions, ‘init mesh()’ and ‘initialcondition()’.

Notably, ‘init mesh()’ precedes ‘initialcondition()’ in execution order, as illustrated in

Listings 5.1 and 5.2. These listings demonstrate how to design actions(L4 in Listings 5.1

) and manage their dependencies effectively(L8 in Listings 5.2).

1 namespace springmass {

2 namespace action {

3 void init_mesh(control_policy &);

4 inline control::action<init_mesh, cp::initialize> init_mesh_action;

5 } // namespace action

6 } // namespace springmass

Listing 5.1: action design

1 // action dependencies

2 namespace springmass {

3 namespace action {

4

5 void initialcondition(control_policy &);

6

7 inline control::action<initialcondition, cp::initialize> initialcondition_act;

8 inline auto const initial_cond_dep = initialcondition_act.add(init_mesh_action);

9 // initial dependency, first init mesh, then initial_cond action.

10

11 } // namespace action

12 } // namespace springmass

Listing 5.2: action dependencies design
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• solve section implements Euler’s method, real distribution, and parallel task.

• In the end, finalize the whole code.

5.2 Specialization implementation

Before writing real Flecsi code, define the data structure(narray), index space, dimension,

coloring method, and interface in the specialization model to align with the specific demands of

the spring-mass system application.

First, look at the simplified spring-mass system after discretization in Figure 5.2.

Figure 5.2: discretization 1D spring-mass system

Data structure: In our case, we employ the ’narray’ data structure to represent the

discretization of our 1D mesh topology. In this representation, smaller elements are connected

at specific points referred to as ‘vertices,’ which, in our 1D scenario, are aligned exclusively along

the x-axis. We employ four logical domains: ‘all,’ ‘global,’ ’boundary low,’ and ’boundary high’

to manage our simulation effectively.

coloring: Our partitioning method, called the ’coloring method,’ defines how the system is

divided into partitions. It returns a vector of axis definitions for each partition, enabling efficient

data distribution.

See Listing 5.3: In line 36, we establish a ‘layer ghost layer’ for each vertex, and in Line 37,

we introduce an additional ‘boundary layer’ to simplify the system and improve its manageability.

In Figure 5.3, the grey blocks represent ghost copies for adjacent partitions, while the green blocks

denote the boundary layers at both ends.
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Figure 5.3: ghost copy and boundary layer

Figure 5.4: map partitions to ranks

Interface: In the interface, the global id function is designed to provide the original global

index of vertices across various domains.

On the other hand, the vertices() function returns distinct index ranges based on different

domains. For instance, in Line 58 from Listing 5.3, when the domain is set to ’logical,’ this

function will provide the local index for each color or partition. For a visual understanding of this

mapping process, please refer to Figure 5.4.

1 namespace springmass {

2 // Define a specialization for a 1D mesh

3 struct mesh : flecsi::topo::specialization<flecsi::topo::narray, mesh> {

4 // Define the index space for the nodes

5 enum index_space { vertices };

6 using index_spaces = has<vertices>;

7

8 // Define the domain and axis

9 enum domain {logical,global, boundary_low, boundary_high};

10 enum axis { x_axis };

11 using axes = has<x_axis>;
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12

13 // define the dimension

14 static constexpr std::size_t dimension = 1;

15 };

16

17 /*------------------------------------------------------------------*

18 Color Method.

19 *-----------------------------------------------------------------*/

20 // Define a distributed color type

21 /*

22 Create a vector of axis definitions for the given extents and number of colors.

23 The method takes as input the distribution of colors over axes.

24 @param num_colors distribution of colors per axis

25 @param axis_extents indices number of entities

26

27 \return vector of axis definitions for each partition

28 */

29 static coloring color(std::size_t num_colors, gcoord axis_extents) {

30 index_definition idef;

31 idef.axes = flecsi::topo::narray_utils::make_axes(num_colors, axis_extents);

32 idef.axes[0].hdepth = 1; // add one layer of ghost

33 return {{idef}};

