Tasks all the way down
0 o0
Parallelism 1in JUIIa
88Ju1ia Keno Fischer

Computlng Co-Founder & CTO www juliacomputing.com

‘....a d

IEEE Spectrum Language Rankings

Choose a Ranking

IEEE Spectrum

Trending Jobs

P N

-

Language Types

(Click 1o hida)

HTML~

® 61.4

Kotlin~

@ 0 57.8

Rust~

@ Q ® | 556

Shell™

Q0 52.0

Processing™

@ Q 49.2

JULIA: COME FOR THE
SYNTAX, STAY FOR THE SPEED

Researchers often find themselves coding algorithms in one programming language, only
to have to rewrite them in a faster one. An up-and -coming language could be the answer.

BY JEFFREY M. PEAKEL

hen it comes to climate model-
ling, every computational second
counts. Designed to account for

air, land, sun and sea, and the complicated
physics that links them, these models can
run to millions of lines of code, which are
executed on the world's most powerful com-
puters. So when the coder-climatologists of
the Climate Modeling Alliance (CIIMA) — a
coalition of US-based scientists, engineers
and mathematicians — set out to build a
model from the ground up, they opted for 2
lznguage that could hendle their needs. They
opted for Juliz.

Launched in 2012, Julia is an open-source
language that combines the interactivity
and syntax of Scripting’ languages. such as
Pythen, Matlshand R, with the speed of ‘com-
piled’ languages such s Fortran and C.
Among climate scientists, the lingua franca
is Fortran: speedy, but — with roots dating
10 the 1950s — not terribly exciting. “A lot
of people, when they hear ‘Fortzan, are like,
“OR, my God, T don't want to progeam in
that?” says Frank Giraldo, a mathemaician at
the Naval Postgraduate School in Monterey.
Californiz, and a co-principal investigator on
the CLIMA project. Younger programmers
prefer languages that can accommodate the
fatest trends in software and hardware design.,

& 2015 Spangs il ights re

Giraldo says, and since adopting Julia he has
seen an uptick in interest. “Some of them are
really interested in climate modelling, but
athers are intrigued by the idea of using Julia
for some large-scale application,” he says.
Jane Herriman, whe s studying materials
science at the California Institute of Technol-
 in Pasadena, says that she has seen ten-

facebook.

OAK
PRIDGE

National Laboratory

Customers, Partners & Companies

Dlsnzp
Google

[]
Baiﬁfﬁlﬁ

AstraZeneca 2

Using Julia

BNDES’

10,000+ companies using Julia

i
R,

amazon V5

Alibaba.com

B® Microsoft E

LINCOLN LABORATORY
: 1 :

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

.g'[

¢

SOCIETE Tencent

GENERALE W AvVIVA

Many case studies here:
https://juliacomputing.com/case-studies/

https://juliacomputing.com/case-studies/

Universities Using and Teaching Julia

Stanfﬂrd

University

UNIVERSITY
of
GLASGOW

iy !iuulnn‘.u |u“rrxﬂuu|---
o uuu.l.uu,- TELLLLLLILLERRmE S
% i’ | 3 (TR

Senpa ’,-' A T Bt w2 Pl — Y1 W

THE CITY) p—
UHWEHSITT
FEDERALE DE LAUSANNE I I “_gigj'{#ﬁﬁ

HEWT[IRH ECDLE POLYTECHNIQUE

ntraduction to

Applied Linear Algebra

OREILLY

Thlnk Juha

M b0 Think Like & Compuier Sk

Books on Julia

-'Fundamentats of
NUMERICAL

]
S TOBIM A, DRISCOLL

RICHARD). BRAUM

Algorithms for
Optimization

Pryhel §. Kathe rderier and

Julia: High
Performance
Programming

Data Science
with Julia

ét;ljr;'[;uter
Vision
with Julia

;.fﬂ*‘:ﬂkﬁ —

Sloril (7]

S
e

Most light sources are near the detection limit.

Cataloging the Visible Universe through Bayesian Inference at Petascale

Jeffrey Regier*, Kiran PamnanyT, Keno Fischerf, Andreas Noack$, Maximilian Lam*, Jarrett Revels$,
Steve Howard", Ryan Giordano¥, David Schlegel”, Jon McAuliffe¥, Rollin Thomas!!, Prabhat!

*Department of Electrical Engineering and Computer Sciences, University of California, Berkeley
tParallel Computing Lab, Intel Corporation
{Julia Computing
§Computer Science and AI Laboratories, Massachusetts Institute of Technology
1IDepa!m‘ment of Statistics, University of California, Berkeley
I Lawrence Berkeley National Laboratory

(intel")

UNIVERSITY OF CALIFORNIA

Berkeley

y,

oy ssJulia IiE
computing I I“

Irreqular, Multi -Scale Parallelism

Nodes Threads SIMD

Fundamental Schedule Unit; Task

function pfib(n::Int)) Concurre.ncy
. - w/ High Performance I/O
if n <=1 Scheduler
return n - Parallelism
end - Low memory footprint (Millions of

) _ tasks per node)
t = Threads.@spawn pTib(n-2) _ pynamically serializable

return pfib(n-1) + fetch(t)::Int
end

@J Basic Threading Examples in JuliaLang v1.3
(Proceedings of JuliaCon 2019)

Single Node Schedule: Parallel Depth First

Work Stealing:
(5 N Y T T [
N | | o |
IS [S FU— S [SSS—) FUSS—5) Su— S_—
I N DN
I I
|

Parallel Depth First:

()) Y Y Y [
I I) o i | o i — — — — — -} -
[][] [][] [] | |] [|

W L2 cache miss [L2 cache hit E Mixed

@J Scheduling Threads for Constructive
Cache Sharing on CMPs (SPAA 07)

Highly Cache efficient for regular
problems
Composability/Nested parallelism
without sacrificing performance
- Fearless parallelism for library
authors

Jameson Jeff Kiran
Nash Bezanson Pamnany

Distributed Schedule: User Policy

- Different Applications need different
° scheduling approaches
- Common needs available from
package repository

o o / 32-Node Cluster Task Distribution
Distribution %
thread Q- - ‘;:f;r —

— "equeg,

° QDDDDGDDDDDDDDDDDDDDDDDDDDDD&

Dagger.jl: Dask-like global Gasp.jl: Dtree load-balancing irregular work scheduler
DAG scheduler (scaling to millions of concurrent threads)

Active work

Compiler integration
- LLVM-level optimization of task states
- Julia-level semantics for compiler
optimized tasks
SIMT unification (in two directions)
- Each GPU “thread” should be a task
- SIMT programming model for regular
workloads across the abstraction levels
Code Loading/Distributed JIT/Code Caching
Opportunities

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11

