Panel: TBAA: Task-Based Algorithms and Applications
Wednesday, 18 November 2020 • 3:00 pm – 4:30 pm
Outline

1. Introduction of panelists
2. Introduction of Asynchronous many-task systems
3. State of the art:
 - Charm++
 - The Julia Programming Language
 - The C++ standard library for parallelism and concurrency
4. Panel’s Chosen Questions
5. Q & A from audience (live)
Panelist I: Laxmikant V. Kale, University of Illinois
Panelist II: Irina P. Demeshko, Los Alamos National Laboratory
Panelist III: Bryce Adelstein Lelbach, NVIDIA
Panelist III: Hartmut Kaiser, Louisiana State University, Center for Computation & Technology
Panelist V: Zahra Khatami, Oracle
Panelist VII: Alice Koniges, University of Hawaii
For what class of applications is an AMT paradigm the best solution for achieving the scalable execution?
How does the C++ language standard impact efficiency and complexity of programming AMT systems?
Panel’s Chosen Questions III

- What are the differences between HPX, Julia, and Charm++ AMT paradigms and how can these differences affect the parallel performances?
• Have these HPX, Julia, and Charm++ AMT paradigms performances been evaluated against scientific applications, AI, or any other frameworks? If so, how did those frameworks get benefit using these AMT models compared to the traditional runtime systems?
How does the supercomputing community benefit from using AMT on modern and future supercomputers?
• What hardware features are required in the next-generation processors to support AMT?