34 }

35

36 /*--------------------------------------------------------------*

37 Interface

38 *--------------------------------------------------------------*/

39

40 template<axis A>

41 FLECSI_INLINE_TARGET std::size_t global_id(std::size_t i) const {

42 return B::template global_id<mesh::vertices, A>(i);

43 }
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44

45 template <axis A, domain DM = interior>

46 FLECSI_INLINE_TARGET auto vertices() const {

47 if constexpr (DM == interior) {

48 // The outermost layer is either ghosts or fixed boundaries:

49 return flecsi::topo::make_ids<mesh::vertices>(

50 flecsi::util::iota_view<flecsi::util::id>(

51 1,B::template size<mesh::vertices, A, base::domain::all>() - 1));

52 } else if constexpr (DM == logical) {

53 return B::template range<mesh::vertices, A, base::domain::logical>();

54 } else if constexpr (DM == all) {

55 return B::template range<mesh::vertices, A, base::domain::all>();

56 }else if constexpr (DM == boundary_low) {

57 return B::template range<mesh::vertices, A, base::domain::boundary_low>();

58 }else if constexpr (DM == boundary_high) {

59 return B::template range<mesh::vertices, A, base::domain::boundary_high>();

60 }

61 }

Listing 5.3: specialization for a 1D spring-mass system

5.3 Data variables

In our case, we work with four variables: displacement, velocity, mass, and stiffness, each

associated with every vertex.

To represent these variables comprehensively, we utilize the fields ‘displacementsd’,

‘velocities’, ‘massesd’, and ‘stiffnessesd’. These fields encompass all displacement, velocity, mass,

and stiffness values across all vertices.
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5.4 Solver implementation and optimizations

5.4.1 initialcondition

At the outset, data read from the file is distributed and assigned to each field. It’s crucial to

note that we perform field initialization for each color or partition.

In Listing 5.4, Line 3 signifies the traversal of the logical domain of each partition. The

function vertices() is employed to iterate through all the vertices in the local rank. Utilizing

the global id function, we correctly assign global values to their respective local counterparts.

Furthermore, as part of the initialization process, boundary conditions are set to 0.0.

1 namespace springmass {

2 // initialize real elements on ranks

3 for(auto i: m.vertices<mesh::x_axis, mesh::logical>()) {

4 d[i] = displacements[m.global_id<mesh::x_axis>(i)];

5 v[i] = velocities[m.global_id<mesh::x_axis>(i)];

6 mas[i] = masses[m.global_id<mesh::x_axis>(i)];

7 k[i] = stiffnesses[m.global_id<mesh::x_axis>(i)];

8 } // for

9

10 // initialize boundary_left

11 for(auto l: m.vertices<mesh::x_axis, mesh::boundary_low>()) {

12 d[l] = 0.0 ;

13 v[l] = 0.0 ;

14 mas[l] = 0.0 ;

15 k[l] = 0.0 ;

16 } // for

17

18 // initialize boundary_right

19 for(auto h: m.vertices<mesh::x_axis, mesh::boundary_high>()) {

20 d[h] = 0.0 ;

21 v[h] = 0.0 ;

22 mas[h] = 0.0 ;
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23 k[h] = 0.0 ;

24 } // for

25 } // initialize condition

Listing 5.4: initial condition

5.4.2 optimization: simplify Euler’s solver

For original implement Euler’s solver: In Figure 4.1, we illustrate the original 1D spring-mass

system. The corresponding motion equations (ODEs) for each vertex are listed in Listing 5.5.

In the case of the leftmost mass-spring point, no left neighbor is involved, and the equation

only pertains to the right neighbor (as indicated in Line 4 of Listing 5.5). Conversely, for the

rightmost mass-spring point, there is no right neighbor involved, and the equation solely relates

to the left neighbor (as specified in Line 7 of Listing 5.5). However, for the middle section, each

vertex has both left and right neighbors involved in its equation.

We note that the middle, left, and right boundary vertices exhibit different data dependencies,

resulting in distinct equations.

1 for (auto i : m.vertices<mesh::x_axis, mesh::logical>()) {

2 if (i == 0) { // leftmost mass

3 d[i] = d[i] + dt * v[i];

4 v[i] = v[i] + dt * (-((k[i] + k[i + 1]) * d[i] - k[i + 1] * d[i + 1])/ mas[i]);

5 } else if (i == size - 1) { // rightmost mass

6 d[i] = d[i] + dt * v[i];

7 v[i] = v[i] + dt * ((-k[i] * (d[i] - d[i-1])) /mas[i]);

8 } else { // middle masses

9 d[i] = d[i] + dt * v[i];

10 v[i] = v[i] + dt * ((-k[i] * (d[i] - d[i-1]) + k[i+1] * (d[i+1] - d[i])) /mas[i]);

11 }

12 }

13
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Listing 5.5: Euler’s solver

To simplify and generalize the spring-mass system model, Flecsi introduces a boundary layer.

By adding boundary layers on both the left and right sides, which means each vertex has a left and

right neighbor involved, we achieve consistency in the equations across all vertices.

1 for (auto i : m.vertices<mesh::x_axis, mesh::logical>()) {

2 d[i] = d[i] + dt * v[i];

3 v[i] = v[i] + dt * ((-k[i] * (d[i] - d[i-1]) + k[i+1] * (d[i+1] - d[i]))

4 /mas[i]);

5 }

Listing 5.6: generalized Euler’s solver

5.4.3 optimize Euler’s solver equations

Let’s analyze the generalized formula in Listing 5.6, assuming it runs on two ranks. The

partition pattern is depicted in Figure 5.5:

Figure 5.5: partition pattern

When no GPU is involved, we update the values of each vertex individually in a serial manner.

As Listing 5.6 equations show, at time ’t ’, we update ‘d[i]’ using old displacement and old velocity.

Then, update the velocities for each vertice. Since v[i] depends on d[i-1], d[i], and d[i+1], a ghost

copy of (d[i+1])is needed before launching the kernel. On each rank, update ‘v[i]’ using the new

displacement of the left neighbor, the new current displacement, and the old value of the right

neighbor.
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Regarding across ranks, for boundary vertices, such as ‘update[5] ’, we use a ghost copy of

vertex 4(left neighbor), which could be updated and back to global that can be used, and an old

value of vertex 6(right neighbor). This generally leads to a fixed mixed pattern of old and new data

calculation patterns.

However, when GPUs are introduced, the execution on each rank is no longer serial. For

instance, the GPU may compute vertex 2 first, we can get new displacement d2; Then it comes to

velocities.

We update v[2] using the old displacement of the left neighbor (vertex 2) and the old

displacement of the right neighbor(vertex 3);

Assume then update vertex 4 using the old value of vertex 3 and the old value of (ghost

copy of) vertex 5, and subsequently update vertex 3 using the new values of vertex 2 and vertex

4. This scenario results in a different mixed pattern of old and new data, potentially leading to

unpredictable behavior and results.

To address these issues and ensure consistency in data patterns, the solution is to split the

displacement and velocity equations, as listing 5.6 shows, into two separate for loops. The

final optimized Euler’s solver in FleCSI is presented in Listing 5.7. In this manner, update

the displacements of all vertices using their old displacements and velocities. Then, update the

velocities using all the new displacements, regardless of the scenario.

1 // update displacement using old_displacement and old velocity

2 for (auto i : m.vertices<mesh::x_axis, mesh::logical>()) {

3 d[i] = d[i] + dt * v[i];

4 }

5 // update velocity using new displacement;

6 // velocity depends on d[i-1], d[i] and d[i+1], a ghost copy

7 // is needed before launching the kernel

8 // (done by FleCSI before the invocation of this function).

9 for (auto i : m.vertices<mesh::x_axis, mesh::logical>()) {

10 v[i] = v[i] + dt * ((-k[i] * (d[i] - d[i-1]) + k[i+1] * (d[i+1] - d[i]))

11 /mas[i]);

38



12 }

Listing 5.7: optimized Euler’s solver

5.4.4 optimize algorithms

To achieve high efficiency with the HPX backend of FleCSI, two key criteria can be

considered:

Abundant Local Parallelism (Width of Task Dependency Tree): This criterion is determined

by the width of the task dependency tree. In our case, the application does not naturally expose

task parallelism. The tasks are strongly sequential, making it challenging to expand the task tree

to improve parallelism.

One solution is to add more parallel workload inside the task by using parallel forall()

algorithm replace the conventional for loops.

1 // update displacement using old_displacement and old velocity

2 forall (i , (m.vertices<mesh::x_axis, mesh::logical>()), "integrate_d") {

3 d[i] = d[i] + dt * v[i];

4 }

5 // update velocity using new displacement;

6 forll (i , (m.vertices<mesh::x_axis, mesh::logical>()), "integrate_v") {

7 v[i] = v[i] + dt * ((-k[i] * (d[i] - d[i-1]) + k[i+1] * (d[i+1] - d[i]))

8 /mas[i]);

9 }

Listing 5.8: optimized Euler’s solver

5.5 Execute solver in parallel and distributed

After implementing the solver task, initiate the parallel and distributed computation at each

time step by invoking the flecsi::execute< task >() parallelization function (Line2).

1 // Euler solver
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2 void springmass::action::solve(control_policy &cp) {

3 for (int t = 0; t < ndt; ++t) {

4 flecsi::execute<task::solver> (cp.m, displacementsd(cp.m),

5 velocitiesd(cp.m));

6 }

7 }

8

9 } // solver run

Listing 5.9: parallel and distributed execute Euler’s solver
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Chapter 6

Results and conclusions

In this section, verify the correctness of the simulation and then conduct a performance

analysis between MPI and HPX backend.

6.1 Correctness verification

Consider an 8-mass-8-spring system as an example. Figure 6.1 illustrates the displacement changes

in the rightmost mass. Where time step =0.01s and number of time steps = 8000.

Figure 6.1: The vibration(displacement changes over time) of rightmost vertex

1. Simplified system

To verify the correctness of the simulation code, one approach is to simplify the complex system

as much as possible.

In this process, we can transform, for example, an 8-mass-8-spring system into its simplest

form, which is a 1-mass-1-spring system. To achieve this, we fix the positions of the first seven

vertices by giving the greater value of mass and a very small stiffness value, effectively reducing

the 8-spring-mass system to a single mass-spring system.

2. Verify the correctness of the simplified system-1mass-1spring system
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The vibration shape of a 1D mass-spring system, which is undamped and consists of only

one mass and one spring, will exhibit a simple harmonic motion. This motion involves the mass

oscillating back and forth around its equilibrium position.

The equation describing the displacement ‘x’ of the mass as a function of time ‘t’ in this

system is typically given by:

x(t) = A · sin(2πft+ ϕ) (6.0.1)

Where:

• A is the amplitude of the oscillation.

• f is the frequency of the oscillation.

• ϕ is the phase angle, depending on the initial conditions of the system.

As a result, as depicted in Figure 6.2, our simplified system (which closely approximates a

one-mass and one-spring system) also exhibits a perfect harmonic motion pattern.

Figure 6.2: The vibration(displacement changes over time) of rightmost vertex after simplifying

3. Verify the correctness of the 2mass-2spring system
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Assuming read data: m1=6.0; m2=3.0; d1 0= 6.0; d2 0= 12.0; k1=k2=1/6.0; v1 0=v2 0 =

0.0; from file.

The motion equation for this system:


m1 · d1′′(t) + (k1 + k2) · d1(t)− k2 · d2(t) = 0

m2 · d2′′(t) + k2 · d2(t)− k1 · d1(t) = 0

(6.0.2)

The vibration shape of a 1D mass-spring system, which is undamped and consists of 2 masses

and 2 springs. We get the vibration of mass2 in Figure 6.3.

Figure 6.3: Undamped two-mass system dynamic displacement result of the m2 mass over time

Following the motion equation governing the 2mass-2spring system (as given in Equation

6.0.2), we have derived an analytical solution (as detailed in Appendix A from Pasetto et al research

[11] ). When we compare this analytical solution with the results obtained from our Euler’s solver,

as illustrated in Figure 6.4, it becomes evident that our Euler’s solver closely matches the exact

analytical solution.
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Figure 6.4: Undamped two-mass system dynamic displacement result of the m2 mass. Comparison of
displacement of Euler’s methods with the analytical solution, time step = 0.01s

6.2 Performance analysis

In this project, we utilize various benchmarks with different problem sizes to evaluate the

performance of our implementation. The problem sizes encompass a range from 8 to 10,000,000.

All data was gathered from the Medusa node, which features an x86/64 architecture with 40 CPU

cores, located on the Rostam cluster at CCT, LSU.

Experiment setups:

The hardware specifications include:

• L1 cache: 32 KB (32,768 bytes)

• L2 cache: 1,024 KB (1,048,576 bytes)

• L3 cache: 28,160 KB (28,856,320 bytes)

• NUMA nodes: 2

• Cores per socket : 20
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The application:

• time step = 0.01s,

• number of steps = 64000

6.2.1 Performance of MPI backend

We measure the execution time of the MPI backend with a single rank as the reference point

for speedup calculation across different problem sizes. Figure 6.5 visualizes the speedup ratios

across various numbers of ranks, demonstrating that significant scalability improvements can be

achieved with sufficiently large problem sizes.

To closely examine the scalability of problem sizes within different ranges, refer to Figure

6.6.

In Figure 6.6(a), for smaller problem sizes below 50,000, increasing the number of ranks does

not enhance performance; instead, it leads to diminished performance. The cause of this lack of

scalability lies in the substantial communication overhead between ranks, which outweighs any

performance gains. With more ranks, the communication overheads increase.

Consequently, employing more ranks results in inferior performance compared to using

just one rank. Running on a single rank allows the entire array to reside in memory,

eliminating communication and associated overhead. In contrast, when using two or more ranks,

communication overhead is introduced while diminishing the work allocated to each rank. This

addition of communication overhead is the primary factor behind the declining performance, and

it requires a certain array size to amortize the communication costs.

In Figure 6.6(b), In the realm of intermediate problem sizes, such as 400,000 or 500,000, the

MPI backend exhibits no substantial speedup, but it still maintains scalability across all ranks.

In Figure 6.6(c), for large problem sizes exceeding 1,000,000, the speedup curve experiences

a rapid ascent as the number of ranks increases from 2 to 24, with no significant additional speedup

realized when using more than 24 ranks in the implementation. It shows flattening after 24 ranks,
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which is due to Inter Process Communication(IPC), and the more cores added, the more IPC

overheads.

And when problem sizes reach 4,000,000 the speedup value decreases as the problem size

increases due to the more data(big size), the more IPC overheads because of more data transfer

work.

Figure 6.5: Scaling plot for 1D spring-mass system benchmark running with different problem sizes. The
graphs demonstrate the relationship between speedup and the number of ranks when using MPI backend of
flecsi. A higher rank number means that larger partitions are created for tasks. The speedup is calculated by
scaling the execution time of a run by the execution time of the single-thread run. A larger speedup factor
means a smaller execution time for the sample.
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(a) (b)

(c)

Figure 6.6: Scaling plots when MPI backend of FleCSI ran with different problem sizes: (a) small problem
size, (b) middle problem size, and (c) big problem size.

6.2.2 Performance Analysis of HPX backend with optimized solver using parallel forall() algorithm

With parallel forall() algorithms added inside of the dependency task, we finally measure

the execution time of the application using HPX backend with a single thread as the reference

point for speedup calculation across different problem sizes. Figure 6.7 shows the speedup ratio

with different numbers of threads. The optimized solver with parallel forall() provides sufficient

workload inside the task. Therefore we gain good scaling performance. It shows bad performance

for small sizes due to the overheads dominating over performance gain as threads increase, and It

shows significant performance scaling for larger sizes due to the sufficient parallel work.
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Figure 6.7: Scaling plot of HPX backends of FleCSI running with different problem sizes. The speedup
is calculated by scaling the execution time of a run by the execution time of the single-rank run. A larger
speedup factor means a smaller execution time for the sample.

6.2.3 Compare HPX backend with optimized solver using parallel forall() algorithm and MPI

backend

In summary, our study compared the performance of the application utilizing both the HPX

backend and the MPI backend. To establish the speedup metric, we utilized the execution time

of the application without the addition of parallel forall() when using the HPX backend as the

baseline.

Figure 6.8 illustrates the speedup ratio across varying core counts.

In Figure 6.8(a), let’s first consider the baseline. The green line represents the application

running without the inclusion of the parallel for() loop (forall()) using the HPX backend. Notably,

the performance remains consistent as the application exhibits no inherent parallelism. With only

one task within the application, there are no task dependencies or parallel operations within the

task.

Next, the red line depicts the application running with an optimized solver (forall()) using the

HPX backend. We’ve employed a parallel loop forall() instead of a traditional for loop () to update

displacement or velocity. It’s essential to note that in HPX, we execute it on a single rank while
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increasing the number of cores. The observed speedup with the red line corresponds to the increase

in core count. This arises due to the internal parallelization of the flecsi task itself, facilitated by

HPX’s parallelization using the parallel for loop. Consequently, this parallel task runs iteratively

within the time domain, resulting in the observed speedup.

Furthermore, the blue line displays a speedup in MPI. This is because the application operates

not on a single core but across N ranks, each having one core. The parallelism arises from flecsi’s

design, which distributes large arrays across the ranks, enabling parallelism across segmented

pieces of the array.

Throughout our experimentation with different problem sizes(Figure 6.8 (a-d)), we observed

that as the problem size increased, the performance of the HPX backend became comparable to

MPI and, notably, even outperformed MPI with larger problem sizes.
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(a) (b)

(c) (d)

Figure 6.8: Scaling plots for 1D spring-mass system benchmark running with different problem sizes: (a)
2 million, (b) 4 million, (c) 8 million, and (d) 10 million. The graphs demonstrate the relationship between
speedup and the number of cores when using HPX backend, HPX with optimized solver using parallel
forall() algorithm, and MPI backend.
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6.3 Conclusions

In this project, we delve into the intricacies of the 1-dimensional spring-mass system,

employing iterative solutions based on Euler’s method. The primary focus is implementing this

system using the FleCSI library, a framework for parallel computing. We further conduct a

comprehensive performance analysis using the MPI and HPX backends of FleCSI.

The results reveal intriguing insights into the parallel solver’s behavior. The MPI backend

demonstrates commendable scalability when applied to sufficiently large problem sizes, exhibiting

a significant speedup across a range of ranks. In contrast, for smaller problems, the MPI backend

shows limited performance gains due to substantial communication overhead among the ranks.

The HPX backend is designed for task-based parallelism. The simplicity of the simulation

problem, featuring a limited number of tasks and minimal task dependencies, results in a task tree

that is insufficiently wide for HPX to demonstrate its parallel processing capabilities. In essence,

the problem is a linear task with no parallel work inside the task, leaving little room for HPX to

exhibit parallel performance. Our solution is to add more workload by replacing the conventional

for-loop inside of each solver task with a parallelized for-loop called forall(). We then gain good

performance scaling across cores. In this case, HPX backend presents comparable and even better

performance over MPI backend as the input size increases.

Implementing a simulation of a 1-dimensional dynamic system serves as a valuable

introductory case study for newcomers to the FleCSI library, offering a unique exploration of the

library’s capabilities. Additionally, it marks the first attempt to assess the performance of the HPX

backend of FleCSI, providing a foundation for further improvement and optimization in this area.

In the future, we have exciting plans in store. We aim to explore and implement complex

system problems using flecsi, such as 2D structural dynamics, and investigate more accurate and

reliable numerical methods (such as the new mark family). Additionally, add some parallelism on

the task level, for even more speedup. Furthermore, we are eager to optimize our HPX backend by

implementing and incorporating more commonly used parallel algorithms.
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